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2 Roderih Tumulka and Hans-Otto GeorgiiAs the state vetor 	t determining the jump rates follows the time-dependent Shr�odinger equation, the jump rates themselves are expliitlytime-dependent, so that the proesses Qt onsidered here do not admit aninvariant measure. However, the jump rates are designed in suh a way thatQt does admit an equivariant measure, namely the quantum distribution j	tj2,whih means that Qt has distribution j	tj2 at any time t. This is the key fea-ture justifying the partiular form of the jump rates, and on the other handthe main fat on whih one an build the analysis of these proesses. So, theissue here is not the analysis of distributional properties of a given proess,but the onverse: the equivariant distribution is given, and the objetive isto prove the existene of the assoiated proess, and to hek that it reallydoes have the equivariant distribution. In [GT03℄, we arried out this programfor the ase of a disrete on�guration spae, inluding in partiular a lattiemodel proposed by J.S. Bell [Bel86℄; the main arguments will be skethed inSet. 4.From the probabilisti viewpoint, one has to overome two diÆulties.First, the transition rates exhibit singularities, in that they beome ill-de�nedat ertain time and spae points. One has to show that the proess avoidsthese singularities. The seond (and more important) task is to rule out thepossibility of explosion, i.e., the aumulation of in�nitely many jumps in�nite time. Due to the unbounded growth of the rates near the singularities,the standard methods fail, and one has to use the partiular relation betweentransition rates and equivariant distribution.Besides the results on the disrete ase mentioned above, we will also de-sribe the ontinuum analogues of Bell's proess investigated in [DGTZ03a,DGTZ03, DGTZ04℄; as a speial ase these inlude Bohmian mehanis[Boh52, Bel66, BDDGZ95, D�ur01℄ for the appropriate Hamiltonian with aonserved number of partiles. On the basis of what we learned from our ex-istene proof for Bell's model, we also propose here some new methods forproving the existene of Bohmian mehanis.Let us now disuss how the models onsidered here relate to the topis ofother researh in the DFG Priority Program and other artiles in this volume.First, the existene problem for a model of quantum �eld theory is also thesubjet of the ontribution of S. Albeverio, Y. Kondratiev, M. R�okner, andT. Pasurek. The issue there is the existene, and uniqueness, of EulideanGibbs measures for in�nitely many interating quantum spins. These onernan equilibrium setting, and time appears only via path integration to make theonnetion with the quantum states. The diÆulty there is the in�nite num-ber of spins, requiring partiular assumptions on the interation. By way ofontrast, the models onsidered here involve only �nitely many partiles, butin a nonequilibrium situation, and we do not need any partiular assumptionson the interation.From the methodologial side, there is a loser onnetion to the researhin the Priority Program dealing with population biology, in partiular that byR. H�opfner and E. L�oherbah (not inluded in this volume). The similarities



Some Jump Proesses in Quantum Field Theory 3onern the reation and annihilation of partiles in the viinity of other par-tiles, and the neessity of proving non-explosion. Also, the spae-dependeneof the reprodution rates in H�opfner and L�oherbah's artile implies non-exponential life-times of individuals, just as the time-dependent jump ratesonsidered here imply non-exponential interjump times. However, in our asethe paths between the jumps are smooth and deterministi.This note is organized as follows. In Set. 2 we derive the fundamentalformula (8) for minimal jump rates, de�ning the jump proess assoiated witha ertain type of Hamiltonian. This involves onsideration of the equivariantprobability distribution (4) and probability urrent (6) provided by quantumtheory. In Set. 3 we explain the onnetion with Bohmian mehanis andwith Bell's model. We also desribe the proess for a onrete example QFT,introdued in [DGTZ03a℄. In Set. 4 we sketh the global existene prooffor the disrete ase, inluding Bell's model, that we developed in [GT03℄.In Set. 5 we point out how the methods of [GT03℄ ould be adapted toother global existene problems. In Set. 6 we indiate some perspetives forfuture researh onerning a proess for quantum theory on a manifold withboundaries, and the speial role the minimal jump rate (8) plays for thisproess.2 Jump Rates Indued by Shr�odinger EquationsWe now introdue the lass of jump proesses we are onerned with, startingwith a general framework. For our purposes, a quantum theory is abstratlygiven by a Hilbert spae H ontaining the state vetors, a one-parametergroup Ut of unitary operators on H de�ning the time evolution	t = Ut	0 (1)of the state vetor, and a measurable spae (Q;F ) of on�gurations desrib-ing the loations of partiles. Q is tied to H via a projetion-valued measure(PVM) P (dq) on Q ating on H , i.e., a mapping from the �-algebra F tothe family of projetion operators on H that is, like a measure, ountablyadditive (in the sense of the weak operator topology) and normalized, in thatP (Q) = I , the identity operator on H . If H = L2(Q; C k ) with respet tosome measure on Q then H is equipped with a natural PVM, namely P (B)being multipliation by the indiator funtion of the set B. In nonrelativis-ti quantum mehanis, another way of saying this is that P is the PVMorresponding to the joint spetral deomposition of all position operators.By Stone's theorem, the unitary operators Ut are of the formUt = e�iHt=~ (2)with H a self-adjoint operator on H , alled the Hamiltonian. Equations (1)and (2) together orrespond to the formal Shr�odinger equation



