Prof. Dr. Wilfried Buchholz Dr. Klaus Aehlig

Übungen zur Vorlesung "Lineare Algebra II"

Aufgabe 1

Sei K ein Körper mit Charakteristik $\neq 2$ (d.h. $1+1\neq 0$),

und seien M, M' affine Unterräume des K-Vektorraums V.

Man zeige: Ist $M \cup M'$ affiner Unterraum von V, so $M \subseteq M'$ oder $M' \subseteq M$.

Aufgabe 2

Sei V ein K-Vektorraum und seien $v_0, ..., v_k \in V$.

Sei $U := \operatorname{span}(v_0, ..., v_k)$ und sei M der von $v_0, ..., v_k$ aufgespannte affine Unterraum.

$$\text{Man zeige:} \quad \dim(M) = \left\{ \begin{array}{ll} \dim(U) & \text{ falls } 0 \in M \\ \dim(U) - 1 & \text{ sonst} \end{array} \right.$$

Aufgabe 3

Seien U_1, U_2 Untervektorräume des K-Vektorraums V und sei $\pi_i : V \to V/U_i, x \mapsto x + U_i$ (i = 1, 2). Sei ferner $\pi : V \to V/U_1 \times V/U_2, \pi(x) := (\pi_1(x), \pi_2(x))$, wobei $V/U_1 \times V/U_2$ der mit der komponentenweisen Addition und skalaren Multiplikation versehene K-Vektorraum sei.

Man beweise:

- (i) π ist linear.
- (ii) π injektiv $\Leftrightarrow U_1 \cap U_2 = \{0\}.$
- (iii) π surjektiv $\Leftrightarrow V = U_1 + U_2$.

Aufgabe 4

Es seien U, U' Untervektorräume des K-Vektorraums V.

(a) Sei $\rho: U \to (U+U')/U'$, $\rho(x):=x+U'$.

Man zeige: (i) $\operatorname{Ker}(\rho) = U \cap U'$ und (ii) $U/(U \cap U') \cong (U + U')/U'$.

- (b) Gelte $U\subseteq U'$. Dann ist U'/U ein Untervektorraum von V/U. Man beweise:
 - (i) Es gibt ein $f \in \text{Hom}(V/U, V/U')$ mit $\forall x \in V(f(x+U) = x+U')$ und Ker(f) = U'/U.
 - (ii) $(V/U)/(U'/U) \cong V/U'$.

Abgabetermin: Montag, 26. 4. 2010, 12hct im Übungskasten.