
Another reduction of classical IDν to constructive IDi
ν

Wilfried Buchholz

Dedicated to Wolfram Pohlers on his retirement

Introduction.
One of the major problems in reductive proof theory in the early 1970s was to give a proof-theoretic reduction
of classical theories of iterated arithmetical inductive definitions to corresponding constructive systems.
This problem was solved in [BFPS] in various ways which all where based on the method of cut-elimination
(normalization, reps.) for infinitary Tait-style sequent calculi (infinitary systems of natural deduction,
resp.). Only quite recently Avigad and Towsner [AT09] succeeded in giving a reduction of classical iterated
ID theories to constructive ones by the method of functional interpretation. For a thorough exposition and
discussion of all this cf. [Fef].
In the present paper we give yet another reduction of classical IDν to IDi

ν(W) based on cut-elimination
arguments. W is a particularly simple accessibility ID; its corresponding operator form W(P,Q, y, x) (cf.
[BFPS]) has the shape A(x, y) ∧ ∀z(Q̃(t(x), z) → Pq(x, z)) with primitive recursive A, t, q, and Q̃(u, z) :≡
u ≥ 1 ∧ (u ≥ 2 → Q(u −· 2, z)). There are two reasons which, as we hope, justify a publication of this
additional proof. First, it is considerably more direct then all the existing ones. Second, the method
used here stems to a great extent from [Ge36] and therefore may be interesting for historical reasons too.
Actually I have already used a variant of this method under the label “notations for infinitary derivations”
in several papers (e.g. [Bu91], [Bu97], [Bu01]) without mentioning its close relationship to [Ge36]. When
writing [Bu91] I was definitely not aware of this connection; but cf. [Bu95]. The method from [Ge36] can
be roughly described as follows: By (primitive) recursion on the build-up of h, for each derivation h in
a suitably designed finitary proof system Z of first order arithmetic a family (h[i])i∈Ih of Z-derivations

is defined such that
. . .Γ(d[i]) . . . (i ∈ Ih)

Γ(h)
(where Γ(h) denotes the endsequent of h) forms an inference

in cutfree ω-arithmetic (with repetition-rule). Then the consistency of Z is obtained by quantifierfree
transfinite induction over the relation ≺ := {(h[i], h) : h ∈ Z & i ∈ Ih}. In the present paper we proceed
similarly. Let IDν be the finitary Tait-style system of ν-fold iterated inductive definitions as introduced
in [Bu02]. We extend IDν by certain inferences E, Dσ, SΠ

P,F (which do not alter the set of derivable
sequents) to a finitary system ID∗ν . This step corresponds very much to the passage from BI−1 to BI∗1 in
[Bu01]. Then by primitive recursion on the height of h, for each closed ID∗ν-derivation h we define a family

(h[ι])ι∈Ih of closed ID∗ν-derivations such that
. . .Γ(h[ι]) . . . (ι ∈ Ih)

Γ(h)
is an inference in the infinitary system

ID∞ν . Formulated more technical, we assign to h an inference symbol tp(h) of ID∞ν , and for each ι ∈ |tp(h)|

a closed ID∗ν-derivation h[ι] such that
. . .Γ(h[ι]) . . . (ι ∈ |tp(h)|)

Γ(h)
is a tp(h)-inference (Lemma 1). On first

sight the present system ID∞ν looks exactly like the system ID∞ν in [Bu02] (which itself is the Tait-style
version of the natural deduction system ID∞ν from [Bu81]), but there is some subtle difference concerning
the index sets |Ω̃P | of instances of the Ω-rule. In [Bu02], |Ω̃P | is a set of infinitary derivations while in the
present paper |Ω̃P | is a set of finite derivations, namely |Ω̃P | = Iµ = set of all closed ID∗ν-derivations h
with deg(h) = 0 and Γ(h) ⊆ Posµ, where µ := lev(P). Now let Wσ be the accessible part of the relation
{(h[ι], h) : h ∈ Iσ & ι ∈ |tp(h)|W}, where |I|W := Wµ if I = Ω̃P with µ := lev(P) < σ, and |I|W := |I|
otherwise. The proof-theoretic reduction of IDν to IDi

ν(W) will be established by a proof of transfinite
induction over the relation {(h[i], h) : h ∈ I0 & i ∈ |tp(h)|} which can be locally formalized in IDi

ν(W). The
difficulty here is to come along without the uppermost set Wν , which would be available in IDi

ν+1(W) but
not in IDi

ν(W). We overcome this difficulty by using (a generalization of) Gentzen’s technique (cf. [Ge43])
for proving transfinite induction up to ordinals < ε0 within Z.