4 Roderih Tumulka and Hans-Otto Georgiii~ d	tdt = H	t : (3)We will show how this Shr�odinger equation, together with the PVM P , givesrise to a natural Markov proess on Q.In this setion we fous on the ase in whih this Markov proess is a purejump proess. (Roughly speaking, this will require that the Hamiltonian is anintegral operator in the \position representation" de�ned by P ; di�erentialoperators will be onsidered in Set. 3.) So we ask: Is there any distinguishedMarkovian jump proess (Qt) on Q desribing the evolution of the partileon�guration, and what are its transition rates? To answer this question wenote that the quantum theoretial probability distribution of the on�gurationat time t is given by �t( � ) = h	tjP ( � )	ti: (4)(We generally assume that k	0k = 1.) It is therefore natural to stipulate that�t is equivariant for (Qt), meaning that Qt has distribution �t at every timet. Can one hoose some (time-dependent) transition rates (�t) for (Qt) tosatisfy this requirement of equivariane? Yes indeed, in view of (3) the timederivative of �t is given by_�t(B) = 2~ Im h	tjP (B)H	ti = Z Jt(B; dq0) ; (5)where Jt(B;B0) = 2~ Im h	tjP (B)HP (B0)	ti (6)is the quantum theoretial urrent between two sets B;B0 2 F . On the otherhand, suppose (Qt) is a pure jump proess on Q jumping at time t with rate�t(B; q0) from q0 2 Q to some on�guration in B 2 F . Then its distribution�t = P ÆQ�1t evolves aording to the equation_�t(B) = ZQ �t(B; q) �t(dq) � ZB �t(Q; q) �t(dq): (7)To satisfy the ondition of equivariane we need to �nd jump rates �t suh thatthe right-hand sides of the evolution equations (5) and (7) oinide whenever�t = �t. We see that this is the ase when �t is given by the Radon{Nikodymderivative�t(dq; q0) = J+t (dq; dq0)�t(dq0) = � 2~ Im h	tjP (dq)HP (dq0)	ti�+h	tjP (dq0)	ti (8)of the positive part J+t of Jt in its seond variable q0, provided this makessense. For, the antisymmetry of Jt then implies that�t(dq; q0)�t(dq0)� �t(dq0; q)�t(dq) = Jt(dq; dq0) :



Some Jump Proesses in Quantum Field Theory 5To make formula (8) meaningful one needs some assumptions whihroughly require that H is an integral operator in the position representa-tion given by P , and (Q;F ) is standard Borel. This is disussed in detailin [DGTZ03℄, where (8) was written down for the �rst time in this gener-ality; speial ases had been used before in [Bel86, Sud87, DGTZ03a℄. Forthe preise onditions we refer to Theorem 1 (Set. 4.1) and Corollaries 1{3(Set. 4.2) of [DGTZ03℄. Under these onditions, formula (8) an (and hasto) be read as follows: A priori, Jt is a signed bi-measure onF�F (a measurein eah of the two variables q; q0). This has to (and then an) be extended toa signed measure on the produt �-algebra F 
F . The positive part in (8)is then to be understood in the sense of the Hahn{Jordan deomposition ofthis extended measure. Next one notes that, for eah B 2 F , Jt(B; �) � �tbeause P (B0)	t = 0 whenever �t(B0) = 0. One an thus form the Radon{Nikodym derivatives �t(B; �) = J+t (B; dq0)=�t(dq0), whih �nally have to behosen in suh a way that �t beomes a measure kernel.Aording to our derivation above, the transition rates (8) have been ho-sen to satisfy the requirement of equivariane. There was, however, still somefreedom of hoie. The partiular rate (8) is singled out by the following ad-ditional fats.1. Suppose there exists a jump proess (Qt) onQ with rates (8). As is evidentfrom the arguments above, the net probability urrent of (Qt) between twosets B;B0 2 F ,jt(B;B0) = lim"&0 1"�P(Qt 2 B0; Qt+" 2 B)� P(Qt 2 B;Qt+" 2 B0)�;then oinides with the quantum theoretial urrent Jt de�ned by (6).Conversely, if ( ~Qt) is any pure jump proess having initial distribution �0at time 0, some jump rates ~�t and probability urrent ~|t = Jt, it turnsout that neessarily ~�t(dq; q0) � �t(dq; q0) [RS90, BD99, DGTZ03℄. Thisfollows from the minimality of the Hahn{Jordan deomposition. The rates(8) are therefore alled the minimal jump rates, and a proess with rates(8) is distinguished among all proesses with the right probability urrentby having the least frequent jumps, or the smallest amount of randomness.2. Always one of the transitions q0 ! q or q ! q0 is forbidden. More preisely,for every time t there exists a set S�t 2 F 
F whih, together with itstransposition S+t , overs Q�Q (exept possibly the diagonal), and suhthat �t(fq : (q; q0) 2 S�t g; q0) = 0 for �t-almost-every q0.Indeed, by the anti-symmetry of Jt, its positive and negative part J+tand J�t admit supports S+t and S�t that are transpositions of eah other,whene the result follows.Put more simply, the mehanism is this: When the urrent Jt(dq; dq0) ispositive, meaning that there should be a net ow from dq0 to dq, then�t(dq; q0) > 0 and �t(dq0; q) = 0, i.e., only jumps from q0 to q are allowed;



