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hen.deSummary. A jump pro
ess for the positions of intera
ting quantum parti
les ona latti
e, with time-dependent transition rates governed by the state ve
tor, was�rst 
onsidered by J.S. Bell. We review this pro
ess and its 
ontinuum variantsinvolving \minimal" jump rates, des
ribing parti
les as they get 
reated, move, andget annihilated. In parti
ular, we sket
h a re
ent proof of global existen
e of Bell'spro
ess. As an outlook, we suggest how methods of this proof 
ould be applied tosimilar global existen
e questions, and underline the parti
ular usefulness of minimaljump rates on manifolds with boundaries.MSC (2000). 60J75, 81T251 Introdu
tionThis 
ontribution deals with Markov jump pro
esses Qt des
ribing the posi-tional time evolution of �nitely many intera
ting quantum parti
les. Thesepro
esses are 
hara
terized by a spe
i�
 form of time-dependent jump ratesindu
ed by the S
hr�odinger equation for the quantum state ve
tor 	t of theunderlying quantum �eld theory (QFT). As a typi
al example, suppose thatthe parti
les live in the physi
al three-spa
e R3 . The pro
ess Qt then takesvalues in the spa
e of all �nite subsets of R3 , the 
on�guration spa
e of a vari-able number of identi
al parti
les (
orresponding to the Fo
k spa
e of QFT),and the jumps of Qt des
ribe the 
reation or annihilation of parti
les; be-tween these sto
hasti
 jumps, Qt evolves deterministi
ally a

ording to someordinary di�erential equation governed by 	t. Alternatively, one may think ofquantum parti
les on a latti
e; the jumps of Qt then re
ord all 
hanges of theparti
le 
on�guration. We will portray several pro
esses of this type, presentsome 
ommon prin
iples, and in parti
ular dis
uss some results of three re
entpapers [GT03, DGTZ03
, DGTZ04℄, the work on whi
h was supported by theDFG Priority Program.



2 Roderi
h Tumulka and Hans-Otto GeorgiiAs the state ve
tor 	t determining the jump rates follows the time-dependent S
hr�odinger equation, the jump rates themselves are expli
itlytime-dependent, so that the pro
esses Qt 
onsidered here do not admit aninvariant measure. However, the jump rates are designed in su
h a way thatQt does admit an equivariant measure, namely the quantum distribution j	tj2,whi
h means that Qt has distribution j	tj2 at any time t. This is the key fea-ture justifying the parti
ular form of the jump rates, and on the other handthe main fa
t on whi
h one 
an build the analysis of these pro
esses. So, theissue here is not the analysis of distributional properties of a given pro
ess,but the 
onverse: the equivariant distribution is given, and the obje
tive isto prove the existen
e of the asso
iated pro
ess, and to 
he
k that it reallydoes have the equivariant distribution. In [GT03℄, we 
arried out this programfor the 
ase of a dis
rete 
on�guration spa
e, in
luding in parti
ular a latti
emodel proposed by J.S. Bell [Bel86℄; the main arguments will be sket
hed inSe
t. 4.From the probabilisti
 viewpoint, one has to over
ome two diÆ
ulties.First, the transition rates exhibit singularities, in that they be
ome ill-de�nedat 
ertain time and spa
e points. One has to show that the pro
ess avoidsthese singularities. The se
ond (and more important) task is to rule out thepossibility of explosion, i.e., the a

