Another reduction of classical ID, to constructive ID’,

Wilfried Buchholz
Dedicated to Wolfram Pohlers on his retirement

Introduction.

One of the major problems in reductive proof theory in the early 1970s was to give a proof-theoretic reduction
of classical theories of iterated arithmetical inductive definitions to corresponding constructive systems.
This problem was solved in [BFPS] in various ways which all where based on the method of cut-elimination
(normalization, reps.) for infinitary Tait-style sequent calculi (infinitary systems of natural deduction,
resp.). Only quite recently Avigad and Towsner [AT09] succeeded in giving a reduction of classical iterated
ID theories to constructive ones by the method of functional interpretation. For a thorough exposition and
discussion of all this cf. [Fef].

In the present paper we give yet another reduction of classical ID,, to ID® (W) based on cut-elimination
arguments. W is a particularly simple accessibility ID; its corresponding operator form W(P, @, y,x) (cf.
[BFPS]) has the shape A(z,y) AVz(Q(t(x), z) — Pq(z, z)) with primitive recursive A,¢,q, and Q(u,z) :=
u>1A(u>2— Qu=2z2)). There are two reasons which, as we hope, justify a publication of this
additional proof. First, it is considerably more direct then all the existing ones. Second, the method
used here stems to a great extent from [Ge36] and therefore may be interesting for historical reasons too.
Actually I have already used a variant of this method under the label “notations for infinitary derivations”
in several papers (e.g. [Bu91], [Bu97], [Bu0l]) without mentioning its close relationship to [Ge36]. When
writing [Bu91] I was definitely not aware of this connection; but cf. [Bu95]. The method from [Ge36] can
be roughly described as follows: By (primitive) recursion on the build-up of h, for each derivation h in

a suitably designed finitary proof system Z of first order arithmetic a family (h[i])ics, of Z-derivations

L Pd[E]) ... (i e)
T'(h)

in cutfree w-arithmetic (with repetition-rule). Then the consistency of Z is obtained by quantifierfree

is defined such that (where T'(h) denotes the endsequent of h) forms an inference

transfinite induction over the relation < := {(h[i],h) : h € Z & i € I,}. In the present paper we proceed
similarly. Let ID, be the finitary Tait-style system of v-fold iterated inductive definitions as introduced
in [Bu02]. We extend ID, by certain inferences E, D, S%f (which do not alter the set of derivable
sequents) to a finitary system ID}. This step corresponds very much to the passage from BI; to BI] in

[BuO1]. Then by primitive recursion on the height of h, for each closed ID}-derivation h we define a family
(R - (L e In)
I'(h)
IDS°. Formulated more technical, we assign to h an inference symbol tp(h) of IDS°, and for each ¢ € |tp(h)]
L(Al) - - (e € [tp(h)])
I'(h)
sight the present system IDJ° looks exactly like the system IDJ° in [Bu02] (which itself is the Tait-style

version of the natural deduction system ID;° from [Bu81]), but there is some subtle difference concerning

(h[t]).er, of closed ID;-derivations such that — is an inference in the infinitary system

a closed ID}-derivation h[t] such that — is a tp(h)-inference (Lemma 1). On first

the index sets |Q2p| of instances of the Q-rule. In [Bu02], |Q2p| is a set of infinitary derivations while in the
present paper [Qp| is a set of finite derivations, namely [Qp| = I, = set of all closed ID}-derivations h
with deg(h) = 0 and I'(h) C Pos,, where p := lev(P). Now let W, be the accessible part of the relation
{(Rhlt],h) : h € I, & v € [tp(h)|w}, where |Z]yy (=W, if T = Qp with g := lev(P) < o, and |Z]yy := |Z|
otherwise. The proof-theoretic reduction of ID, to ID’ (W) will be established by a proof of transfinite
induction over the relation {(h[i], h) : h € Iy & i € |tp(h)|} which can be locally formalized in ID’,(W). The
difficulty here is to come along without the uppermost set W, which would be available in TD’, 1 (W) but
not in ID? (W). We overcome this difficulty by using (a generalization of) Gentzen’s technique (cf. [Ge43)])
for proving transfinite induction up to ordinals < g¢ within Z.