1

In order to avoid some annoying but inessential technicalities we restrict our treatment to ν < ω. So in the
whole paper ν is a fixed natural number > 0.

Preliminaries. For the reader’s convenience we repeat some basic definitions and abbreviations from
[Bu02] (with some minor deviations). Let L be an arbitrary first order language (i.e. set of function and
predicate symbols). Atomic L-formulas are Rt1...tn where R is an n-ary predicate symbol (of L), and
t1, ..., tn are L-terms. Expressions of the shape A or ¬A, where A is an atomic L-formula, are called literals.
L-formulas are built up from literals by means of ∧,∨,∀x, ∃x. FV(A) denotes the set of free variables of
A. A formula or term A is called closed if FV(A) = ∅. The negation ¬A of a non-atomic formula A is
defined via de Morgan’s laws. The rank rk(A) of a formula A is defined by: rk(A) := 0 if A is a literal,
rk(A∧B) := rk(A∨B) := max{rk(A), rk(B)}+ 1, rk(∀xA) := rk(∃xA) := rk(A) + 1. By A(x/t) we denote
the result of substituting t for (every free occurrence of) x in A (renaming bound variables if necessary).
Expressions λx.F (where F is a formula) are called predicates and denoted by F . For F = λx.F we set
F(t) := F (x/t). If P is a unary predicate symbol then B(P/F) denotes the result of substituting F for P in
B, i.e. the formula resulting from B be replacing every atom Pt by F(t). Let X be unary predicate symbol
not in L. A positive operator form in L is an L ∪ {X}-formula A in which X occurs only positively (i.e.
A has no subformula ¬Xt) and which has at most one free variable x. We use the following abbreviations:
A(F , t) := A(x/t)(X/F), A(F) ⊆ F := ∀x(A(F , x) → F(x)). For each positive operator form A we
introduce a new unary predicate symbol PA. Finite sets of formulas are called sequents. They are denoted
by Γ,∆,Π. We mostly write A1, ..., An for {A1, ..., An}, and A,Γ,∆ for {A} ∪ Γ ∪∆, etc.

Definition (Lσ, Posσ, level).
Let L0 be a language consisting of the constant 0 (zero), the unary function symbol S (successor), and some
predicate symbols R for primitive recursive relations, such that the set TRUE0 of all true closed L0-literals
is itself primitive recursive (under some canonincal arithmetization of syntax). The only closed L0-terms
are the numerals 0, S0, SS0, ... which we identify with the corresponding natural numbers (elements of IN).
Arbitrary L0-terms will be denoted by t, t1, ..., and (number) variables by x, y.
Lσ+1 := L0 ∪ {PA : A positive operator form in Lσ} (σ < ω)
Posσ := set of all Lσ+1-formulas C such every PA occurring negatively in C belongs to Lσ.
lev(PA) := lev(PAt) := min{σ : PAt ∈ Posσ} (level)
Note that this “level” is not exactly the same as “level” in [Bu02].

Proposition.

(1) Lσ-formulas ⊆ Posσ ⊆ Lσ+1-formulas
(2) PAt ∈ Posσ ⇒ A(PA, t) ∈ Posσ.

Abbreviations.

L0-lit := set of all L0-literals.∧
-for := set of all formulas of the shape A ∧B or ∀xA.

C ∈
∧+-for :⇔ C ∈

∧
-for or C has the shape PAt

C[k] :=
{
Ck if C = C0

∨
∧C1 and k ∈ {0, 1}

A(x/k) if C = ∃
∀xA and k ∈ IN

Definition (Inference symbols).
An inference symbol is a formal expression I for which the following entities are given
• a set |I| (the arity of I),
• a sequent ∆(I) (principal formula(s)),
• for each ι ∈ |I| a sequent ∆ι(I) (minor formula(s)),
An inference symbol is called (in)finitary if its arity is (in)finite.

2

Notation. By writing (I)
. . .∆ι . . . (ι∈I)

∆
we declare I as an inference symbol with |I| = I, ∆(I) = ∆, ∆ι(I) = ∆ι.

If I = {0, ..., n−1} we write
∆0 ∆1 . . . ∆n−1

∆
, instead of

. . .∆ι . . . (ι∈I)
∆

.

Inference symbols I with |I| = ∅ are called axioms.

