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Summary. A jump process for the positions of interacting quantum particles on
a lattice, with time-dependent transition rates governed by the state vector, was
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similar global existence questions, and underline the particular usefulness of minimal
jump rates on manifolds with boundaries.
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1 Introduction

This contribution deals with Markov jump processes ); describing the posi-
tional time evolution of finitely many interacting quantum particles. These
processes are characterized by a specific form of time-dependent jump rates
induced by the Schrédinger equation for the quantum state vector ¥; of the
underlying quantum field theory (QFT). As a typical example, suppose that
the particles live in the physical three-space R?. The process @), then takes
values in the space of all finite subsets of R?, the configuration space of a vari-
able number of identical particles (corresponding to the Fock space of QFT),
and the jumps of @ describe the creation or annihilation of particles; be-
tween these stochastic jumps, @; evolves deterministically according to some
ordinary differential equation governed by ¥;. Alternatively, one may think of
quantum particles on a lattice; the jumps of @); then record all changes of the
particle configuration. We will portray several processes of this type, present
some common principles, and in particular discuss some results of three recent
papers [GT03, DGTZ03c, DGTZ04], the work on which was supported by the
DFG Priority Program.
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As the state vector ¥; determining the jump rates follows the time-
dependent Schrodinger equation, the jump rates themselves are explicitly
time-dependent, so that the processes @); considered here do not admit an
invariant measure. However, the jump rates are designed in such a way that
Q; does admit an equivariant measure, namely the quantum distribution |%|?,
which means that @; has distribution |#|? at any time ¢. This is the key fea-
ture justifying the particular form of the jump rates, and on the other hand
the main fact on which one can build the analysis of these processes. So, the
issue here is not the analysis of distributional properties of a given process,
but the converse: the equivariant distribution is given, and the objective is
to prove the existence of the associated process, and to check that it really
does have the equivariant distribution. In [GT03], we carried out this program
for the case of a discrete configuration space, including in particular a lattice
model proposed by J.S. Bell [Bel86]; the main arguments will be sketched in
Sect. 4.

From the probabilistic viewpoint, one has to overcome two difficulties.
First, the transition rates exhibit singularities, in that they become ill-defined
at certain time and space points. One has to show that the process avoids
these singularities. The second (and more important) task is to rule out the
possibility of explosion, i.e., the accumulation of infinitely many jumps in
finite time. Due to the unbounded growth of the rates near the singularities,
the standard methods fail, and one has to use the particular relation between
transition rates and equivariant distribution.

Besides the results on the discrete case mentioned above, we will also de-
scribe the continuum analogues of Bell’s process investigated in [DGTZ03a,
DGTZ03c, DGTZ04]; as a special case these include Bohmian mechanics
[Boh52, Bel66, BDDGZ95, Diir01] for the appropriate Hamiltonian with a
conserved number of particles. On the basis of what we learned from our ex-
istence proof for Bell’s model, we also propose here some new methods for
proving the existence of Bohmian mechanics.

Let us now discuss how the models considered here relate to the topics of
other research in the DFG Priority Program and other articles in this volume.
First, the existence problem for a model of quantum field theory is also the
subject of the contribution of S. Albeverio, Y. Kondratiev, M. Rockner, and
T. Pasurek. The issue there is the existence, and uniqueness, of Euclidean
Gibbs measures for infinitely many interacting quantum spins. These concern
an equilibrium setting, and time appears only via path integration to make the
connection with the quantum states. The difficulty there is the infinite num-
ber of spins, requiring particular assumptions on the interaction. By way of
contrast, the models considered here involve only finitely many particles, but
in a nonequilibrium situation, and we do not need any particular assumptions
on the interaction.

From the methodological side, there is a closer connection to the research
in the Priority Program dealing with population biology, in particular that by
R. Hopfner and E. Liocherbach (not included in this volume). The similarities
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concern the creation and annihilation of particles in the vicinity of other par-
ticles, and the necessity of proving non-explosion. Also, the space-dependence
of the reproduction rates in Hopfner and Locherbach’s article implies non-
exponential life-times of individuals, just as the time-dependent jump rates
considered here imply non-exponential interjump times. However, in our case
the paths between the jumps are smooth and deterministic.

This note is organized as follows. In Sect. 2 we derive the fundamental
formula (8) for minimal jump rates, defining the jump process associated with
a certain type of Hamiltonian. This involves consideration of the equivariant
probability distribution (4) and probability current (6) provided by quantum
theory. In Sect. 3 we explain the connection with Bohmian mechanics and
with Bell’s model. We also describe the process for a concrete example QFT,
introduced in [DGTZ03a]. In Sect. 4 we sketch the global existence proof
for the discrete case, including Bell’s model, that we developed in [GT03].
In Sect. 5 we point out how the methods of [GT03] could be adapted to
other global existence problems. In Sect. 6 we indicate some perspectives for
future research concerning a process for quantum theory on a manifold with
boundaries, and the special role the minimal jump rate (8) plays for this
process.