In order to avoid some annoying but inessential technicalities we restrict our treatment to v < w. So in the

whole paper v is a fixed natural number > 0.

Preliminaries. For the reader’s convenience we repeat some basic definitions and abbreviations from
[Bu02] (with some minor deviations). Let £ be an arbitrary first order language (i.e. set of function and
predicate symbols). Atomic L-formulas are Rt;...t, where R is an n-ary predicate symbol (of £), and
t1,...,t, are L-terms. Expressions of the shape A or = A, where A is an atomic £-formula, are called literals.
L-formulas are built up from literals by means of A, V,Vz,3z. FV(A) denotes the set of free variables of
A. A formula or term A is called closed if FV(A) = (. The negation —A of a non-atomic formula A is
defined via de Morgan’s laws. The rank rk(A) of a formula A is defined by: rk(A4) := 0 if A is a literal,
rk(AA B) :=rk(AV B) := max{rk(A),rk(B)} + 1, rk(Vz A) := rk(3zA) := rk(A) + 1. By A(z/t) we denote
the result of substituting ¢ for (every free occurrence of) x in A (renaming bound variables if necessary).
Expressions Az.F' (where F' is a formula) are called predicates and denoted by F. For F = Az.F we set
F(t) := F(z/t). If P is a unary predicate symbol then B(P/F) denotes the result of substituting F for P in
B, i.e. the formula resulting from B be replacing every atom Pt by F(t). Let X be unary predicate symbol
not in L. A positive operator form in L is an £ U {X }-formula 2 in which X occurs only positively (i.e.
2 has no subformula —Xt) and which has at most one free variable z. We use the following abbreviations:
AF,t) = Uz/t)(X/F), WF) C F = Ve(U(F,z) — F(x)). For each positive operator form A we
introduce a new unary predicate symbol Pg. Finite sets of formulas are called sequents. They are denoted
by T', A, II. We mostly write Ay, ..., 4, for {Ay,..., A}, and A, T, A for {A} UT UA, etc.

Definition (£, Pos,, level).

Let Ly be a language consisting of the constant 0 (zero), the unary function symbol S (successor), and some
predicate symbols R for primitive recursive relations, such that the set TRUE(of all true closed Ly-literals
is itself primitive recursive (under some canonincal arithmetization of syntax). The only closed Ly-terms
are the numerals 0,50, 550, ... which we identify with the corresponding natural numbers (elements of IN).
Arbitrary Lo-terms will be denoted by t,t1, ..., and (number) variables by z, y.

Loy1:= Lo U {Py : A positive operator form in L,} (0 < w)

Pos, := set of all L, 1-formulas C' such every Py occurring negatively in C' belongs to L.

lev(Pg) := lev(Pyt) := min{o : Pyt € Pos,} (level)

Note that this “level” is not exactly the same as “level” in [Bu02].

Proposition.

(1) Lo-formulas C Pos, C L, 41-formulas

(2) Pyt € Pos, = A(Py,t) € Pos,.

Abbreviations.

Lo-lit := set of all Ly-literals.

/\-for := set of all formulas of the shape A A B or VzA.

C e N'-for & C e N\-for or C has the shape Pyt

Clk] ::{Ck ifC:COXCl and k € {0,1}

A(z/k) ifC= 39&4 and k € IN

Definition (Inference symbols).

An inference symbol is a formal expression Z for which the following entities are given
e aset |Z| (the arity of T),

e asequent A(Z) (principal formula(s)),

e for each ¢ € |Z| a sequent A,(Z) (minor formula(s)),

An inference symbol is called (in)finitary if its arity is (in)finite.

A (D)
A
we declare Z as an inference symbol with |Z| = I, A(Z) = A, A(Z) = A,.

If 1 =40,..,n—1} we write Ao A A An_l, instead of AL—(LEI)

Inference symbols Z with |Z| = () are called azioms.

Notation. By writing (Z)

Definition (Proof systems).