umulation of in�nitely many jumps in�nite time. Due to the unbounded growth of the rates near the singularities,the standard methods fail, and one has to use the parti
ular relation betweentransition rates and equivariant distribution.Besides the results on the dis
rete 
ase mentioned above, we will also de-s
ribe the 
ontinuum analogues of Bell's pro
ess investigated in [DGTZ03a,DGTZ03
, DGTZ04℄; as a spe
ial 
ase these in
lude Bohmian me
hani
s[Boh52, Bel66, BDDGZ95, D�ur01℄ for the appropriate Hamiltonian with a
onserved number of parti
les. On the basis of what we learned from our ex-isten
e proof for Bell's model, we also propose here some new methods forproving the existen
e of Bohmian me
hani
s.Let us now dis
uss how the models 
onsidered here relate to the topi
s ofother resear
h in the DFG Priority Program and other arti
les in this volume.First, the existen
e problem for a model of quantum �eld theory is also thesubje
t of the 
ontribution of S. Albeverio, Y. Kondratiev, M. R�o
kner, andT. Pasurek. The issue there is the existen
e, and uniqueness, of Eu
lideanGibbs measures for in�nitely many intera
ting quantum spins. These 
on
ernan equilibrium setting, and time appears only via path integration to make the
onne
tion with the quantum states. The diÆ
ulty there is the in�nite num-ber of spins, requiring parti
ular assumptions on the intera
tion. By way of
ontrast, the models 
onsidered here involve only �nitely many parti
les, butin a nonequilibrium situation, and we do not need any parti
ular assumptionson the intera
tion.From the methodologi
al side, there is a 
loser 
onne
tion to the resear
hin the Priority Program dealing with population biology, in parti
ular that byR. H�opfner and E. L�o
herba
h (not in
luded in this volume). The similarities
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on
ern the 
reation and annihilation of parti
les in the vi
inity of other par-ti
les, and the ne
essity of proving non-explosion. Also, the spa
e-dependen
eof the reprodu
tion rates in H�opfner and L�o
herba
h's arti
le implies non-exponential life-times of individuals, just as the time-dependent jump rates
onsidered here imply non-exponential interjump times. However, in our 
asethe paths between the jumps are smooth and deterministi
.This note is organized as follows. In Se
t. 2 we derive the fundamentalformula (8) for minimal jump rates, de�ning the jump pro
ess asso
iated witha 
ertain type of Hamiltonian. This involves 
onsideration of the equivariantprobability distribution (4) and probability 
urrent (6) provided by quantumtheory. In Se
t. 3 we explain the 
onne
tion with Bohmian me
hani
s andwith Bell's model. We also des
ribe the pro
ess for a 
on
rete example QFT,introdu
ed in [DGTZ03a℄. In Se
t. 4 we sket
h the global existen
e prooffor the dis
rete 
ase, in
luding Bell's model, that we developed in [GT03℄.In Se
t. 5 we point out how the methods of [GT03℄ 
ould be adapted toother global existen
e problems. In Se
t. 6 we indi
ate some perspe
tives forfuture resear
h 
on
erning a pro
ess for quantum theory on a manifold withboundaries, and the spe
ial role the minimal jump rate (8) plays for thispro
ess.2 Jump Rates Indu
ed by S
hr�odinger EquationsWe now introdu
e the 
lass of jump pro
esses we are 
on
erned with, startingwith a general framework. For our purposes, a quantum theory is abstra
tlygiven by a Hilbert spa
e H 
ontaining the state ve
tors, a one-parametergroup Ut of unitary operators on H de�ning the time evolution	t = Ut	0 (1)of the state ve
tor, and a measurable spa
e (Q;F ) of 
on�gurations des
rib-ing the lo
ations of parti
les. Q is tied to H via a proje
tion-valued measure(PVM) P (dq) on Q a
ting on H , i.e., a mapping from the �-algebra F tothe family of proje
tion operators on H that is, like a measure, 
ountablyadditive (in the sense of the weak operator topology) and normalized, in thatP (Q) = I , the identity operator on H . If H = L2(Q; C k ) with respe
t tosome measure on Q then H is equipped with a natural PVM, namely P (B)being multipli
ation by the indi
ator fun
tion of the set B. In nonrelativis-ti
 quantum me
hani
s, another way of saying this is that P is the PVM
orresponding to the joint spe
tral de
omposition of all position operators.By Stone's theorem, the unitary operators Ut are of the formUt = e�iHt=~ (2)with H a self-adjoint operator on H , 
alled the Hamiltonian. Equations (1)and (2) together 
orrespond to the formal S
hr�odinger equation



4 Roderi
h Tumulka and Hans-Otto Georgiii~ d	tdt = H	t : (3)We will show how this S
hr�odinger equation, together with the PVM P , givesrise to a natural Markov pro
ess on Q.In this se
tion we fo
us on the 
ase in whi
h this Markov pro
ess is a purejump pro
ess. (Roughly speaking, this will require that the Hamiltonian is anintegral operator in the \position representation" de�ned by P ; di�erentialoperators will be 
onsidered in Se
t. 3.) So we ask: Is there any distinguishedMarkovian jump pro
ess (Qt) on Q des
ribing the evolution of the parti
le
on�guration, and what are its transition rates? To answer this question wenote that the quantum theoreti
al probability distribution of the 
on�gurationat time t is given by �t( � ) = h	tjP ( � )	ti: (4)(We generally assume that k	0k = 1.) It is therefore natural to stipulate that�t is equivariant for (Qt), meaning that Qt has distribution �t at every timet. Can one 
hoose some (time-dependent) transition rates (�t) for (Qt) tosatisfy this requirement of equivarian
e? Yes indeed, in view of (3) the timederivative of �t is given by_�t(B) = 2~ Im h	tjP (B)H	ti = Z Jt(B; dq0) ; (5)where Jt(B;B0) = 2~ Im h	tjP (B)HP (B0)	ti (6)is the quantum theoreti
al 
urrent between two sets B;B0 2 F . On the otherhand, suppose (Qt) is a pure jump pro
ess on Q jumping at time t with rate�t(B; q0) from q0 2 Q to some 
on�guration in B 2 F . Then its distribution�t = P ÆQ�1t evolves a

ording to the equation_�t(B) = ZQ �t(B; q) �t(dq) � ZB �t(Q; q) �t(dq): (7)To satisfy the 
ondition of equivarian
e we need to �nd jump rates �t su
h thatthe right-hand sides of the evolution equations (5) and (7) 
oin
ide whenever�t = �t. We see that this is the 
ase when �t is given by the Radon{Nikodymderivative�t(dq; q0) = J+t (dq; dq0)�t(dq0) = � 2~ Im h	tjP (dq)HP (dq0)	ti�+h	tjP (dq0)	ti (8)of the positive part J+t of Jt in its se
ond variable q0, provided this makessense. For, the antisymmetry of Jt then implies that�t(dq; q0)�t(dq0)� �t(dq0; q)�t(dq) = Jt(dq; dq0) :