6 Roderih Tumulka and Hans-Otto Georgiithe onverse holds in the ase of a negative urrent. Under all rates withjt = Jt, the minimal rates (8) are haraterized by this property.3 Bohmian Mehanis and Bell-Type QFTIn this setion we disuss three partiular instanes in whih jump rates ofthe form (8) play a signi�ant role.A. Bohmian mehanis as ontinuum limit of jump proesses. Considernonrelativisti quantum mehanis for N partiles: the on�guration spae isQ = R3N , the Hilbert spae H = L2(R3N ; C k ) and the HamiltonianH = � NXi=1 ~22mi�i + V (x1; : : : ; xN ) (9)with �i the Laplaian ating on the variable xi, mi the mass of the i-thpartile, and V the potential funtion (possibly having values in the Hermitiank � k matries). We obtain a Markov proess on the on�guration spae inthe following way: �rst disretize spae, i.e., replae R3 by a lattie � = "Z3and the Laplaian �i by the orresponding lattie Laplaian �"i . We then anonsider the jump proess Q"t on �N with rates (8). As the lattie shrinks," ! 0, one obtains [Sud87, Vin93℄ in the limit the deterministi proess Qtsatisfying the ordinary di�erential equationdQt;idt = ~mi Im 	�t ri	t	�t 	t (Qt;1; : : : ; Qt;N ) : (10)Here Qt;i is the i-th omponent of Qt, i.e., the position of the i-th partile,	t obeys the Shr�odinger equation (3) with Hamiltonian (9), and ��1 �2 isthe inner produt in C k . The proess (10) is known as Bohmian mehanis[Boh52, Bel66, BDDGZ95, D�ur01℄. For a suitable other hoie of jump rates[Vin93℄, also satisfying jt = Jt but greater than minimal, one obtains in theontinuum limit " ! 0 the di�usion proess introdued by E. Nelson andknown as stohasti mehanis [Nel85, Gol87℄.What makes Bohmian mehanis (or, for that matter, stohasti mehan-is) partiularly interesting to quantum physiists is that in a Bohmian uni-verse { one in whih the partiles move aording to (10) and the initialon�guration is hosen aording to the j	 j2 distribution { the inhabitants�nd all their observations in agreement with the probabilisti preditions ofquantum mehanis { in sharp ontrast with the traditional belief that it beimpossible to explain the probabilities of quantum mehanis by any theorydesribing events objetively taking plae in the outside world.B. Bell's jump proess for lattie QFT. The study of jump proesses withrates (8) has been inspired by Bohmian mehanis, in partiular by the wishfor a theory similar to Bohmian mehanis overing quantum �eld theory. The



Some Jump Proesses in Quantum Field Theory 7�rst work in this diretion was Bell's seminal paper [Bel86℄. For simpliity, Bellreplaes physial 3-spae by a lattie � and onsiders a QFT on that lattie. Aon�guration is spei�ed in his model by the number of fermions q(x) at everylattie site x. Thus, with the notation Z+ = f0; 1; 2; : : :g, the on�gurationspae is Q = � (�) := nq 2 Z�+ : Xx2� q(x) <1o;the spae of all on�gurations of a variable (but �nite) number of identialpartiles on the lattie. (In fat, he imposes a bound on the total number ofpartiles and assumes that � is �nite, but this is not neessary.) The PVMP ( � ) that he suggests arises from the joint spetral deomposition of thefermion number operators N(x) for every lattie site, i.e., P (q) := P (fqg) isthe projetion to the joint eigenspae of the (ommuting) operators N(x) forthe eigenvalues q(x). The jump rate Bell uses is the appropriate speial aseof (8): the rate of jumping from q0 to q is�t(q; q0) = � 2~ Im h	tjP (q)HP (q0)	ti�+h	tjP (q0)	ti : (11)For studies of Bell's proess we refer to [Sud87, Vin93, BD99, Col03a, Col03b,DGTZ03, GT03℄, and for some numerial simulations and appliations to[DR03, Den03℄. We return to it in more detail in the next setion.C. Bohmian mehanis with variable number of partiles. A third exampleof a proess for a QFT was onsidered in [DGTZ03a℄. It arose from an attemptto inlude partile reation and annihilation into Bohmian mehanis by sim-ply introduing the possibility that world lines of partiles an begin and end.That is, the aim is to provide a generalization of the Bohmian motion (10)to a on�guration spae of a variable number of partiles. Here we desribethis model in a simpli�ed version. For the numerous similarities between ourmodel proess and Bell's disrete proess, we alled it a \Bell-type QFT."In [DGTZ03, DGTZ04℄, methods are developed for obtaining a anonialBell-type proess for more or less any regularized QFT.A on�guration of �nitely many idential partiles an be desribed bya �nite ounting measure on R3 . Sine the oinidene on�gurations, thosein whih there are two or more partiles at the same loation, form a subsetof odimension 3, they are basially irrelevant, and it will be onvenient toexlude them from the on�guration spae. What remains, as the spae of\simple on�gurations", is the set of all �nite subsets of R3 ,�6=(R3 ) = �q � R3 : #q <1	:Under the physial onditions prevailing in everyday life, the most frequenttype of partile reation and annihilation is the emission and absorption ofphotons by eletrons. This an be desribed in a model QFT as follows. Par-tiles (photons) move in a Bohmian way and an be emitted and absorbed by