Definition (Proof systems).
A proof system is given by a language L and a set of inference symbols in this language, where “I in L”
means that all elements of ∆(I) ∪

⋃
ι∈|I|∆ι(I) are L-formulas. A proof system is called finitary if all its

inference symbols are finitary; otherwise it is called infinitary.
From now on the letters A,B,C always denote Lν-formulas, and P ranges over predicate symbols PA ∈ Lν .

Definition (The finitary proof systems IDν and ID∗ν).
The language of IDν is Lν , and the inference symbols of IDν are

(AxΓ)
Γ

if Γ ∈ Ax(ν)

where Ax(ν) is a set of Lν-sequents such that
(i) Γ ∈ Ax(ν) =⇒ Γ(~x/~t) ∈ Ax(ν)
(ii) Γ ∈ Ax(ν) & FV(Γ) = ∅ =⇒ Γ ∩ TRUE0 6= ∅ or Γ = {¬Pn,Pn} or Γ = {n 6= n,¬Pn,Pn}
(iii) {¬A,A} ∈ Ax(ν) for each atomic Lν-formula A

(
∧
A0∧A1

)
A0 A1

A0∧A1
, (

∨k
A0∨A1

)
Ak

A0∨A1
(k ∈ {0, 1}) , (

∧y
∀xA)

A(x/y)
∀xA , (

∨t
∃xA)

A(x/t)
∃xA ,

(CutC)
C ¬C
∅ (C ∈

∧+-for ∪ L0-lit), (IndtF) ¬F(0),¬∀x(F(x)→ F(Sx)),F(t)
,

(ClPAt)
A(PA, t)
PAt

, (IndPAt
F) ¬(A(F)⊆F),¬PAt,F(t)

.

The inference symbols AxΓ,
∧
A∧B ,

∨k
A∨B ,

∨t
∃xA, ClPAt, and CutC with C ∈ L0-lit are called simple.

The proof system ID∗ν is obtained from IDν by adding the following inference symbols

(Jt∀xA)
∀xA
A(x/t)

, (JkA0∧A1
)
A0 ∧A1

Ak
,

(SΠ
P,F)

Π
¬(A(F) ⊆ F),Π(P/F)

with P = PA and Π ⊆ Poslev(P) ,

(E)
∅
∅ , (Dσ)

∅
∅ (σ < ν).

The role of E and Dσ will become clear in the definition of h+ below.

Inductive Definition of ID∗ν-derivations
If I is an inference symbol of ID∗ν of arity l and h0, . . . , hl−1 are ID∗ν-derivations such that
for Γ := ∆(I) ∪

⋃
i<l(Γ(hi) \∆i(I)) we have

• I =
∧y
∀xA ⇒ y 6∈ FV(Γ),

• I = CutC ⇒ FV(C) ⊆ FV(Γ),
• I =

∨t
C ⇒ FV(t) ⊆ FV(Γ),

• I = SΠ
P,F ⇒ FV(Π) ⊆ FV(Γ) and h0 = Dσh00 with σ := lev(P),

• I = Dσ ⇒ Γ(h0) ⊆ Posσ & deg(h0) = 0,
then h := Ih0 . . . hl−1 is an ID∗ν-derivation and

Γ(h) := Γ (endsequent of h), deg(h) :=


deg(h0)−· 1 if I = E
max{rk(C),deg(h0),deg(h1)} if I = CutC
supi<l deg(hi) otherwise

An IDν-derivation h is called closed if its endsequent Γ(h) is closed, i.e. if FV(Γ(h)) = ∅.

3

Abbreviations.
ID∗ν := set of all closed ID∗ν-derivations.
h `m Γ :⇔ h ∈ ID∗ν with Γ(h) ⊆ Γ and deg(h) ≤ m.
h `σm Γ :⇔ h `m Γ and Γ ⊆ Posσ.

Iσ := {Dσh : h `σ0 Γ(h)} (= {Dσh : h ∈ ID∗ν & deg(h) = 0 & Γ(h) ⊆ Posσ}) (σ < ν)

Definition of h(y/k) (Substitution of numerals).
For h = Ih0 . . . hn−1 let

h(y/k) :=
{
h if I =

∧y
∀xA

I(y/k)h0(y/k) . . . hl−1(y/k) otherwise
where I(y/k) is defined as expected, i.e., in such a way that the following holds:
h `m Γ ⇒ h(y/k) `m Γ(y/k).

Convention.