Some Jump Pro
esses in Quantum Field Theory 5To make formula (8) meaningful one needs some assumptions whi
hroughly require that H is an integral operator in the position representa-tion given by P , and (Q;F ) is standard Borel. This is dis
ussed in detailin [DGTZ03
℄, where (8) was written down for the �rst time in this gener-ality; spe
ial 
ases had been used before in [Bel86, Sud87, DGTZ03a℄. Forthe pre
ise 
onditions we refer to Theorem 1 (Se
t. 4.1) and Corollaries 1{3(Se
t. 4.2) of [DGTZ03
℄. Under these 
onditions, formula (8) 
an (and hasto) be read as follows: A priori, Jt is a signed bi-measure onF�F (a measurein ea
h of the two variables q; q0). This has to (and then 
an) be extended toa signed measure on the produ
t �-algebra F 
F . The positive part in (8)is then to be understood in the sense of the Hahn{Jordan de
omposition ofthis extended measure. Next one notes that, for ea
h B 2 F , Jt(B; �) � �tbe
ause P (B0)	t = 0 whenever �t(B0) = 0. One 
an thus form the Radon{Nikodym derivatives �t(B; �) = J+t (B; dq0)=�t(dq0), whi
h �nally have to be
hosen in su
h a way that �t be
omes a measure kernel.A

ording to our derivation above, the transition rates (8) have been 
ho-sen to satisfy the requirement of equivarian
e. There was, however, still somefreedom of 
hoi
e. The parti
ular rate (8) is singled out by the following ad-ditional fa
ts.1. Suppose there exists a jump pro
ess (Qt) onQ with rates (8). As is evidentfrom the arguments above, the net probability 
urrent of (Qt) between twosets B;B0 2 F ,jt(B;B0) = lim"&0 1"�P(Qt 2 B0; Qt+" 2 B)� P(Qt 2 B;Qt+" 2 B0)�;then 
oin
ides with the quantum theoreti
al 
urrent Jt de�ned by (6).Conversely, if ( ~Qt) is any pure jump pro
ess having initial distribution �0at time 0, some jump rates ~�t and probability 
urrent ~|t = Jt, it turnsout that ne
essarily ~�t(dq; q0) � �t(dq; q0) [RS90, BD99, DGTZ03
℄. Thisfollows from the minimality of the Hahn{Jordan de
omposition. The rates(8) are therefore 
alled the minimal jump rates, and a pro
ess with rates(8) is distinguished among all pro
esses with the right probability 
urrentby having the least frequent jumps, or the smallest amount of randomness.2. Always one of the transitions q0 ! q or q ! q0 is forbidden. More pre
isely,for every time t there exists a set S�t 2 F 
F whi
h, together with itstransposition S+t , 
overs Q�Q (ex
ept possibly the diagonal), and su
hthat �t(fq : (q; q0) 2 S�t g; q0) = 0 for �t-almost-every q0.Indeed, by the anti-symmetry of Jt, its positive and negative part J+tand J�t admit supports S+t and S�t that are transpositions of ea
h other,when
e the result follows.Put more simply, the me
hanism is this: When the 
urrent Jt(dq; dq0) ispositive, meaning that there should be a net 
ow from dq0 to dq, then�t(dq; q0) > 0 and �t(dq0; q) = 0, i.e., only jumps from q0 to q are allowed;
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h Tumulka and Hans-Otto Georgiithe 
onverse holds in the 
ase of a negative 
urrent. Under all rates withjt = Jt, the minimal rates (8) are 
hara
terized by this property.3 Bohmian Me
hani
s and Bell-Type QFTIn this se
tion we dis
uss three parti
ular instan
es in whi
h jump rates ofthe form (8) play a signi�
ant role.A. Bohmian me
hani
s as 
ontinuum limit of jump pro
esses. Considernonrelativisti
 quantum me
hani
s for N parti
les: the 
on�guration spa
e isQ = R3N , the Hilbert spa
e H = L2(R3N ; C k ) and the HamiltonianH = � NXi=1 ~22mi�i + V (x1; : : : ; xN ) (9)with �i the Lapla
ian a
ting on the variable xi, mi the mass of the i-thparti
le, and V the potential fun
tion (possibly having values in the Hermitiank � k matri
es). We obtain a Markov pro
ess on the 
on�guration spa
e inthe following way: �rst dis
retize spa
e, i.e., repla
e R3 by a latti
e � = "Z3and the Lapla
ian �i by the 
orresponding latti
e Lapla
ian �"i . We then 
an
onsider the jump pro
ess Q"t on �N with rates (8). As the latti
e shrinks," ! 0, one obtains [Sud87, Vin93℄ in the limit the deterministi
 pro
ess Qtsatisfying the ordinary di�erential equationdQt;idt = ~mi Im 	�t ri	t	�t 	t (Qt;1; : : : ; Qt;N ) : (10)Here Qt;i is the i-th 
omponent of Qt, i.e., the position of the i-th parti
le,	t obeys the S
hr�odinger equation (3) with Hamiltonian (9), and ��1 �2 isthe inner produ
t in C k . The pro
ess (10) is known as Bohmian me
hani
s[Boh52, Bel66, BDDGZ95, D�ur01℄. For a suitable other 
hoi
e of jump rates[Vin93℄, also satisfying jt = Jt but greater than minimal, one obtains in the
ontinuum limit " ! 0 the di�usion pro
ess introdu
ed by E. Nelson andknown as sto
hasti
 me
hani
s [Nel85, Gol87℄.What makes Bohmian me
hani
s (or, for that matter, sto
hasti
 me
han-i
s) parti
ularly interesting to quantum physi
ists is that in a Bohmian uni-verse { one in whi
h the parti
les move a