A proof system is given by a language £ and a set of inference symbols in this language, where “Z in L”
means that all elements of A(Z) U,¢ 7 Au(Z) are L-formulas. A proof system is called finitary if all its
inference symbols are finitary; otherwise it is called infinitary.

From now on the letters A, B, C' always denote L, -formulas, and P ranges over predicate symbols Py € L,,.

Definition (The finitary proof systems ID, and ID}).

The language of ID, is £,, and the inference symbols of ID, are
(Axr) T if ' € Ax(v)
where Ax(v) is a set of £, -sequents such that
(i) T € Ax(v) = T'(Z/t) € Ax(v)
(i) T € Ax(v) & FV(I') =0 = T NTRUEy #0 or I' = {=Pn,Pn} or I ={n #n,=Pn,Pn}
(iii) {—A4, A} € Ax(v) for each atomic £,-formula A

aors) iyt Vawa) gy e W) S Vi S
(Cute) % (CE/\+_forU£0—lit), (Indt}-))) S F S FD
(Clpgt) A Pat) (Ind72")

Pat ' —(A(F)CF), ~Pat, F(t) -

The inference symbols Axr, A x5 VZ\/B? \/nga Clpyt, and Cute with C' € Lo-lit are called simple.
The proof system ID}, is obtained from ID, by adding the following inference symbols

VrA AgNA
t k 0 1
(JVxA) A(l‘/t)) (JAO/\Al) Ak)

I 11 .
= -
(Sp.7) @) € 7). 1(P/F) with P = Py and II C Posjey(p) ,

® 5. ©) <
The role of E and D, will become clear in the definition of At below.

Inductive Definition of ID}-derivations

If 7 is an inference symbol of ID} of arity [and hy, ..., h;_1 are ID}-derivations such that
for I':= A(Z) U, ., (T'(h:i) \ Ai(Z)) we have

* IT=N\gea =y gFV(D),

e 7 =Cute = FV(C) CFV(),

o 7=\, = FV(t) CFV(),

o T=S3 = FV(I) CFV(I) and hg = Dyhoo with o := lev(P),

e 7T=D, =T(hy) C Pos, & deg(hg) =0,

then h :=Zhyg...h;—1 is an ID}-derivation and

deg(hg) ~ 1 ifZT=E
['(h) :=T (endsequent of h), deg(h):= < max{rk(C),deg(hg),deg(h1)} if T = Cute
sup; ; deg(h;) otherwise

An ID,-derivation h is called closed if its endsequent T'(h) is closed, i.e. if FV(T'(h)) = 0.

Abbreviations.

ID} := set of all closed ID}-derivations.

htmD & helD: with D(h) C T and deg(h) < m.
hEZ T < ht, I'and T' C Pos,.

I, := {D,h: h+g T(h)} (= {Doh : h € ID}, & deg(h) = 0 & I'(h) C Pos,}) (o < v)

Definition of h(y/k) (Substitution of numerals).

For h=Thg...h,_1 let
_[h it 7= Avoa
Py/k) = {I(y/k)ho(y/k) - hia(y/k) otherwise
where Z(y/k) is defined as expected, i.e., in such a way that the following holds:
htm T = h(y/k) bn T(y/k).
Convention.
From now on we use h as syntactic variable for closed ID}-derivations (i.e., elements of ID}).

Definition (The infinitary proof system IDJ°).
The language of ID;° consists of all closed £, -formulas.

We use P as syntactic variable for formulas of the form Pgn with Py € L,,.

The inference symbols of ID}° are

e All simple inference symbols of ID,, (restricted to closed formulas)

where A(Axr) is slightly modified, namely A(Axr) := {F NTRUE, if INTRUEy #0

r otherwise
o () D UER) C (e pon), (Rep) -
P T(@\{P}...(geL)

o (Qp)

i with p :=lev(P).

Definition of h™, tp(h), hl]

To each h € ID;, we assign

e an inference symbol tp(h) of ID}°,

e for each ¢ € [tp(h)|, a derivation h[(] € ID}.

For the sake of conciseness we write

ht=1I(h,),., for tp(h) =Z &|Z|=1& Ve I(h[] = h,).
The definition proceeds by (primitive) recursion on the height of h.