From now on we use h as syntactic variable for closed ID∗ν-derivations (i.e., elements of ID∗ν).

Definition (The infinitary proof system ID∞ν).
The language of ID∞ν consists of all closed Lν-formulas.
We use P as syntactic variable for formulas of the form PAn with PA ∈ Lν .

The inference symbols of ID∞ν are

• All simple inference symbols of IDν (restricted to closed formulas)

where ∆(AxΓ) is slightly modified, namely ∆(AxΓ) :=
{

Γ ∩ TRUE0 if Γ ∩ TRUE0 6= ∅
Γ otherwise

.

• (
∧
∀xA)

. . . A(x/i) . . . (i∈IN)
∀xA , (CutC)

C ¬C
∅ (C ∈

∧+-for), (Rep)
∅
∅ ,

• (Ω̃P)
P . . .Γ(q) \ {P} . . . (q ∈ Iµ)

∅ with µ := lev(P).

Definition of h+, tp(h), h[ι]
To each h ∈ ID∗ν we assign
• an inference symbol tp(h) of ID∞ν ,
• for each ι ∈ |tp(h)|, a derivation h[ι] ∈ ID∗ν .

For the sake of conciseness we write
h+ = I

(
hι
)
ι∈I for tp(h) = I & |I| = I & ∀ι ∈ I(h[ι] = hι).

The definition proceeds by (primitive) recursion on the height of h.
In clause 3. we make use of the following abbreviation:

Cut◦C(h0, h1) :=
{

CutC(h0, h1) if C ∈
∧+-for ∪ L0-lit

Cut¬C(h1, h0) otherwise
Further we denote by dA the canonical cutfree IDν-derivation of {¬A,A}.

1.1. (Ih0...hl−1)+ := I(hi)i<l if I is simple.

1.2. (
∧y
∀xAh̃)+ :=

∧
∀xA
(
h̃(y/i)

)
i∈IN

1.3. (IndPnF)+ := Ω̃PnAx{¬Pn,Pn}
(
S
{Pn}
P,F q

)
q∈Iµ

with µ := lev(P).

2. (IndnF)+ := Rep(dn) with d0 := dF(0), di+1 :=
∨i
∃x(F(x)∧¬F(Sx))

∧
F(i)∧¬F(Si)didF(Si)

4

3. If C ∈
∧+-for and h+

1 = I
(
h1ι

)
ι∈I then:

(CutCh0h1)+ :=


I
(
CutCh0h1ι

)
ι∈I if ¬C 6∈ ∆(I)

Cut◦C[k]

(
JkCh0,CutCh0h10

)
if I =

∨k
¬C

Rep(h0) if ¬C ∈ ∆(I) and C = Pn

4. If h+ = I(hι)ι∈I then (Eh)+ :=

{
Rep

(
CutCEh0Eh1

)
if I = CutC with C ∈

∧+-for
I
(
Ehι
)
ι∈I otherwise

5. If C ∈
∧

-for and h+ = I
(
hι
)
ι∈I then (JkCh)+ :=

{
Rep

(
JkChk

)
if I =

∧
C

I
(
JkChι

)
ι∈I otherwise

.

6. If P = PA, µ := lev(P) (< ν), and d ∈ Iµ with d+ = I(dι)ι∈I then

(SΠ
P,Fd)+ :=


∨n
¬(A(F)⊆F)

(∧
A(F,n)∧¬F(n)(S

Π∪∆0(I)
P,F d0)dF(n)

)
if I = ClPn with Pn ∈ Π

I∗
(
S

Π∪∆ι(I)
P,F dι

)
ι∈I if I =

∧
A,
∨k
A with A ∈ Π

I
(
SΠ
P,Fdι

)
ι∈I otherwise

where (
∧
A)∗ :=

∧
A(P/F), (

∨k
A)∗ :=

∨k
A(P/F).

7. If h+ = I
(
hι
)
ι∈I then (Dσh)+ :=

{
Rep

(
DσhDµh0

)
if I = Ω̃P with µ := lev(P) ≥ σ

I
(
Dσhι)ι∈I otherwise

Definitions.
ID∞ν dσ := ID∞ν \ {Ω̃P : lev(P) ≥ σ}

deg(I) :=
{

rk(C) + 1 if I = CutC with C ∈
∧+-for

0 otherwise
Lemma 1.
If h `σm Γ & h+ = I(hι)ι∈I then
I ∈ ID∞ν dσ & ∆(I) ⊆ Γ & deg(I) ≤ m & ∀ι ∈ I(hι `σm Γ,∆ι(I)).
The proof of this lemma is routine and can be left to the reader (cf. Theorem 3 in [Bu97] and Theorem 5
in [Bu01]).