ording to (10) and the initial
on�guration is 
hosen a

ording to the j	 j2 distribution { the inhabitants�nd all their observations in agreement with the probabilisti
 predi
tions ofquantum me
hani
s { in sharp 
ontrast with the traditional belief that it beimpossible to explain the probabilities of quantum me
hani
s by any theorydes
ribing events obje
tively taking pla
e in the outside world.B. Bell's jump pro
ess for latti
e QFT. The study of jump pro
esses withrates (8) has been inspired by Bohmian me
hani
s, in parti
ular by the wishfor a theory similar to Bohmian me
hani
s 
overing quantum �eld theory. The
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esses in Quantum Field Theory 7�rst work in this dire
tion was Bell's seminal paper [Bel86℄. For simpli
ity, Bellrepla
es physi
al 3-spa
e by a latti
e � and 
onsiders a QFT on that latti
e. A
on�guration is spe
i�ed in his model by the number of fermions q(x) at everylatti
e site x. Thus, with the notation Z+ = f0; 1; 2; : : :g, the 
on�gurationspa
e is Q = � (�) := nq 2 Z�+ : Xx2� q(x) <1o;the spa
e of all 
on�gurations of a variable (but �nite) number of identi
alparti
les on the latti
e. (In fa
t, he imposes a bound on the total number ofparti
les and assumes that � is �nite, but this is not ne
essary.) The PVMP ( � ) that he suggests arises from the joint spe
tral de
omposition of thefermion number operators N(x) for every latti
e site, i.e., P (q) := P (fqg) isthe proje
tion to the joint eigenspa
e of the (
ommuting) operators N(x) forthe eigenvalues q(x). The jump rate Bell uses is the appropriate spe
ial 
aseof (8): the rate of jumping from q0 to q is�t(q; q0) = � 2~ Im h	tjP (q)HP (q0)	ti�+h	tjP (q0)	ti : (11)For studies of Bell's pro
ess we refer to [Sud87, Vin93, BD99, Col03a, Col03b,DGTZ03
, GT03℄, and for some numeri
al simulations and appli
ations to[DR03, Den03℄. We return to it in more detail in the next se
tion.C. Bohmian me
hani
s with variable number of parti
les. A third exampleof a pro
ess for a QFT was 
onsidered in [DGTZ03a℄. It arose from an attemptto in
lude parti
le 
reation and annihilation into Bohmian me
hani
s by sim-ply introdu
ing the possibility that world lines of parti
les 
an begin and end.That is, the aim is to provide a generalization of the Bohmian motion (10)to a 
on�guration spa
e of a variable number of parti
les. Here we des
ribethis model in a simpli�ed version. For the numerous similarities between ourmodel pro
ess and Bell's dis
rete pro
ess, we 
alled it a \Bell-type QFT."In [DGTZ03
, DGTZ04℄, methods are developed for obtaining a 
anoni
alBell-type pro
ess for more or less any regularized QFT.A 
on�guration of �nitely many identi
al parti
les 
an be des
ribed bya �nite 
ounting measure on R3 . Sin
e the 
oin
iden
e 
on�gurations, thosein whi
h there are two or more parti
les at the same lo
ation, form a subsetof 
odimension 3, they are basi
ally irrelevant, and it will be 
onvenient toex
lude them from the 
on�guration spa
e. What remains, as the spa
e of\simple 
on�gurations", is the set of all �nite subsets of R3 ,�6=(R3 ) = �q � R3 : #q <1	:Under the physi
al 
onditions prevailing in everyday life, the most frequenttype of parti
le 
reation and annihilation is the emission and absorption ofphotons by ele
trons. This 
an be des
ribed in a model QFT as follows. Par-ti
les (photons) move in a Bohmian way and 
an be emitted and absorbed by



8 Roderi
h Tumulka and Hans-Otto Georgiianother kind of parti
les (ele
trons). For simpli
ity, we will assume here thatthe ele
trons remain at �xed lo
ations, given by a �nite set � � R3 ; the 
ase ofmoving ele
trons is des
ribed in [DGTZ03a℄. The 
on�guration spa
e is thusthe spa
e of photon 
on�gurations, Q = �6=(R3 ), and 	t a square-integrable
omplex-valued fun
tion on Q; the Hilbert spa
e H of these fun
tions isknown as the bosoni
 Fo
k spa
e arising from L2(R3 ).The Markov pro
ess Qt in Q has pie
ewise smooth paths. It obeys thedeterministi
 motion (10), interrupted by sto
hasti
 jumps. The pro
ess ispie
ewise deterministi
 in the sense that, 
onditional on the times of twosubsequent jumps and the destination of the �rst, the path in between thesejumps is deterministi
. The jumps 
orrespond to 
reation or annihilation of aphoton near some point of �; in parti
ular, every jump 
hanges the number ofphotons by one. The pro
ess is thus a spe
ial kind of a spatial birth-and-deathpro
ess with moving individuals [Pre76℄.The deterministi
 motion, during whi
h the number of photons is kept
onstant, is de�ned by (10); for simpli
ity, we deviate a little from the physi
alfa
ts and assume that the \photons" have a positive mass mph. The rate forthe transition q ! q [ x := q [ fxg, i.e., the 
reation of a new photon at thelo
ation x 2 R3 n q, has density (with respe
t to Lebesgue measure dx)�t(q [ x; q) = h 2~ Im	�t (q [ x) (#q + 1)1=2Py2� '(x � y)	t(q)i+	�t (q)	t(q)where ' : R3 ! R is a �xed fun
tion, a spheri
ally symmetri
, square-integrable potential supported by the ball of radius Æ > 0. Likewise, for anyx 2 q the rate for the transition q ! q n x := q n fxg, i.e., annihilation of thephoton at x, is�t(q n x; q) = h 2~ Im	�t (q n x) (#q)�1=2Py2� '(x� y)	t(q)i+	�t (q)	t(q)These rates, together with vanishing rate for any other transition, are in fa
ta spe
ial 
ase of (8), for a suitable integral operator HI in pla
e of H . For thede�nition of HI and the derivation of the above expressions from (8) we referto Se
t. 3.12 of [DGTZ03
℄.Now, HI is not the Hamiltonian of the relevant QFT, but its intera
tionpart ; i.e., the 
omplete Hamiltonian is H = H0 + HI , where H0, the freeHamiltonian, is given byH0	(q) = � #qXi=1 ~22mph �i	(q):Observe that there is a 
orresponden
e between the splitting H = H0+HI andthe two 
onstituents of the pro
ess, the motion (10) and the jump rates just
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 motion 
orresponds to H0 while the jumps 
orrespond toHI . Indeed, the minimal pro
ess, the one arising as a limiting 
ase from jumppro
esses with minimal rates (8), asso
iated with H0 alone is the 
ontinuousmotion (10) while the minimal pro
ess asso
iated with HI is the pure jumppro
ess with the above rates.This is an instan
e of the general rule of pro
ess additivity : If the minimalpro
ess asso
iated with H1 has generator L1;	t and the one asso
iated withH2 has generator L2;	t , then the minimal pro
ess asso
iated with H1 +H2has generator L1;	t+L2;	t , provided that the (formal) integral kernels of H1and H2 have disjoint supports. The sum of the generators of a deterministi