In clause 3. we make use of the following abbreviation:

0 Cuta(ho, hy) if C € At-for U Lo-lit
to(ho, h1) == ’
Cutg o, hu) {Cutﬁc(hl, ho) otherwise

Further we denote by d4 the canonical cutfree ID,-derivation of {—A, A}.
1.1. (Tho..hi_1)T :=IT(h;)i<; if T is simple.

1.2 (/\gIAiL)Jr = /\VmA (ﬁ(y/i))iem

1.3. (IndZ™M)t = ﬁ’])nAX{ﬂpn7'pn} (S;{J’D}Z}q)qelM with p = lev(P).

2. (Ind%)™ :=Rep(dy) with do := dr(0), dit1 =\ Sp(r () nmr(50) NFiyrmr (50 didF(si

3. If C € N'-for and hi =Z(hy,),., then:

Z(CUtChOhlb)Lel if =C g A(I)
(Cutch0h1)+ = Cutg«[k] (J’é«ho, Cutchohlo) if7Z = \/EC
Rep(ho) if -C € A(Z) and C = Pn

R EhoE if 7= ith f
4 T h* = T(h)er then (ER)* 1= ep(Cutc ho hl) i .Cutc with C' € A\'-for
I(Ehb) el otherwise
Rep(Jghy) if T = A\g

Z(JEh,) otherwise

5. If C € \-for and h* =Z(h,),_, then (JER)t = {
el

6. If P =Py, p:=lev(P) (<v),and d € I, with d* =7Z(d,),es then

n TITUAG(Z . .
V" amrcr (Narmnrm (Spr *Ddy)dz(m) if T = Clp, with Pn €11

(Sprd)t =< T (SppPd,) ., if 7= AV with A eI

P.F
I(ngde)LEI otherwise

where (/\A) = /\A(p/]-‘)> (\/A) = VA(P/}—).

Rep(D,h if 7= Qp with p:=lev(P) >0
7 IR = Z(h),., then (Doh)* o= { P (PADu) p with 11 = lev(P) >
' Z(DO'hL)LEI otherwise

Definitions.
ID[o :=ID°\ {Qp : lev(P) > o}
deg(T) = {rk(C’) +1 i T = Cute with C € A-for
0 otherwise
Lemma 1.
If ht, T & ht =Z(h,),er then
TeID’[o & A(Z)CT & deg(Z)<m & Vee I(h, o, T,A,(2)).
The proof of this lemma is routine and can be left to the reader (cf. Theorem 3 in [Bu97] and Theorem 5
in [Bu01]).

Iterated Inductive Definition of W, (o < v)

1. If h € I, with |tp(h)| C IN and Vi € [tp(h)|(h[i] € W,) then h € W,.

2. If h € I, with tp(h) = Qp, lev(P) < ¢ and V¢ € Wiev(py (h[t] € Ws) then h € W,.
Note that (according to Lemma 1) if h € I, and tp(h) = Qp then lev(P) < o.

Note further that W, is by definition a subset of 1.

Our goal is now to show that ID,, is II-conservative over ID? (W) (where W denotes the operator form
corresponding to the iterated inductive definition of (Wy)s<,). We will achieve this goal by giving an
informal proof of

(1) “If h is an 1D, -derivation of a I19-sentence A and if h has height and degree < m then A holds.”
which for each fixed m € IN can be formalized in ID,(W).

Abbreviations.
W+ :={h:Vo <v(hFJ T(h) = Dsh € W,)},
FALSE, := {—A: A € TRUEy},
E"h:=E...Eh.

——

m times

Lemma 2.

Let R be a binary relation symbol of L.

(a) If h is an ID,-derivation of JyR(z,y) with deg(h) = m, then for all n we have:
E™h(z/n) € W* = Wy 3 DoE™h(z/n) - JyR(n,y).

(b) Wo > hFT,3yR(n,y) with I' C FALSEy = there exists k with R(n, k).

Proof:

(a) Obviously E™h(z/n) F) JyR(n,y) which yields the claim.

