Prof. Dr. Wilfried Buchholz Dr. Klaus Aehlig

Übungen zur Vorlesung "Lineare Algebra II"

Aufgabe 29

Sei σ eine symmetrische Bilinearform auf dem endlich
dimensionalen \mathbb{R} -Vektorraum V. Man beweise:

- (a) $\forall v \in V(\sigma(v, v) = 0) \implies \forall v, w \in V(\sigma(v, w) = 0).$
- (b) $v \in V \& \sigma(v, v) \neq 0 \& W = \{w \in V : \sigma(v, w) = 0\} \implies V = \mathbb{R}v \oplus W.$
- (c) Es gibt eine Basis \tilde{v} von V, so daß die darstellende Matrix von σ bzgl. \tilde{v} eine Diagonalmatrix ist. Hinweis zu (c): Induktion nach dim(V).

Aufgabe 30

Für $A \in \mathbb{C}^{n \times n}$ beweise man:

- (a) Gilt $\overline{A}^{\mathsf{t}} = -A$, so ist der Endomorphismus $f_A : \mathbb{C}^n \to \mathbb{C}^n$, $v \mapsto A \cdot v$ normal und alle Eigenwerte von f_A sind rein imaginär, d.h. liegen in $\{i \cdot x : x \in \mathbb{R}\}$.
- (b) $Spur(A \cdot \overline{A}^{t}) = 0 \implies A = 0$. [Definition von Spur siehe Aufgabe 22]

Im folgenden sei V ein endlichdimensionaler \mathbb{K} -Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, und es sei $f \in \mathsf{End}(V)$.

Aufgabe 31

Man beweise:

- (a) Für jeden Untervektorraum $U \subseteq V$ gilt $(f^{\mathsf{ad}}(U^{\perp}))^{\perp} = f^{-1}(U)$. [Hinweis: $(U^{\perp})^{\perp} = U$]
- (b) Ist f normal, so gilt $Im(f^{ad}) = Im(f)$.
- (c) Ist g ein weiterer Endomorphismus von V und sind f,g normal, so gilt: $f \circ g = 0 \Leftrightarrow g \circ f = 0$.

Aufgabe 32

Man beweise:

- (a) $f = f^2 \& \text{Im}(f) \perp \text{Ker}(f) \implies f = f^{ad}$. [Hinweis: 5.12]
- (b) Ist f normal und sind v, w Eigenvektoren zu verschiedenen Eigenwerten von f, so gilt $\langle v, w \rangle = 0$.

Abgabetermin: Montag, 21. 6. 2010, 12hct im Übungskasten.