Iterated Inductive Definition of Wσ (σ < ν)
1. If h ∈ Iσ with |tp(h)| ⊆ IN and ∀i ∈ |tp(h)|(h[i] ∈ Wσ) then h ∈ Wσ.
2. If h ∈ Iσ with tp(h) = Ω̃P , lev(P) < σ and ∀ι ∈ Wlev(P)(h[ι] ∈ Wσ) then h ∈ Wσ.

Note that (according to Lemma 1) if h ∈ Iσ and tp(h) = Ω̃P then lev(P) < σ.
Note further that Wσ is by definition a subset of Iσ.

Our goal is now to show that IDν is Π0
2-conservative over IDi

ν(W) (where W denotes the operator form
corresponding to the iterated inductive definition of (Wσ)σ<ν). We will achieve this goal by giving an
informal proof of
(1) “If h is an IDν-derivation of a Π0

2-sentence A and if h has height and degree ≤ m then A holds.”

which for each fixed m ∈ IN can be formalized in IDi
ν(W).

Abbreviations.
W∗ := {h : ∀σ < ν(h `σ0 Γ(h)⇒ Dσh ∈ Wσ)},
FALSE0 := {¬A : A ∈ TRUE0},
Emh := E . . .E︸ ︷︷ ︸

m times

h.

5

Lemma 2.
Let R be a binary relation symbol of L0.

(a) If h̃ is an IDν-derivation of ∃yR(x, y) with deg(h̃) = m, then for all n we have:
Emh̃(x/n) ∈ W∗ ⇒ W0 3 D0E

mh̃(x/n) ` ∃yR(n, y).

(b) W0 3 h ` Γ,∃yR(n, y) with Γ ⊆ FALSE0 ⇒ there exists k with R(n, k).

Proof:
(a) Obviously Emh(x/n) `0

0 ∃yR(n, y) which yields the claim.
(b) Induction over W0: We have h+ = I(hi)i∈I with hi ∈ W0 for all i ∈ I.
By Lemma 1 one of the following cases holds:
1. I = Rep and h0 ` Γ,∃yR(n, y).
2. I = CutC with C ∈ FALSE0 and h0 ` Γ, C,∃yR(n, y).
3. I = CutC with ¬C ∈ FALSE0 and h1 ` Γ,¬C,∃yR(n, y).
4. I =

∨k
∃yR(n,y) with R(n, k) ∈ FALSE0 and h0 ` Γ, R(n, k),∃yR(n, y).

5. I =
∨k
∃yR(n,y) and R(n, k) ∈ TRUE0.

In cases 1-4 the claim follows immediately from the IH (induction hypothesis).
In case 5 we are done.

Now for establishing (1) it remains to prove
(2) Emh ∈ W∗ holds for each closed IDν-derivation h and each m ∈ IN.

Definitions.

For I ∈ ID∞ν let |I|W :=
{
{0} ∪Wµ if I = Ω̃P and µ = lev(P)
|I| if I is not of the form Ω̃P

.

Note that |I|W ⊆ |I| (since Wµ ⊆ Iµ).

Φ(X) := {h : ∀ι ∈ |tp(h)|W(h[ι] ∈ X)} and Prog(X) :⇔ Φ(X) ⊆ X ,
where X ranges over subsets of ID∗ν .

Then Wσ (for σ < ν) satisfies the following “axioms”:
(Wσ.1) Iσ ∩ Φ(Wσ) ⊆ Wσ,
(Wσ.2) Iσ ∩ Φ(X) ⊆ X ⇒ Wσ ⊆ X .