8 Roderih Tumulka and Hans-Otto Georgiianother kind of partiles (eletrons). For simpliity, we will assume here thatthe eletrons remain at �xed loations, given by a �nite set � � R3 ; the ase ofmoving eletrons is desribed in [DGTZ03a℄. The on�guration spae is thusthe spae of photon on�gurations, Q = �6=(R3 ), and 	t a square-integrableomplex-valued funtion on Q; the Hilbert spae H of these funtions isknown as the bosoni Fok spae arising from L2(R3 ).The Markov proess Qt in Q has pieewise smooth paths. It obeys thedeterministi motion (10), interrupted by stohasti jumps. The proess ispieewise deterministi in the sense that, onditional on the times of twosubsequent jumps and the destination of the �rst, the path in between thesejumps is deterministi. The jumps orrespond to reation or annihilation of aphoton near some point of �; in partiular, every jump hanges the number ofphotons by one. The proess is thus a speial kind of a spatial birth-and-deathproess with moving individuals [Pre76℄.The deterministi motion, during whih the number of photons is keptonstant, is de�ned by (10); for simpliity, we deviate a little from the physialfats and assume that the \photons" have a positive mass mph. The rate forthe transition q ! q [ x := q [ fxg, i.e., the reation of a new photon at theloation x 2 R3 n q, has density (with respet to Lebesgue measure dx)�t(q [ x; q) = h 2~ Im	�t (q [ x) (#q + 1)1=2Py2� '(x � y)	t(q)i+	�t (q)	t(q)where ' : R3 ! R is a �xed funtion, a spherially symmetri, square-integrable potential supported by the ball of radius Æ > 0. Likewise, for anyx 2 q the rate for the transition q ! q n x := q n fxg, i.e., annihilation of thephoton at x, is�t(q n x; q) = h 2~ Im	�t (q n x) (#q)�1=2Py2� '(x� y)	t(q)i+	�t (q)	t(q)These rates, together with vanishing rate for any other transition, are in fata speial ase of (8), for a suitable integral operator HI in plae of H . For thede�nition of HI and the derivation of the above expressions from (8) we referto Set. 3.12 of [DGTZ03℄.Now, HI is not the Hamiltonian of the relevant QFT, but its interationpart ; i.e., the omplete Hamiltonian is H = H0 + HI , where H0, the freeHamiltonian, is given byH0	(q) = � #qXi=1 ~22mph �i	(q):Observe that there is a orrespondene between the splitting H = H0+HI andthe two onstituents of the proess, the motion (10) and the jump rates just



Some Jump Proesses in Quantum Field Theory 9given. Deterministi motion orresponds to H0 while the jumps orrespond toHI . Indeed, the minimal proess, the one arising as a limiting ase from jumpproesses with minimal rates (8), assoiated with H0 alone is the ontinuousmotion (10) while the minimal proess assoiated with HI is the pure jumpproess with the above rates.This is an instane of the general rule of proess additivity : If the minimalproess assoiated with H1 has generator L1;	t and the one assoiated withH2 has generator L2;	t , then the minimal proess assoiated with H1 +H2has generator L1;	t+L2;	t , provided that the (formal) integral kernels of H1and H2 have disjoint supports. The sum of the generators of a deterministiow and of a pure jump proess generates the pieewise deterministi proessthat follows the ow between stohasti jumps. In QFT, it is a typial situ-ation that H = H0 +HI where H0 is a di�erential operator assoiated withontinuous motion while HI is an integral operator (often linking di�erentpartile numbers) assoiated with jumps.4 Global Existene of Bell's Jump ProessIn this setion we deal with Bell's jump proess introdued as model B in thelast setion. As we have shown in [GT03℄, this proess exists globally in time.In fat, for our proof it is not relevant whether the on�guration orrespondsto the fermion number operators. We only need that Q is any ountable set,and P ( � ) a PVM on Q ating on H . In fat we an allow that P ( � ) is apositive-operator-valued measure (POVM), a onept somewhat weaker thana PVM.3 Here is our result.Theorem 1. Let H be a Hilbert spae, H a self-adjoint operator on H , Q aountable set, and P ( � ) a POVM on Q ating on H . For every initial statevetor 	0 with k	0k = 1 satisfying	t 2 domain(H) 8 t 2 R; (12a)P (q)	t 2 domain(H) 8 t 2 R; q 2 Q; (12b)Z t2t1 dt Xq;q02Q��h	tjP (q)HP (q0)	ti�� <1 8 t1; t2 2 R with t1 < t2; (12)there exists a (right-ontinuous) Markovian pure jump proess (Qt)t2R on Qwith transition rates (11) suh that, for every t, Qt has distribution �t =h	tjP ( � )	ti. This proess is unique in distribution.Some omments are neessary. First of all, how ould the proess fail toexist globally in time? Two kinds of atastrophes ould our. On the one3 That is, P takes values in the positive (bounded, self-adjoint) operators on H(instead of the projetion operators as a PVM) and shares the ountable additivityand normalization of a PVM.



