Prof. Dr. Wilfried Buchholz Dr. Klaus Aehlig

Übungen zur Vorlesung "Lineare Algebra II"

Aufgabe 33

Sei $A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$. Man finde eine unitäre Matrix $S \in \mathbb{C}^{3 \times 3}$, so daß $S^{-1}AS$ eine Diagonalmatrix ist, und bestimme die Diagonalelemente.

Wieso gibt es keine Matrix $S \in GL(3; \mathbb{R})$, so daß $S^{-1}AS$ Diagonalmatrix ist?

Aufgabe 34

Sei V ein endlichdimensionaler euklidischer Vektorraum und seien $f, g \in End(V)$.

Man zeige:

- (a) f selbstadjungiert und orthogonal $\Longrightarrow f^2 = id$.
- (b) f selbstadjungiert und $f^k = 0$ für ein $k \in \mathbb{N} \implies f = 0$.
- (c) f, g selbstadjungiert $\implies (f \circ g \text{ selbstadjungiert } \Leftrightarrow f \circ g = g \circ f)$.

Aufgabe 35

Sei σ eine symmetrische Bilinearform bzw. Hermitesche Form auf dem n-dimensionalen \mathbb{K} -Vektorraum V. Man beweise die folgende Äquivalenz:

 σ positiv definit \iff es gibt eine Basis \tilde{v} von V, so daß die Matrix $\mathcal{M}_{\tilde{v}}(\sigma)$ nur positive Eigenwerte hat.

Aufgabe 36

Sei V ein endlichdimensionaler euklidischer Vektorraum und $f \in End(V)$ injektiv.

Ferner gelte $\forall v, w \in V(\langle v, w \rangle = 0 \Rightarrow \langle f(v), f(w) \rangle = 0).$

Man beweise:

- (a) Ist $(v_1, ..., v_n)$ eine ONB von V, so $||f(v_1)|| = ... = ||f(v_n)||$. [Hinweis: Zum Beweis von $||f(v_1)|| = ||f(v_2)||$ betrachte man die Dreiecke $0, f(v_1), w$ und $0, f(v_2), w$, wobei $w := \frac{1}{2}(f(v_1) + f(v_2))$.]
- (b) Es gibt ein $\lambda \in \mathbb{R}$, so daß der Endomorphismus λf orthogonal ist.

Abgabetermin: Montag, 28. 6. 2010, 12hct im Übungskasten.