ow and of a pure jump pro
ess generates the pie
ewise deterministi
 pro
essthat follows the 
ow between sto
hasti
 jumps. In QFT, it is a typi
al situ-ation that H = H0 +HI where H0 is a di�erential operator asso
iated with
ontinuous motion while HI is an integral operator (often linking di�erentparti
le numbers) asso
iated with jumps.4 Global Existen
e of Bell's Jump Pro
essIn this se
tion we deal with Bell's jump pro
ess introdu
ed as model B in thelast se
tion. As we have shown in [GT03℄, this pro
ess exists globally in time.In fa
t, for our proof it is not relevant whether the 
on�guration 
orrespondsto the fermion number operators. We only need that Q is any 
ountable set,and P ( � ) a PVM on Q a
ting on H . In fa
t we 
an allow that P ( � ) is apositive-operator-valued measure (POVM), a 
on
ept somewhat weaker thana PVM.3 Here is our result.Theorem 1. Let H be a Hilbert spa
e, H a self-adjoint operator on H , Q a
ountable set, and P ( � ) a POVM on Q a
ting on H . For every initial stateve
tor 	0 with k	0k = 1 satisfying	t 2 domain(H) 8 t 2 R; (12a)P (q)	t 2 domain(H) 8 t 2 R; q 2 Q; (12b)Z t2t1 dt Xq;q02Q��h	tjP (q)HP (q0)	ti�� <1 8 t1; t2 2 R with t1 < t2; (12
)there exists a (right-
ontinuous) Markovian pure jump pro
ess (Qt)t2R on Qwith transition rates (11) su
h that, for every t, Qt has distribution �t =h	tjP ( � )	ti. This pro
ess is unique in distribution.Some 
omments are ne
essary. First of all, how 
ould the pro
ess fail toexist globally in time? Two kinds of 
atastrophes 
ould o

ur. On the one3 That is, P takes values in the positive (bounded, self-adjoint) operators on H(instead of the proje
tion operators as a PVM) and shares the 
ountable additivityand normalization of a PVM.



10 Roderi
h Tumulka and Hans-Otto Georgiihand, the jump rate (11) is singular at the nodes of 	 (i.e., at su
h q and tfor whi
h h	tjP (q)	ti = 0). While Qt is sitting on a 
on�guration q it mightbe
ome a node, and then the pro
ess would not know how to pro
eed. It turnsout that this problem does not arise be
ause, with probability one, there isno t at whi
h Qt is a node. This is be
ause the in
rease of the rates 
lose tothe nodes has the positive e�e
t of for
ing the pro
ess to jump away beforethe singularity time is rea
hed.The se
ond kind of possible 
atastrophe would be an explosion, i.e., ana

umulation of in�nitely many jumps in �nite time. The main task is toshow that this does not o

ur, with probability one. The standard 
riteria fornon-explosion of pure jump pro
esses are 
on�ned to transition rates that arehomogeneous in time, relying heavily on the fa
t that the holding times arethen exponentially distributed and independent 
onditionally on the positions;see, e.g., Se
t. 2.7 of [Nor97℄. This 
onditional independen
e, however, fails tohold in the 
ase of time-dependent jump rates, and the singularities of Bell'stransition rates do not allow any a priori bounds as they were used, e.g., in[Pre76, RL53℄ to ex
lude explosion. The only thing one knows is that thepro
ess is designed to have the pres
ribed quantum distribution (4) at �xed(deterministi
) times, and it is this fa
t we will exploit. We will sket
h ourmain arguments below.Steps towards a proof of global existen
e of Bell's pro
ess have also beenmade by G. Ba