10 Roderih Tumulka and Hans-Otto Georgiihand, the jump rate (11) is singular at the nodes of 	 (i.e., at suh q and tfor whih h	tjP (q)	ti = 0). While Qt is sitting on a on�guration q it mightbeome a node, and then the proess would not know how to proeed. It turnsout that this problem does not arise beause, with probability one, there isno t at whih Qt is a node. This is beause the inrease of the rates lose tothe nodes has the positive e�et of foring the proess to jump away beforethe singularity time is reahed.The seond kind of possible atastrophe would be an explosion, i.e., anaumulation of in�nitely many jumps in �nite time. The main task is toshow that this does not our, with probability one. The standard riteria fornon-explosion of pure jump proesses are on�ned to transition rates that arehomogeneous in time, relying heavily on the fat that the holding times arethen exponentially distributed and independent onditionally on the positions;see, e.g., Set. 2.7 of [Nor97℄. This onditional independene, however, fails tohold in the ase of time-dependent jump rates, and the singularities of Bell'stransition rates do not allow any a priori bounds as they were used, e.g., in[Pre76, RL53℄ to exlude explosion. The only thing one knows is that theproess is designed to have the presribed quantum distribution (4) at �xed(deterministi) times, and it is this fat we will exploit. We will sketh ourmain arguments below.Steps towards a proof of global existene of Bell's proess have also beenmade by G. Baiagaluppi [Ba96, BD99℄; his approah is, however, very dif-ferent from ours.Conerning the tehnial assumptions (12) on H , P , and 	0 we note thefollowing. For �xed H and P , the onditions (12) de�ne a set of \good" initialstate vetors 	0 for whih we an prove global existene; this set is obviouslyinvariant under the time evolution (1). In fat, when H is a Hilbert{Shmidtoperator (i.e., trH2 < 1), the onditions (12) are satis�ed for all POVMsP and all 	0 2 H ; this is also true when H is bounded and Q is �nite.(Usually, the Hamiltonian of a lattie QFT is not Hilbert{Shmidt but an,at least, be approximated by Hilbert{Shmidt operators. And it is not unusualin quantum �eld theory that Hamiltonians need to be \ut o�" in one wayor another to make them treatable, or well-de�ned at all.) Condition (12b)ensures that the expression P (q)HP (q0)	t an be formed, and thus that (11)is well-de�ned whenever q0 is not a node.The main onstrution is obvious. Starting from any �xed initial time t0,the proess Qt an be expressed for t > t0 in terms of Tk and Xk, the timeand the destination of the k-th jump after time t0, viaQt = Xk if Tk � t < Tk+1with T0 := t0 and X0 = Qt0 . The variables Tk and Xk are de�ned by theironditional distributions:



Some Jump Proesses in Quantum Field Theory 11P(Tk+1 2 dt;Xk+1 = qjT0; X0; : : : ; Tk; Xk) =1fTk<tg �t(q;Xk) exp�� Z tTk �s(Q; Xk) ds�dt;where the role of the \failure rate funtion" is played by�t(Q; q) = Xq02Q�t(q0; q) ;the total jump rate, to whatever destination, at q.Here is the reason why the proess annot run into a node. By de�nition,the onditional probability of remaining at q until at least time t2, given thatQt1 = q, is exp�� Z t2t1 �t(Q; q) dt�:We want to show that this probability vanishes whenever q is a node at t2but not at any t with t1 � t < t2. Ignoring some tehnial subtleties, this anbe derived by the following simple alulation. Sine a sum of positive partsexeeds the positive part of the sum, we onlude from (11) that�t(Q; q0) = Xq2Q [ 2~ Im h	tjP (q)HP (q0)	ti℄+h	tjP (q0)	ti � [ 2~ Im h	tjHP (q0)	ti℄+h	tjP (q0)	ti :Omitting the positive part and using (5) we �nd�t(Q; q0) � �(d=dt)h	tjP (q0)	tih	tjP (q0)	ti = � ddt logh	tjP (q0)	tiat every t with h	tjP (q0)	ti > 0. Hene, by the fundamental theorem ofalulus,Z t2t1 �t(Q; q) dt � � logh	t2 jP (q)	t2i+ logh	t1 jP (q)	t1i =1;sine q is a node at t2 (so that the �rst term is in�nite) but not at t1 (so thatthe seond term is �nite).Another part of the proof we would like to sketh here is the ore of theargument why the jump times annot aumulate. As a onvenient notation,we introdue an additional \emetery" on�guration 1 and set Qt :=1 forall t after the explosion time supk Tk. Let S(t1; t2) be the number of jumps thatthe proess performs in the time interval [t1; t2℄. The random variable S(t1; t2)is either a nonnegative integer or in�nite. Our assumption (12) implies in fatthat S(t1; t2) has �nite expetation, for all t1 < t2, and thus is �nite almostsurely. To see this we use the equationE S(t1 ; t2) = Z t2t1 Xq;q02Q�t(q; q0) �t(q0) dt; (13)



