Prof. Dr. Wilfried Buchholz Dr. Klaus Aehlig

Übungen zur Vorlesung "Lineare Algebra II"

Aufgabe 37

Man beweise:

Ist $A = (a_{ij})_{i,j} \in O(n)$ mit $a_{ij} \ge 0$ für alle $i, j \in \{1, ..., n\}$, so existiert eine Permutation $\pi \in \mathcal{S}_n$, so daß $A = (e_{\pi(1)} \ldots e_{\pi(n)})$ (d.h. $a_{ij} = \delta_{i,\pi(j)}$).

Aufgabe 38

Es sei V ein endlichdimensionaler euklidischer Vektorraum und $U,W\subseteq V$ seien Untervektorräume, so daß $V=U\oplus W$. Sei $f\in \mathsf{End}(V)$ die zugehörige Projektion auf U, d.h. $\forall u\in U,w\in W(f(u+w)=u)$.

Zeigen Sie, daß folgende Aussagen äquivalent sind:

- (i) f selbstadjungiert
- (ii) $W = U^{\perp}$
- (iii) $\forall v \in V(\|f(v)\| \le \|v\|)$.

Aufgabe 39

(a) Für $\alpha \in \mathbb{R}$ bezeichne $R(\alpha)$ die Drehmatrix $\begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.

Für $0 \le \alpha < \beta < 2\pi$ beweise man: $R(\alpha)$, $R(\beta)$ ähnlich $\iff \alpha + \beta = 2\pi$.

[Hinweis zu "⇒": charakteristisches Polynom]

(b) Sei
$$A = \begin{pmatrix} 0 & \sqrt{6} & \sqrt{3} \\ -\sqrt{6} & 1 & -\sqrt{2} \\ -\sqrt{3} & -\sqrt{2} & 2 \end{pmatrix}$$
.

Man finde eine ONB \tilde{v} von \mathbb{R}^3 und $a, c, d \in \mathbb{R}$, so daß $\mathcal{M}_{\tilde{v}}(f_A) = \begin{pmatrix} a & 0 & 0 \\ 0 & c & d \\ 0 & -d & c \end{pmatrix}$ mit $a^2 = c^2 + d^2$.

Aufgabe 40

Man beweise: Sind $A, B \in U(n)$ ähnlich, so existiert ein $S \in U(n)$ mit $S^{-1}AS = B$.

Abgabetermin: Montag, 5. 7. 2010, 12hct im Übungskasten.