(b) Induction over Wy: We have h™ = Z(h;);c; with h; € W, for all i € I.
By Lemma 1 one of the following cases holds:

. Z=Repand ho - T,3yR(n,y).

. Z = Cute with C € FALSEy and ho FT', C, JyR(n,y).

. I = Cute with =C € FALSEq and hy F T, =C, JyR(n,y).

- T = V%, h(ny With R(n, k) € FALSEq and ho - T, R(n, k), yR(n, y).

- T=V5, p(ny and R(n, k) € TRUE.

In cases 1-4 the claim follows immediately from the IH (induction hypothesis).

T o W N

In case 5 we are done.

Now for establishing (1) it remains to prove
(2) E™h € W* holds for each closed ID,-derivation h and each m € IN.

Definitions.

For 7 € ID® let |Z] -:{{O}Uwu if 7=Qp and p = lev(P)
v W.

|Z| if 7 is not of the form Qp

Note that |Z| C |Z| (since W, C 1,).

O(X) :={h:Veetp(h)|w(h[] € X)} and Prog(X) :& (X)) C X,

where X ranges over subsets of ID}.

Then W, (for o < v) satisfies the following “axioms”:

(W,.1) I, N ®(W,) CW,,

(W,.2) I, NB(X)C X = W, C X.

Lemma 3. Prog(W*).

Proof:

Let H, := {h : deg(h) =0 & I'(h) C Pos, }. Then W* = {h : VYo < v(h € H, = D,h € W,)}.

Suppose h € d(W*) & 0 < v & h € H,. To prove: D,h € W,,. Trivially D,h € I,,.

1. tp(h) = Qp with o < p := lev(P):

From h € H, by Lemma 1 we get h[0] € H, C H,,. Together with & € ®(WW*) this yields ¢ := D,h[0] € W,.
From ¢ € W, and h € H,N®(W*) we conclude h[g] € H,NW?*. Hence D, h[q] € W, which yields D,h € W;,
since (Dyh)* = Rep(D,h[q]).

2. Otherwise: Then tp(Dyh) = tp(h), [tp(h)|w C [tp(h)| and (Dyh)[t] = Dshe] for all v € [tp(h)| (%)
From h € H, N ®(W*) by L.1 we get V¢ € [tp(h)|w (R[] € Hy N W*), and then Ve € [tp(h)|w(Dsh[t] € Wy).
Together with () this yields Dyh € W,

Remark.

Now for establishing (2) it remains to prove

(3) Prog(X)= h € X, for each closed ID,-derivation h and each X,
and to find a jump operation X — X (4 la [Ge43]) such that

(4) he X =Ehe X and Prog(X)= Prog(X).

Lemma 4. Prog(X) &lev(P)=o<v&deW, = Sg;d eX.

Proof by induction on “d € W,”:

Assume d € W, with d* =Z(d,),ecjz). Then d € I, and Vi € [Z|w(d, € W,).

We have to prove: h := Sg’fd S

1.1. Z = Clpy, with Pn € IL: Then h* = /" o mycm) (Aammynoro Spr do)dz(my) (+).
By IH from dy € W, we get Sg?]_-AO(I)dO € X. Further, the premise Prog(X) yields dz¢,) € X.
From Sgyu}-A"(I)d € X & dr(,) € X by (%) and Prog(X) we get h € X.

1.2. T= A4, \/A with A € II: Then bt =T* (SHUA @,)zelI\ ().

By TH we get Vi € |Z|(Spor'®d; € X), and then h € X by (%) and Prog(&).
1.3. otherwise: Then h+ Z(Sp fd‘)z‘ell\ (%).

By IH we get Vi € |I|W(Sg_’]_-db € X), and then h € X by (x) and Prog(X).

Lemma 5. Prog(X) & C € A\-for = Prog({ho : JEho € X}).
Proof: Left to the reader.

Definition. X" := {h; : Cutchohi € X}

Lemma 6. Assume Prog(X).