12 Roderih Tumulka and Hans-Otto Georgiiwith �t(q0) = P(Qt = q0). Intuitively, equation (13) an be understood asfollows. �t(q; q0) �t(q0) dt is the probability of a jump from q0 to q in the in-�nitesimal time interval [t; t + dt℄. Summing over q and q0, we obtain (theexpeted total jump rate and thus) the total probability of a jump during[t; t + dt℄. Integrating over t, we obtain the expeted number of jumps. Thepoint of equation (13) is that its right-hand side involves exlusively the one-time quantities �t and �t. Now, one an dedue from the de�nition of theproess that �t(q) � h	tjP (q)	ti; (14)where any ase of strit inequality would have to go along with a positiveprobability P(Qt = 1) of aumulation before t. Combining (13) and (14),we obtain E S(t1 ; t2) � Z t2t1 Xq;q02Q�t(q; q0) h	tjP (q0)	ti dt= Z t2t1 Xq;q02Q� 2~ Im h	tjP (q)HP (q0)	ti�+ dt� 2~ Z t2t1 Xq;q02Q��h	tjP (q)HP (q0)	ti�� dt <1by assumption (12) of Theorem 1. Indeed, this reasoning more or less ditatesthe assumption (12).5 Other Global Existene QuestionsVariants of the reasoning in the previous paragraph ould be used in thefuture in other global existene proofs. Here is an example onerning theglobal existene of Bohmian mehanis (with �xed number of partiles). Thiswas �rst proved in [BDGPZ95℄ under suitable assumptions on the potentialV and the initial wavefuntion 	0. One way in whih a solution Qt of (10)may fail to exist globally is by esaping to in�nity (i.e., leaving every boundedset in R3N ) in �nite time. To ontrol this behavior, we suggest to onsider ananalogue of S(t1; t2): Let D(t1; t2) be the Eulidean distane in R3N traveledby Qt between t1 and t2. ThenE D(t1 ; t2) = Z t2t1 dt ZR3N dq jvt(q)j �t(q); (15)where vt is the Bohmian veloity vetor �eld on R3N , with i-th ompo-nent given by the right-hand side of (10), and the expetation is takenover the randomness oming from the initial on�guration. If this expeta-tion an be shown to be �nite, D(t1; t2) must be almost surely �nite. Using



Some Jump Proesses in Quantum Field Theory 13�t(q) � j	t(q)j2, the analogue of (14), we see that the esape to in�nity isalmost surely exluded provided thatZ t2t1 dt ZR3N dq j	�t (q)r	t(q)j <1 whenever t1 < t2:This is a ondition analogous to (12); it is almost equivalent to the assump-tion A4 of [BDGPZ95℄. The proof there, however, is di�erent, using skillfulestimates of the probability ux aross suitable surfaes in on�guration spae-time R3N � R surrounding the \bad" points (nodes, in�nity, points where 	is not di�erentiable). The above argument based on (15) might ontribute toa simpler global existene proof [TT04℄.The global existene question is still open for the Bohm{Dira law of mo-tion [Boh53, BH93℄, a version of Bohmian mehanis suitable for wavefun-tions  obeying the Dira equation. The Dira equation is a relativisti versionof the Shr�odinger equation and readsi~� �t = � NXi=1�i~�i � ri + �imi2 � (16)where  t is a funtion R3N ! (C 4 )
N ,  is the speed of light, mi the massof the i-th partile, �i the vetor of Dira alpha matries ating on the i-thspin index of the wavefuntion, and �i the Dira beta matrix ating on thei-th index. The Bohm{Dira equation of motion readsdQt;idt =  �t �i t �t t (Qt;1; : : : ; Qt;N ) (17)where �� is the inner produt in Dira spin-spae. Sine these veloities arebounded by the speed of light, the question of esape to in�nity does not arisehere. But the question of running into a node does beause, like the minimaljump rate (8), the veloity formula (17) is ill-de�ned at nodes.This question an be treated in a way analogous to the previous argumentsbased on (13) and (15). To this end, let L(t1; t2) be the total variation, betweent1 and t2, of log j t(Qt)j2; in other words,L(t1; t2) = Z t2t1 dt ��� ddt log j t(Qt)j2���:It takes values in [0;1℄ and is in�nite if the trajetory Qt runs into a nodebetween t1 and t2. This must be a null event if L(t1; t2) has �nite expetation;for the latter we have the formulaE L(t1 ; t2) = Z t2t1 dt ZR3N dq ���� ��t + vt(q) � r� log j t(q)j2��� �t(q);where vt is the vetor �eld on R3N whose i-th omponent is the right-handside of (17). Using �t(q) � j t(q)j2 we obtain