Lemma 3. Prog(W∗).
Proof:
Let Hσ := {h : deg(h) = 0 & Γ(h) ⊆ Posσ}. Then W∗ = {h : ∀σ < ν(h ∈ Hσ ⇒ Dσh ∈ Wσ)}.
Suppose h ∈ Φ(W∗) & σ < ν & h ∈ Hσ. To prove: Dσh ∈ Wσ. Trivially Dσh ∈ Iσ.
1. tp(h) = Ω̃P with σ ≤ µ := lev(P):
From h ∈ Hσ by Lemma 1 we get h[0] ∈ Hσ ⊆ Hµ. Together with h ∈ Φ(W∗) this yields q := Dµh[0] ∈ Wµ.
From q ∈ Wµ and h ∈ Hσ∩Φ(W∗) we conclude h[q] ∈ Hσ∩W∗. Hence Dσh[q] ∈ Wσ which yields Dσh ∈ Wσ,
since (Dσh)+ = Rep(Dσh[q]).
2. Otherwise: Then tp(Dσh) = tp(h), |tp(h)|W ⊆ |tp(h)| and (Dσh)[ι] = Dσh[ι] for all ι ∈ |tp(h)| (∗).
From h ∈ Hσ ∩Φ(W∗) by L.1 we get ∀ι ∈ |tp(h)|W(h[ι] ∈ Hσ ∩W∗), and then ∀ι ∈ |tp(h)|W(Dσh[ι] ∈ Wσ).
Together with (∗) this yields Dσh ∈ Wσ.

Remark.
Now for establishing (2) it remains to prove
(3) Prog(X)⇒ h ∈ X , for each closed IDν-derivation h and each X ,
and to find a jump operation X 7→ X (á la [Ge43]) such that
(4) h ∈ X ⇒ Eh ∈ X and Prog(X)⇒ Prog(X).

6

Lemma 4. Prog(X) & lev(P) = σ < ν & d ∈ Wσ ⇒ SΠ
P,Fd ∈ X .

Proof by induction on “d ∈ Wσ”:
Assume d ∈ Wσ with d+ = I(dι)ι∈|I|. Then d ∈ Iσ and ∀ι ∈ |I|W(dι ∈ Wσ).
We have to prove: h := SΠ

P,Fd ∈ X .
1.1. I = ClPn with Pn ∈ Π: Then h+ =

∨n
¬(A(F)⊆F)

(∧
A(F,n)∧¬F(n)(S

Π∪∆0(I)
P,F d0)dF(n)

)
(∗).

By IH from d0 ∈ Wσ we get S
Π∪∆0(I)
P,F d0 ∈ X . Further, the premise Prog(X) yields dF(n) ∈ X .

From S
Π∪∆0(I)
P,F d0 ∈ X & dF(n) ∈ X by (∗) and Prog(X) we get h ∈ X .

1.2. I =
∧
A,
∨k
A with A ∈ Π: Then h+ = I∗

(
S

Π∪∆i(I)
P,F di

)
i∈|I| (∗).

By IH we get ∀i ∈ |I|(SΠ∪∆i(I)
P,F di ∈ X), and then h ∈ X by (∗) and Prog(X).

1.3. otherwise: Then h+ = I
(
SΠ
P,Fdι

)
i∈|I| (∗).

By IH we get ∀ι ∈ |I|W(SΠ
P,Fdι ∈ X), and then h ∈ X by (∗) and Prog(X).

Lemma 5. Prog(X) & C ∈
∧

-for ⇒ Prog({h0 : JkCh0 ∈ X}).
Proof: Left to the reader.

Definition. XC,h0 := {h1 : CutCh0h1 ∈ X}
Lemma 6. Assume Prog(X).
(a) C ∈

∧
-for & ∀k(JkCh0 ∈ X) ⇒ Prog(XC,h0)

(b) h0 ∈ X ⇒ Prog(XP,h0).
Proof:
(a) Assume C ∈

∧
-for & ∀k(JkCh0 ∈ X) & h1 ∈ Φ(XC,h0).

To prove: h1 ∈ XC,h0 , i.e. h := CutCh0h1 ∈ X .
Assume h+

1 = I(h1ι)ι∈I . Then ∀ι ∈ |I|W(h1ι ∈ XC,h0) and thus ∀ι ∈ |I|W(CutCh0h1ι ∈ X).
1. ¬C 6∈ ∆(I): From h+ = I(CutCh0h1ι)ι∈I and ∀ι ∈ |I|W(CutCh0h1ι ∈ X) we get h ∈ Φ(X) ⊆ X .
2. I =

∨k
¬C : Then h+ = Cut◦C[k](J

k
Ch0,CutCh0h10) with JkCh0 ∈ X (by assumption) and CutCh0h10 ∈ X as

shown above. Hence h ∈ Φ(X) ⊆ X .
(b) is proved in the same way as (a).