(a) C € N\-for & Vk(JEhg € X) = Prog(xCho)

(b) hg € X = Prog(XxFho),

Proof:

(a) Assume C € \-for & Vk(JEho € X) & hy € B(XCho),

To prove: hy € X¢0 ie. h:= Cutchoh, € X.

Assume hi = Z(hy,),er.- Then Vi € |Z|yy(hy, € X9"0) and thus Ve € |Z|yy(Cutchohy, € X).

1. -C ¢ A(): From h™ = Z(Cutchohy,).er and Vi € |I\W(Cutchohh € X) we get he &(X) C X.
2.7 = \/ﬁc Then At = Cutc (Jk ho, Cutchohip) with JE cho € X (by assumption) and Cutchohig € X as
shown above. Hence h € ®(X) Q X.

(b) is proved in the same way as (a).

Lemma 7. For each closed ID,-derivation h and each X we have: Prog(X) = h € X.

Proof by induction on the height of h:

Assume Prog(X).

1. h = Zhy...hj_1 with simple Z: Then h¥ —I(h) and, by IH, hq,...,hj—1 € X. Hence h € (X)) C X.
2. h =AY, 1h: Then ht = Ay, 1 (h(y/i))ien and, by IH, Vi € IN(h(y/i) € X), i.e. h € (X)) C X.

3. h = Cutchghy with C € \™-for: By IH we get hg € X.

3.1. C € A-for: By Lemma 5 we get Vk.Prog({d : J&d € X}) and then, by TH, Vk(ho € {d : J&d € X}),
i.e. Vk(JEho € X). From Prog(X) & ho € X & Vk(JEho € X) by Lemma 6a we conclude Prog(X) and
then, by IH, hy € X0 ie. he X.

32.C=P:

From Prog(X) & ho € X by Lemma 6b we conclude Prog(X ") and then, by IH, hy € XP"o ie he X.
4. h'=Ind: Then h* = Rep(d,) with do := dy(o), dit1 = iy riaynorson Arinor s didz(si-

Using Prog(X) one easily shows d; € X by induction on i.

5. h=Ind%": Then ht = QPAX{_‘P’P} (S%{f}_d)delg with o :=lev(P) and P := Pn.

Prog(X) yields Ax(_p,py € X, and by Lemma 4 we have Vd € W, (S }d € X). Hence h € ®(X) C X.

Now we come to the last part of our proof, which begins with the definition of the jump operation X — X
mentioned in (4) above.

Preliminary remark.

ID;-derivations have been introduced as terms in polish (prefix) notation build up from inference symbols

each of which as a fixed finite arity. So every ID}-derivation is finite sequence of inference symbols.

In the following we use a, a’ as syntactic variables for arbitrary finite sequences of inference symbols — includ-
ing the empty sequence €. Concatination is expressed by juxtaposition. Example: If a = CutchoJ%CutBhl
then ahs is the derivation Cutghgh with h := JIBCUtBhth.

Finitary Inductive Definition of Q(X)

Q1) £ € Q).

(Q2) a € Q(X) & C € N\-for = alk e Q).

(Q3) a € Q(X) & C € N\-for & VE(aJih € X) = aCutch € Q(X).

(Q4) a € Q(X) & ah e X = aCutph € Q(X).

Note that Q(X) is arithmetical in X.

Definition. X := {h:Va € Q(X)(aEh € X)}.
Remark.

(i)heX = EheX.
(i) he X &acQX)&C e \-for = aCutcEh € Q(X).

Lemma 8. Let a € Q(X).

(a) bt = Cuta(hg,h1) = (ah)t = Cuta(ahg,ahy).

(b) h™ = Rep(hg) = (ah)® = Rep(ahy).

Proof by induction on “a € Q(X)”.

Lemma 9. Prog(X) & ae Q(X) & ht =Z(h,)er & Ve € |Z|w(ah, € X) = ah e X.
Proof by induction on “a € Q(X)”:

1. a = e&: In this case the premises immediately yield h € ®(X) C X.

2. a=a/JE with o’ € Q(X):

21. 7= Age

Then (J&h)* = Rep(J&hy) and (ah) = (a/JER)* "2 Rep(a/Jf2hy) = Rep(ahy).