14 Roderih Tumulka and Hans-Otto GeorgiiE L(t1 ; t2) � Z t2t1 dt ZR3N dq ���� ��t + vt(q) � r�j t(q)j2��� :As the veloities are bounded, the last expression is at mostZ t2t1 dt ZR3N dq���� ��t j t(q)j2���+ ���rj t(q)j2���� :Inserting (16) and using that the alpha and beta matries have norm 1 we seethat this in turn is not larger thanZ t2t1 dt ZR3N dq�2��� �tr t���+ 2~�Xi mi2� �t t + 2��� �tr t���� :Sine k tk = 1, the last integral oinides with2~�Xi mi2�(t2 � t1) + 4 Z t2t1 dt ZR3N dq ��� �tr t��� :The question remains under whih onditions on  0 the last term is �nite forarbitrary t1 < t2. This is presumably the ase when  0 lies in Shwartz spae(ontaining all smooth funtions f suh that f and all its derivatives deay,at in�nity, faster than jqj�n for any n > 0). To work out the proof remainsfor future researh [TT04℄.While global existene of the Bohm{Dira trajetories an presumably beproved with the same methods as used in [BDGPZ95℄ for (10) (estimating theux aross suitable surfaes surrounding the bad points), suh a proof requiresa lot of e�ort. It seems that the argument just skethed would be muh easierand more elegant.Another global existene question that is still open is that onerning theproess de�ned in [DGTZ03a℄ and desribed above in Part C of Set. 3, and forsimilar proesses, on a on�guration spae that is a disjoint union of manifolds,following deterministi trajetories interrupted by stohasti jumps.6 Deterministi Jumps and Boundaries in Con�gurationSpaeIn this last setion we desribe another appliation of minimal jump rates,one that has not yet been disussed in the literature and that raises somequestions for further researh. Suppose that the on�guration spae Q is aRiemannian manifold with boundaries, or more generally the disjoint unionof (at most ountably many) Riemannian manifolds with boundaries. We writeQ = �Q[QÆ where �Q denotes the boundary and QÆ the interior.We develop below an analogue of Bohmian mehanis on Q, onsisting ofsmooth motion interrupted by jumps from the boundary to the interior or



Some Jump Proesses in Quantum Field Theory 15vie versa. The jumps from �Q to QÆ are deterministi and our wheneverthe proess hits the boundary. The jumps from QÆ to �Q are stohasti, andtheir rates are fully determined by requiring that (i) the proess is Markovianand equivariant, and (ii) the onstrution is invariant under time reversal, inthat the proesses assoiated with 	t resp. 	��t are reverse to eah other, indistribution. These rates are, in fat, another instane of minimal jump rates.Con�guration spaes with boundaries arise from QFT if a partiular kindof \ultraviolet uto�" is applied, whih an be regarded as orresponding tosmearing out the harge of an eletron over a sphere rather than a ball. Here isan example. Consider again eletrons and photons, with the eletrons �xed atloations given by the �nite set � � R3 , and suppose that photons annot getloser than a �xed (small) distane Æ > 0 to an eletron, as they get absorbedwhen they reah that distane. Thus, the available on�guration spae isQ = �q 2 �6=(R3 ) : d(q; �) � Æ	 ; (18)where d(q; �) is the Eulidean distane of the �nite sets q and �. The spae Qis a ountable disjoint union of Riemannian manifolds with boundary,Q = 1[n=0�q 2 Q : #q = n	:Its interior is QÆ = fq 2 �6=(R3 ) : d(q; �) > Æg, and its boundary �Q = fq 2�6=(R3 ) : d(q; �) = Æg.For this or any other on�guration spae with boundaries, the law of mo-tion dQtdt = vt(Qt) = ~m Im 	�t r	t	�t 	t (Qt) (19)on QÆ must be ompleted by speifying what should happen to the proess atthe time � when it reahes the boundary. (No spei�ation is needed, however,for what should happen when two photons ollide, as this has probability zeroever to our.) The spei�ation we onsider here is a deterministi jump lawQ�+ = f(Q��)for a �xed mapping f : �Q ! QÆ. In our example (18), the obvious hoie off is f(q) = fx 2 q : d(x; �) > Æg;whih means that all photons having reahed the ritial distane Æ to someeletron disappear.Sine we want the theory to be reversible, we must also allow for spon-taneous jumps from interior points to boundary points. Sine we want theproess to be an equivariant Markov proess, the rate for a jump from q0 2 QÆto a surfae element dq � �Q must be, as one an derive,