iagaluppi [Ba
96, BD99℄; his approa
h is, however, very dif-ferent from ours.Con
erning the te
hni
al assumptions (12) on H , P , and 	0 we note thefollowing. For �xed H and P , the 
onditions (12) de�ne a set of \good" initialstate ve
tors 	0 for whi
h we 
an prove global existen
e; this set is obviouslyinvariant under the time evolution (1). In fa
t, when H is a Hilbert{S
hmidtoperator (i.e., trH2 < 1), the 
onditions (12) are satis�ed for all POVMsP and all 	0 2 H ; this is also true when H is bounded and Q is �nite.(Usually, the Hamiltonian of a latti
e QFT is not Hilbert{S
hmidt but 
an,at least, be approximated by Hilbert{S
hmidt operators. And it is not unusualin quantum �eld theory that Hamiltonians need to be \
ut o�" in one wayor another to make them treatable, or well-de�ned at all.) Condition (12b)ensures that the expression P (q)HP (q0)	t 
an be formed, and thus that (11)is well-de�ned whenever q0 is not a node.The main 
onstru
tion is obvious. Starting from any �xed initial time t0,the pro
ess Qt 
an be expressed for t > t0 in terms of Tk and Xk, the timeand the destination of the k-th jump after time t0, viaQt = Xk if Tk � t < Tk+1with T0 := t0 and X0 = Qt0 . The variables Tk and Xk are de�ned by their
onditional distributions:
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esses in Quantum Field Theory 11P(Tk+1 2 dt;Xk+1 = qjT0; X0; : : : ; Tk; Xk) =1fTk<tg �t(q;Xk) exp�� Z tTk �s(Q; Xk) ds�dt;where the role of the \failure rate fun
tion" is played by�t(Q; q) = Xq02Q�t(q0; q) ;the total jump rate, to whatever destination, at q.Here is the reason why the pro
ess 
annot run into a node. By de�nition,the 
onditional probability of remaining at q until at least time t2, given thatQt1 = q, is exp�� Z t2t1 �t(Q; q) dt�:We want to show that this probability vanishes whenever q is a node at t2but not at any t with t1 � t < t2. Ignoring some te
hni
al subtleties, this 
anbe derived by the following simple 
al
ulation. Sin
e a sum of positive partsex
eeds the positive part of the sum, we 
on
lude from (11) that�t(Q; q0) = Xq2Q [ 2~ Im h	tjP (q)HP (q0)	ti℄+h	tjP (q0)	ti � [ 2~ Im h	tjHP (q0)	ti℄+h	tjP (q0)	ti :Omitting the positive part and using (5) we �nd�t(Q; q0) � �(d=dt)h	tjP (q0)	tih	tjP (q0)	ti = � ddt logh	tjP (q0)	tiat every t with h	tjP (q0)	ti > 0. Hen
e, by the fundamental theorem of
al
ulus,Z t2t1 �t(Q; q) dt � � logh	t2 jP (q)	t2i+ logh	t1 jP (q)	t1i =1;sin
e q is a node at t2 (so that the �rst term is in�nite) but not at t1 (so thatthe se
ond term is �nite).Another part of the proof we would like to sket
h here is the 
ore of theargument why the jump times 
annot a

umulate. As a 
onvenient notation,we introdu
e an additional \
emetery" 
on�guration 1 and set Qt :=1 forall t after the explosion time supk Tk. Let S(t1; t2) be the number of jumps thatthe pro
ess performs in the time interval [t1; t2℄. The random variable S(t1; t2)is either a nonnegative integer or in�nite. Our assumption (12
) implies in fa
tthat S(t1; t2) has �nite expe
tation, for all t1 < t2, and thus is �nite almostsurely. To see this we use the equationE S(t1 ; t2) = Z t2t1 Xq;q02Q�t(q; q0) �t(q0) dt; (13)
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h Tumulka and Hans-Otto Georgiiwith �t(q0) = P(Qt = q0). Intuitively, equation (13) 
an be understood asfollows. �t(q; q0) �t(q0) dt is the probability of a jump from q0 to q in the in-�nitesimal time interval [t; t + dt℄. Summing over q and q0, we obtain (theexpe
ted total jump rate and thus) the total probability of a jump during[t; t + dt℄. Integrating over t, we obtain the expe
ted number of jumps. Thepoint of equation (13) is that its right-hand side involves ex
lusively the one-time quantities �t and �t. Now, one 
an dedu
e from the de�nition of thepro
ess that �t(q) � h	tjP (q)	ti; (14)where any 
ase of stri
t inequality would have to go along with a positiveprobability P(Qt = 1) of a