Lemma 7. For each closed IDν-derivation h and each X we have: Prog(X)⇒ h ∈ X .
Proof by induction on the height of h:
Assume Prog(X).
1. h = Ih0...hl−1 with simple I: Then h+ = I

(
hi
)
i<l

and, by IH, h0, . . . , hl−1 ∈ X . Hence h ∈ Φ(X) ⊆ X .
2. h =

∧y
∀xAh̃: Then h+ =

∧
∀xA(h̃(y/i))i∈IN and, by IH, ∀i ∈ IN(h̃(y/i) ∈ X), i.e. h ∈ Φ(X) ⊆ X .

3. h = CutCh0h1 with C ∈
∧+-for: By IH we get h0 ∈ X .

3.1. C ∈
∧

-for: By Lemma 5 we get ∀k.Prog({d : JkCd ∈ X}) and then, by IH, ∀k(h0 ∈ {d : JkCd ∈ X}),
i.e. ∀k(JkCh0 ∈ X). From Prog(X) & h0 ∈ X & ∀k(JkCh0 ∈ X) by Lemma 6a we conclude Prog(XC,h0) and
then, by IH, h1 ∈ XC,h0 , i.e. h ∈ X .
3.2. C = P :
From Prog(X) & h0 ∈ X by Lemma 6b we conclude Prog(XP,h0) and then, by IH, h1 ∈ XP,h0 , i.e. h ∈ X .
4. h = IndnF : Then h+ = Rep(dn) with d0 := dF(0), di+1 :=

∨i
∃x(F(x)∧¬F(Sx))

∧
F(i)∧¬F(Si)didF(Si).

Using Prog(X) one easily shows di ∈ X by induction on i.
5. h = IndPnF : Then h+ = Ω̃PAx{¬P,P}

(
S
{P}
P,Fd

)
d∈Iσ

with σ := lev(P) and P := Pn.

Prog(X) yields Ax{¬P,P} ∈ X , and by Lemma 4 we have ∀d ∈ Wσ(S{P}P,Fd ∈ X). Hence h ∈ Φ(X) ⊆ X .

Now we come to the last part of our proof, which begins with the definition of the jump operation X 7→ X
mentioned in (4) above.
Preliminary remark.

ID∗ν-derivations have been introduced as terms in polish (prefix) notation build up from inference symbols
each of which as a fixed finite arity. So every ID∗ν-derivation is finite sequence of inference symbols.

7

In the following we use a, a′ as syntactic variables for arbitrary finite sequences of inference symbols – includ-
ing the empty sequence ε. Concatination is expressed by juxtaposition. Example: If a = CutCh0J

k
DCutBh1

then ah2 is the derivation CutCh0h with h := JkDCutBh1h2.
Finitary Inductive Definition of Q(X)
(Q1) ε ∈ Q(X).
(Q2) a ∈ Q(X) & C ∈

∧
-for ⇒ a JkC ∈ Q(X).

(Q3) a ∈ Q(X) & C ∈
∧

-for & ∀k(a JkCh ∈ X) ⇒ a CutCh ∈ Q(X).
(Q4) a ∈ Q(X) & ah ∈ X ⇒ a CutPh ∈ Q(X).
Note that Q(X) is arithmetical in X .

Definition. X := {h : ∀a ∈ Q(X)(aEh ∈ X)}.

Remark.
(i) h ∈ X ⇒ Eh ∈ X .
(ii) h ∈ X & a ∈ Q(X) & C ∈

∧+-for ⇒ aCutCEh ∈ Q(X).

Lemma 8. Let a ∈ Q(X).
(a) h+ = CutA(h0, h1) ⇒ (ah)+ = CutA(ah0, ah1).
(b) h+ = Rep(h0) ⇒ (ah)+ = Rep(ah0).
Proof by induction on “a ∈ Q(X)”.

Lemma 9. Prog(X) & a ∈ Q(X) & h+ = I(hι)ι∈I & ∀ι ∈ |I|W(ahι ∈ X) ⇒ ah ∈ X .
Proof by induction on “a ∈ Q(X)”:
1. a = ε: In this case the premises immediately yield h ∈ Φ(X) ⊆ X .
2. a = a′JkC with a′ ∈ Q(X):
2.1. I =

∧
C :

Then (JkCh)+ = Rep
(
JkChk

)
and (ah)+ = (a′JkCh)+ L.8b= Rep(a′JkChk) = Rep(ahk).

From Prog(X) & (ah)+ = Rep(ahk) & ahk ∈ X we get ah ∈ Φ(X) ⊆ X .
2.2. otherwise: Then (JkCh)+ = I

(
JkChι

)
ι∈I (∗).