From Prog(X) & (ah)™ = Rep(ahy) & ahy € X we get ah € (X) C X.

2.2. otherwise: Then (J&h)T = I(JléhL)LeI ().

Prog(X) & o' € Q(X) & (x) & Vi € [Thw(a'Jh, =ah, € X) B ah = o Jih e X.

3. a=a/Cutch’ with o’ € Q(X) & C € A\-for & Vk(a/JER € X):

3.1. =C ¢ A(Z): Then (Cutch’h)™ = Z(Cutch'h,), ; (%).

Prog(X) & o' € Q(X) & (%) & Vi € |Z|w(a'Cutch'h, = ah, € X) B ah = a'Cutch’h € X.
3.2. T =\/*c: Then (Cutch'h)* = Cutgyy (JER', Cutch'ho) and

(ah)* = ('Cutch'h) T "2 Cutd (W JER, o' Cute ' ho) = Cutdypy(a' JER, aho).

Further o’ J&R € X and ahy € X. Hence ah € ®(X) C X.

4. a = d'Cutph’ with o’ € Q(X) & o’h' € X

4.1. =P ¢ A(T): As 3.1.

4.2. =P € A(T): Then (Cutph’h)* = Rep(h’) and thus (ah)™ = (a/'Cutch’h)* “2” Rep(a'R’).
Together with a’h’ € X this yields ah € &(X) C X.

Lemma 10. Prog(X) = Prog(X).

Proof:

Assume Prog(X) & h € ®(X) & a € Q(X). To prove aEh € X.

For this it suffices to prove aEh € ®(X).

Let ht =Z(h,).er. Then Vi € |Z|yy(h, € X) and thus Ve € |Z|yy(aEh, € X).

1. T = Cute with C € AT-for: Then (Eh)™ = Rep(CutcEhgEh;) and therefore, by Lemma 8b,
(aEh)T = Rep(aCutcEhgEhy). From hg,hy € X & a € Q(X) we get (by Remark (ii))

aCutcEhg € Q(X) & hy € X, and then aCutcEhgEh; € X. Hence aEh € ®(X) C X.

2. otherwise: From (Eh)™ = Z(Eh,),c; & Vi € |Z|y(aEh, € X) we conclude aEh € X by Lemma 9.

References

[AT09)]

[BFPS]

[Bus1]
[Bu91]
[Bu9s]
[Bu97]

[Bu01]

[Bu02]

[Fef]

[Ge36]

[Ge43]

J. Avigad and H. Towsner, Functional interpretation and inductive definitions, JSL 74 (2009), pp.
1100-1120

W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated Inductive Definitions and Subsystems
of Analysis: Recent proof-theoretical studies, LNM 897, Springer (1981).

W. Buchholz: The €,,;1-rule, in Buchholz et al. (1981), 188-233.
W. Buchholz: Notation systems for infinitary derivations, Arch. Math. Logic 30, pp. 277-296 (1991)
W. Buchholz: On Gentzen’s consistency proofs for arithmetic. Oberwolfach 1995.

W. Buchholz, Explaining Gentzen’s Consistency Proof within Infinitary Proof Theory, in G. Gottlob,
A. Leitsch and D. Mundici (eds.) Computational Logic and Proof Theory. KGC’97, Lecture Notes in
Computer Science 1289, pp. 4-17 (1997)

W. Buchholz, Explaining the Gentzen-Takeuti reduction steps: a second order system, Arch. Math.
Logic 40, pp. 255-272 (2001)

W. Buchholz, Assigning ordinals to proofs in a perspicious way, in W. Sieg, R. Sommer and C. Talcott
(eds.), Reflections on the Foundations of Mathematics: Essays in honor of Solomon Feferman, Lecture
Notes in Logic 15, pp. 37-59 (2002)

S. Feferman, The proof theory of classical and constructive inductive definitions. A 40 year saga,
1968-2008. This volume.

G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann. 112 (1936), pp. 493-565

G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsféllen der transfiniten Induktion in der
reinen Zahlentheorie, Math. Ann. 119 (1943), pp. 149-161