16 Roderih Tumulka and Hans-Otto Georgii�t(dq; q0) = �n(q) � vt(q) j	t(q)j2�+j	t(q0)j2 �(dq; q0); (20)where n(q) is the inward unit normal vetor to the boundary at q 2 �Q, thedot � denotes the Riemannian inner produt, and �(dq; q0) is the measure-valued funtion de�ned in terms of the Riemannian volume measure � on Qand the Riemannian surfae area measure � on �Q by�(B; q0) = �(B \ f�1(dq0))�(dq0) ;with B � �Q, and the right-hand side denoting a Radon{Nikodym derivative(the existene of whih we presuppose). The measure �( � ; q0) is onentratedon the subset f�1(q0) of the boundary for almost every q0. For a probabilitydistribution on Q having a density funtion � with respet to �, one obtainsthe following probability transport equation at q0 2 QÆ:��t�t (q0) = �r� ��tvt�(q0)��t(�Q; q0) �t(q0)+Z�Q�(dq; q0)hn(q) � vt(q) �t(q)i�:(21)For equivariane we need that (21), with j	tj2 in plae of �t, has the strutureof the transport equation for j	tj2 that follows from the Shr�odinger equation(3), �j	t(q0)j2�t = 2~ Im	�t (q0) (H	t)(q0): (22)This is not automatially the ase, but it follows from (and therefore suggests)the following boundary ondition relating 	tj�Q to 	tjQÆ : for all q 2 �Q,n(q) � r	t(q) = (q)	t(f(q)) (23)where (q) is any omplex number.4 This ondition presribes the normalderivative of the wavefuntion on the boundary. Some boundary onditionwould be needed anyway to de�ne the evolution of the wavefuntion, i.e., toselet a self-adjoint extension of the Laplaian; whether (23) atually suÆesfor this, we have to leave to future researh. Note that (23) is a linear onditionand thus de�nes a subspae of the Hilbert spae L2(Q). From (23) and (19),one obtains equivariane with respet to the formal HamiltonianH = � ~22m�+HI , whereh�jHI	i = ~22m ZQ �(dq0) Z�Q �(dq; q0)��(q0) �(q)	(q)+ ~22m ZQ �(dq) Z�Q �(dq0; q)��(q0) (q0)	(q):4 More generally, if 	 takes values not in C but in a higherdimensional omplexvetor spae, (q) would be a C -linear mapping from the value spae at f(q) tothe value spae at q.



Some Jump Proesses in Quantum Field Theory 17Furthermore, the jump rate (20) is indeed the minimal jump rate (8) assoi-ated with HI , thanks to (23).Let us emphasize the following aspets. First, starting from the pitureof a pieewise deterministi proess that jumps whenever it hits the bound-ary, we arrived with remarkable ease at the probability transport equation(21) and thus at the boundary ondition (23). Seond, we have derived whatthe interation Hamiltonian HI is; one the destination mapping f and theorresponding oeÆients  had been seleted, there was no further freedom.Third, it turned out that the minimal jump rate is the only possible jumprate in this setting. Its very minimality plays a ruial role: a jump to aboundary point q at whih the veloity �eld is pointing towards the bound-ary, n(q) � vt(q) < 0, would not allow any ontinuation of the proess sinethere is no trajetory starting from q. The problem is absent if the veloityat q is pointing away from the boundary, n(q) � vt(q) > 0. (We are leaving outthe ase n(q) � vt(q) = 0.) On the other hand, jumps from q to f(q) annotour when vt(q) is pointing away from the boundary sine in that ase thereis no trajetory arriving at q. Thus, the jumps must be suh that at eah timet, one of the transitions q ! f(q) or f(q) ! q is forbidden, and the deisionis made by the sign of n(q) � vt(q).Referenes[Ba96℄ Baiagaluppi, G.: Topis in the Modal Interpretation of QuantumMehanis. Ph. D. thesis, University of Cambridge (1996)[BD99℄ Baiagaluppi, G., Dikson, M.: Dynamis for modal interpretations.Found. Phys., 29, 1165{1201 (1999)[Bel66℄ Bell, J.S.: On the problem of hidden variables in quantum mehanis.Rev. Mod. Phys., 38, 447{452 (1966). Reprinted in: Bell, J.S.: Speak-able and unspeakable in quantum mehanis. Cambridge UniversityPress, Cambridge (1987), p. 1.[Bel86℄ Bell, J.S.: Beables for quantum �eld theory. Phys. Rep., 137, 49{54 (1986). Reprinted in: Bell, J.S.: Speakable and unspeakable inquantum mehanis. Cambridge University Press, Cambridge (1987),p. 173. Also reprinted in: Peat, F.D., Hiley, B.J. (eds) Quantum Impli-ations: Essays in Honour of David Bohm. Routledge, London (1987),p. 227. Also reprinted in: Bell, M., Gottfried, K., Veltman, M. (eds)John S. Bell on the Foundations of Quantum Mehanis. World Si-enti� Publishing (2001), hap. 17.[BDGPZ95℄ Berndl, K., D�urr, D., Goldstein, S., Peruzzi, G., Zangh��, N.: On theglobal existene of Bohmian mehanis. Commun. Math. Phys., 173,647{673 (1995). quant-ph/9503013[BDDGZ95℄ Berndl, K., Daumer, M., D�urr, D., Goldstein, S., Zangh��, N.: A Surveyof Bohmian Mehanis. Il Nuovo Cimento B, 110, 737{750 (1995).quant-ph/9504010[Boh52℄ Bohm, D.: A Suggested Interpretation of the Quantum Theory inTerms of \Hidden" Variables, I and II. Phys. Rev., 85, 166{193 (1952)
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