Prog(X) & a′ ∈ Q(X) & (∗) & ∀ι ∈ |I|W(a′JkChι = ahι ∈ X) IH⇒ ah = a′JkCh ∈ X .
3. a = a′CutCh

′ with a′ ∈ Q(X) & C ∈
∧

-for & ∀k(a′JkCh
′ ∈ X):

3.1. ¬C 6∈ ∆(I): Then (CutCh
′h)+ = I

(
CutCh

′hι
)
ι∈I (∗).

Prog(X) & a′ ∈ Q(X) & (∗) & ∀ι ∈ |I|W(a′CutCh
′hι = ahι ∈ X) IH⇒ ah = a′CutCh

′h ∈ X .
3.2. I =

∨k
¬C : Then (CutCh

′h)+ = Cut◦C[k](J
k
Ch
′,CutCh

′h0) and

(ah)+ = (a′CutCh
′h)+ L.8a= Cut◦C[k](a

′JkCh
′, a′CutCh

′h0) = Cut◦C[k](a
′JkCh

′, ah0).
Further a′JkCh

′ ∈ X and ah0 ∈ X . Hence ah ∈ Φ(X) ⊆ X .
4. a = a′CutPh

′ with a′ ∈ Q(X) & a′h′ ∈ X :
4.1. ¬P 6∈ ∆(I): As 3.1.
4.2. ¬P ∈ ∆(I): Then (CutPh

′h)+ = Rep(h′) and thus (ah)+ = (a′CutCh
′h)+ L.8b= Rep(a′h′).

Together with a′h′ ∈ X this yields ah ∈ Φ(X) ⊆ X .

Lemma 10. Prog(X) ⇒ Prog(X).
Proof:
Assume Prog(X) & h ∈ Φ(X) & a ∈ Q(X). To prove aEh ∈ X .
For this it suffices to prove aEh ∈ Φ(X).
Let h+ = I(hι)ι∈I . Then ∀ι ∈ |I|W(hι ∈ X) and thus ∀ι ∈ |I|W(aEhι ∈ X).
1. I = CutC with C ∈

∧+-for: Then (Eh)+ = Rep(CutCEh0Eh1) and therefore, by Lemma 8b,
(aEh)+ = Rep(aCutCEh0Eh1). From h0, h1 ∈ X & a ∈ Q(X) we get (by Remark (ii))
aCutCEh0 ∈ Q(X) & h1 ∈ X , and then aCutCEh0Eh1 ∈ X . Hence aEh ∈ Φ(X) ⊆ X .
2. otherwise: From (Eh)+ = I(Ehι)ι∈I & ∀ι ∈ |I|W(aEhι ∈ X) we conclude aEh ∈ X by Lemma 9.

8

References

[AT09] J. Avigad and H. Towsner, Functional interpretation and inductive definitions, JSL 74 (2009), pp.
1100-1120

[BFPS] W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated Inductive Definitions and Subsystems

of Analysis: Recent proof-theoretical studies, LNM 897, Springer (1981).

[Bu81] W. Buchholz: The Ωµ+1-rule, in Buchholz et al. (1981), 188-233.

[Bu91] W. Buchholz: Notation systems for infinitary derivations, Arch. Math. Logic 30, pp. 277-296 (1991)

[Bu95] W. Buchholz: On Gentzen’s consistency proofs for arithmetic. Oberwolfach 1995.

[Bu97] W. Buchholz, Explaining Gentzen’s Consistency Proof within Infinitary Proof Theory, in G. Gottlob,
A. Leitsch and D. Mundici (eds.) Computational Logic and Proof Theory. KGC’97, Lecture Notes in
Computer Science 1289, pp. 4-17 (1997)

[Bu01] W. Buchholz, Explaining the Gentzen-Takeuti reduction steps: a second order system, Arch. Math.
Logic 40, pp. 255–272 (2001)

[Bu02] W. Buchholz, Assigning ordinals to proofs in a perspicious way, in W. Sieg, R. Sommer and C. Talcott
(eds.), Reflections on the Foundations of Mathematics: Essays in honor of Solomon Feferman, Lecture
Notes in Logic 15, pp. 37-59 (2002)

[Fef] S. Feferman, The proof theory of classical and constructive inductive definitions. A 40 year saga,
1968-2008. This volume.

[Ge36] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann. 112 (1936), pp. 493-565

[Ge43] G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der
reinen Zahlentheorie, Math. Ann. 119 (1943), pp. 149-161

9