umulation before t. Combining (13) and (14),we obtain E S(t1 ; t2) � Z t2t1 Xq;q02Q�t(q; q0) h	tjP (q0)	ti dt= Z t2t1 Xq;q02Q� 2~ Im h	tjP (q)HP (q0)	ti�+ dt� 2~ Z t2t1 Xq;q02Q��h	tjP (q)HP (q0)	ti�� dt <1by assumption (12
) of Theorem 1. Indeed, this reasoning more or less di
tatesthe assumption (12
).5 Other Global Existen
e QuestionsVariants of the reasoning in the previous paragraph 
ould be used in thefuture in other global existen
e proofs. Here is an example 
on
erning theglobal existen
e of Bohmian me
hani
s (with �xed number of parti
les). Thiswas �rst proved in [BDGPZ95℄ under suitable assumptions on the potentialV and the initial wavefun
tion 	0. One way in whi
h a solution Qt of (10)may fail to exist globally is by es
aping to in�nity (i.e., leaving every boundedset in R3N ) in �nite time. To 
ontrol this behavior, we suggest to 
onsider ananalogue of S(t1; t2): Let D(t1; t2) be the Eu
lidean distan
e in R3N traveledby Qt between t1 and t2. ThenE D(t1 ; t2) = Z t2t1 dt ZR3N dq jvt(q)j �t(q); (15)where vt is the Bohmian velo
ity ve
tor �eld on R3N , with i-th 
ompo-nent given by the right-hand side of (10), and the expe
tation is takenover the randomness 
oming from the initial 
on�guration. If this expe
ta-tion 
an be shown to be �nite, D(t1; t2) must be almost surely �nite. Using
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esses in Quantum Field Theory 13�t(q) � j	t(q)j2, the analogue of (14), we see that the es
ape to in�nity isalmost surely ex
luded provided thatZ t2t1 dt ZR3N dq j	�t (q)r	t(q)j <1 whenever t1 < t2:This is a 
ondition analogous to (12
); it is almost equivalent to the assump-tion A4 of [BDGPZ95℄. The proof there, however, is di�erent, using skillfulestimates of the probability 
ux a
ross suitable surfa
es in 
on�guration spa
e-time R3N � R surrounding the \bad" points (nodes, in�nity, points where 	is not di�erentiable). The above argument based on (15) might 
ontribute toa simpler global existen
e proof [TT04℄.The global existen
e question is still open for the Bohm{Dira
 law of mo-tion [Boh53, BH93℄, a version of Bohmian me
hani
s suitable for wavefun
-tions  obeying the Dira
 equation. The Dira
 equation is a relativisti
 versionof the S
hr�odinger equation and readsi~� �t = � NXi=1�i
~�i � ri + �imi
2 � (16)where  t is a fun
tion R3N ! (C 4 )
N , 
 is the speed of light, mi the massof the i-th parti
le, �i the ve
tor of Dira
 alpha matri
es a
ting on the i-thspin index of the wavefun
tion, and �i the Dira
 beta matrix a
ting on thei-th index. The Bohm{Dira
 equation of motion readsdQt;idt = 
 �t �i t �t t (Qt;1; : : : ; Qt;N ) (17)where �� is the inner produ
t in Dira
 spin-spa
e. Sin
e these velo
ities arebounded by the speed of light, the question of es
ape to in�nity does not arisehere. But the question of running into a node does be
ause, like the minimaljump rate (8), the velo
ity formula (17) is ill-de�ned at nodes.This question 
an be treated in a way analogous to the previous argumentsbased on (13) and (15). To this end, let L(t1; t2) be the total variation, betweent1 and t2, of log j t(Qt)j2; in other words,L(t1; t2) = Z t2t1 dt ��� ddt log j t(Qt)j2���:It takes values in [0;1℄ and is in�nite if the traje
tory Qt runs into a nodebetween t1 and t2. This must be a null event if L(t1; t2) has �nite expe
tation;for the latter we have the formulaE L(t1 ; t2) = Z t2t1 dt ZR3N dq ���� ��t + vt(q) � r� log j t(q)j2��� �t(q);where vt is the ve
tor �eld on R3N whose i-th 
omponent is the right-handside of (17). Using �t(q) � j t(q)j2 we obtain
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h Tumulka and Hans-Otto GeorgiiE L(t1 ; t2) � Z t2t1 dt ZR3N dq ���� ��t + vt(q) � r�j t(q)j2��� :As the velo
ities are bounded, the last expression is at mostZ t2t1 dt ZR3N dq���� ��t j t(q)j2���+ 
���rj t(q)j2���� :Inserting (16) and using that the alpha and beta matri
es have norm 1 we seethat this in turn is not larger thanZ t2t1 dt ZR3N dq�2
��� �tr t���+ 2~�Xi mi
2� �t t + 2
��� �tr t���� :Sin
e k tk = 1, the last integral 
oin
ides with2~�Xi mi
2�(t2 � t1) + 4
 Z t2t1 dt ZR3N dq ��� �tr t��� :The question remains under whi
h 
onditions on  0 the last term is �nite forarbitrary t1 < t2. This is presumably the 
ase when  0 lies in S
hwartz spa
e(
ontaining all smooth fun
tions f su
h that f and all its derivatives de
ay,at in�nity, faster than jqj�n for any n > 0). To work out the proof remainsfor future resear
h [TT04℄.While global existen
e of the Bohm{Dira
 traje
tories 
an presumably beproved with the same methods as used in [BDGPZ95℄ for (10) (estimating the
ux a
ross suitable surfa
es surrounding the bad points), su
h a proof requiresa lot of e�ort. It seems that the argument just sket
hed would be mu
h easierand more elegant.Another global existen
e question that is still open is that 
on
erning thepro
ess de�ned in [DGTZ03a℄ and des
ribed above in Part C of Se
t. 3, and forsimilar pro
esses, on a 
on�guration spa
e that is a disjoint union of manifolds,following deterministi
 traje
tories interrupted by sto
hasti
 jumps.6 Deterministi
 Jumps and Boundaries in Con�gurationSpa
eIn this last se
tion we des
ribe another appli
ation of minimal jump rates,one that has not yet been dis
ussed in the literature and that raises somequestions for further resear
h. Suppose that the 
on�guration spa
e Q is aRiemannian manifold with boundaries, or more generally the disjoint unionof (at most 
ountably many) Riemannian manifolds with boundaries. We writeQ = �Q[QÆ where �Q denotes the boundary and QÆ the interior.We develop below an analogue of Bohmian me
hani
s on Q, 
onsisting ofsmooth motion interrupted by jumps from the boundary to the interior or
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e versa. The jumps from �Q to QÆ are deterministi
 and o

ur wheneverthe pro
ess hits the boundary. The jumps from QÆ to �Q are sto
hasti
, andtheir rates are fully determined by requiring that (i) the pro
ess is Markovianand equivariant, and (ii) the 
onstru
tion is invariant under time reversal, inthat the pro
esses asso
iated with 	t resp. 	��t are reverse to ea
h other, indistribution. These rates are, in fa
t, another instan
e of minimal jump rates.Con�guration spa
es with boundaries arise from QFT if a parti
ular kindof \ultraviolet 
uto�" is applied, whi
h 
an be regarded as 
orresponding tosmearing out the 
harge of an ele
tron over a sphere rather than a ball. Here isan example. Consider again ele
trons and photons, with the ele
trons �xed atlo
ations given by the �nite set � � R3 , and suppose that photons 
annot get
loser than a �xed (small) distan
e Æ > 0 to an ele
tron, as they get absorbedwhen they rea
h that distan
e. Thus, the available 
on�guration spa
e isQ = �q 2 �6=(R3 ) : d(q; �) � Æ	 ; (18)where d(q; �) is the Eu
lidean distan
e of the �nite sets q and �. The spa
e Qis a 
ountable disjoint union of Riemannian manifolds with boundary,Q = 1[n=0�q 2 Q : #q = n	:Its interior is QÆ = fq 2 �6=(R3 ) : d(q; �) > Æg, and its boundary �Q = fq 2�6=(R3 ) : d(q; �) = Æg.For this or any other 
on�guration spa
e with boundaries, the law of mo-tion dQtdt = vt(Qt) = ~m Im 	�t r	t	�t 	t (Qt) (19)on QÆ must be 
ompleted by spe
ifying what should happen to the pro
ess atthe time � when it rea
hes the boundary. (No spe
i�
ation is needed, however,for what should happen when two photons 
ollide, as this has probability zeroever to o

ur.) The spe
i�
ation we 
onsider here is a deterministi
 jump lawQ�+ = f(Q��)for a �xed mapping f : �Q ! QÆ. In our example (18), the obvious 
hoi
e off is f(q) = fx 2 q : d(x; �) > Æg;whi
h means that all photons having rea
hed the 
riti
al distan
e Æ to someele
tron disappear.Sin
e we want the theory to be reversible, we must also allow for spon-taneous jumps from interior points to boundary points. Sin
e we want thepro
ess to be an equivariant Markov pro
ess, the rate for a jump from q0 2 QÆto a surfa
e element dq � �Q must be, as one 
an derive,
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h Tumulka and Hans-Otto Georgii�t(dq; q0) = �n(q) � vt(q) j	t(q)j2�+j	t(q0)j2 �(dq; q0); (20)where n(q) is the inward unit normal ve
tor to the boundary at q 2 �Q, thedot � denotes the Riemannian inner produ
t, and �(dq; q0) is the measure-valued fun
tion de�ned in terms of the Riemannian volume measure � on Qand the Riemannian surfa
e area measure � on �Q by�(B; q0) = �(B \ f�1(dq0))�(dq0) ;with B � �Q, and the right-hand side denoting a Radon{Nikodym derivative(the existen
e of whi
h we presuppose). The measure �( � ; q0) is 
on
entratedon the subset f�1(q0) of the boundary for almost every q0. For a probabilitydistribution on Q having a density fun
tion � with respe
t to �, one obtainsthe following probability transport equation at q0 2 QÆ:��t�t (q0) = �r� ��tvt�(q0)��t(�Q; q0) �t(q0)+Z�Q�(dq; q0)hn(q) � vt(q) �t(q)i�:(21)For equivarian
e we need that (21), with j	tj2 in pla
e of �t, has the stru
tureof the transport equation for j	tj2 that follows from the S
hr�odinger equation(3), �j	t(q0)j2�t = 2~ Im	�t (q0) (H	t)(q0): (22)This is not automati
ally the 
ase, but it follows from (and therefore suggests)the following boundary 
ondition relating 	tj�Q to 	tjQÆ : for all q 2 �Q,n(q) � r	t(q) = 
(q)	t(f(q)) (23)where 
(q) is any 
omplex number.4 This 
ondition pres
ribes the normalderivative of the wavefun
tion on the boundary. Some boundary 
onditionwould be needed anyway to de�ne the evolution of the wavefun
tion, i.e., tosele
t a self-adjoint extension of the Lapla
ian; whether (23) a
tually suÆ
esfor this, we have to leave to future resear
h. Note that (23) is a linear 
onditionand thus de�nes a subspa
e of the Hilbert spa
e L2(Q). From (23) and (19),one obtains equivarian
e with respe
t to the formal HamiltonianH = � ~22m�+HI , whereh�jHI	i = ~22m ZQ �(dq0) Z�Q �(dq; q0)��(q0) 
�(q)	(q)+ ~22m ZQ �(dq) Z�Q �(dq0; q)��(q0) 
(q0)	(q):4 More generally, if 	 takes values not in C but in a higherdimensional 
omplexve
tor spa
e, 
(q) would be a C -linear mapping from the value spa
e at f(q) tothe value spa
e at q.
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esses in Quantum Field Theory 17Furthermore, the jump rate (20) is indeed the minimal jump rate (8) asso
i-ated with HI , thanks to (23).Let us emphasize the following aspe
ts. First, starting from the pi
tureof a pie
ewise deterministi
 pro
ess that jumps whenever it hits the bound-ary, we arrived with remarkable ease at the probability transport equation(21) and thus at the boundary 
ondition (23). Se
ond, we have derived whatthe intera
tion Hamiltonian HI is; on
e the destination mapping f and the
orresponding 
oeÆ
ients 
 had been sele
ted, there was no further freedom.Third, it turned out that the minimal jump rate is the only possible jumprate in this setting. Its very minimality plays a 
ru
ial role: a jump to aboundary point q at whi
h the velo
ity �eld is pointing towards the bound-ary, n(q) � vt(q) < 0, would not allow any 
ontinuation of the pro
ess sin
ethere is no traje
tory starting from q. The problem is absent if the velo
ityat q is pointing away from the boundary, n(q) � vt(q) > 0. (We are leaving outthe 
ase n(q) � vt(q) = 0.) On the other hand, jumps from q to f(q) 
annoto

ur when vt(q) is pointing away from the boundary sin
e in that 
ase thereis no traje
tory arriving at q. Thus, the jumps must be su
h that at ea
h timet, one of the transitions q ! f(q) or f(q) ! q is forbidden, and the de
isionis made by the sign of n(q) � vt(q).Referen
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