2 Jump Rates Induced by Schrodinger Equations

We now introduce the class of jump processes we are concerned with, starting
with a general framework. For our purposes, a quantum theory is abstractly
given by a Hilbert space  containing the state vectors, a one-parameter
group U, of unitary operators on .7#” defining the time evolution

Wt = UtWO (1)

of the state vector, and a measurable space (Q,.%) of configurations describ-
ing the locations of particles. Q is tied to J# via a projection-valued measure
(PVM) P(dq) on Q acting on 47, i.e., a mapping from the o-algebra .7 to
the family of projection operators on .7 that is, like a measure, countably
additive (in the sense of the weak operator topology) and normalized, in that
P(Q) = I, the identity operator on . If 2# = L*(Q,CF) with respect to
some measure on Q then ¢ is equipped with a natural PVM, namely P(B)
being multiplication by the indicator function of the set B. In nonrelativis-
tic quantum mechanics, another way of saying this is that P is the PVM
corresponding to the joint spectral decomposition of all position operators.
By Stone’s theorem, the unitary operators U; are of the form

U, = e~iflt/h (2)

with H a self-adjoint operator on ), called the Hamiltonian. Equations (1)
and (2) together correspond to the formal Schrédinger equation
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ih 7 HY, . (3)
We will show how this Schrédinger equation, together with the PVM P, gives
rise to a natural Markov process on Q.

In this section we focus on the case in which this Markov process is a pure
jump process. (Roughly speaking, this will require that the Hamiltonian is an
integral operator in the “position representation” defined by P; differential
operators will be considered in Sect. 3.) So we ask: Is there any distinguished
Markovian jump process (Qr) on Q describing the evolution of the particle
configuration, and what are its transition rates? To answer this question we
note that the quantum theoretical probability distribution of the configuration
at time t is given by

T () = (G| P(-)P). (4)

(We generally assume that ||Z|| = 1.) It is therefore natural to stipulate that
¢ s equivariant for (Q¢), meaning that Q; has distribution 7; at every time
t. Can one choose some (time-dependent) transition rates (o¢) for (@Q;) to
satisfy this requirement of equivariance? Yes indeed, in view of (3) the time
derivative of m; is given by

(B) = 3 1m (B P(B) W) = [ 38,40, (5)

where
Ji(B,B') = % Im (¥;|P(B)H P(B')¥;) (6)

is the quantum theoretical current between two sets B, B’ € .%. On the other
hand, suppose (@) is a pure jump process on Q jumping at time ¢ with rate
o¢(B,q') from ¢' € Q to some configuration in B € .#. Then its distribution
pt = PoQ; " evolves according to the equation

pu(B) = /Q o1(B, ) pr(dg) - /B o1(,q) pe(dg). (1)

To satisfy the condition of equivariance we need to find jump rates o; such that
the right-hand sides of the evolution equations (5) and (7) coincide whenever
pt = 7. We see that this is the case when o; is given by the Radon—Nikodym
derivative

. J(dg,dq)  [2Im (%] P(dg)HP(dq")¥:)]"
olde.d) = "2y T CATCT)

(8)

of the positive part Jt+ of J; in its second variable ¢', provided this makes
sense. For, the antisymmetry of J; then implies that

o¢(dq, q")m(dq") — o¢(dq’, q)m¢(dg) = J¢(dg,dg") .
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To make formula (8) meaningful one needs some assumptions which
roughly require that H is an integral operator in the position representa-
tion given by P, and (Q,.%) is standard Borel. This is discussed in detail
in [DGTZ03c], where (8) was written down for the first time in this gener-
ality; special cases had been used before in [Bel86, Sud87, DGTZ03a]. For
the precise conditions we refer to Theorem 1 (Sect. 4.1) and Corollaries 1-3
(Sect. 4.2) of [DGTZ03c]. Under these conditions, formula (8) can (and has
to) be read as follows: A priori, J; is a signed bi-measure on .% x.% (a measure
in each of the two variables ¢, ¢'). This has to (and then can) be extended to
a signed measure on the product o-algebra & ® #. The positive part in (8)
is then to be understood in the sense of the Hahn—Jordan decomposition of
this extended measure. Next one notes that, for each B € %, J,(B,-) < m;
because P(B')¥; = 0 whenever m(B’) = 0. One can thus form the Radon—
Nikodym derivatives o¢(B,-) = J;"(B,dq")/m(dq"), which finally have to be
chosen in such a way that o; becomes a measure kernel.

According to our derivation above, the transition rates (8) have been cho-
sen to satisfy the requirement of equivariance. There was, however, still some
freedom of choice. The particular rate (8) is singled out by the following ad-
ditional facts.

1. Suppose there exists a jump process (Q¢) on Q with rates (8). As is evident
from the arguments above, the net probability current of (@Q;) between two
sets B,B' € .,

. .1
it(B,B) = lim - (P(Q: € B', Quc € B) = P(Q € B,Qu- € B)),

then coincides with the quantum theoretical current .J; defined by (6).
Conversely, if (Q;) is any pure jump process having initial distribution o
at time 0, some jump rates ; and probability current j; = Jy, it turns
out that necessarily &:(dq,q") > o+(dg,q") [RS90, BD99, DGTZ03c]. This
follows from the minimality of the Hahn—Jordan decomposition. The rates
(8) are therefore called the minimal jump rates, and a process with rates
(8) is distinguished among all processes with the right probability current
by having the least frequent jumps, or the smallest amount of randomness.
2. Always one of the transitions ¢’ — ¢ or ¢ — ¢’ is forbidden. More precisely,
for every time t there exists a set S, € % ® & which, together with its
transposition S;", covers Q x Q (except possibly the diagonal), and such
that
ot({q:(¢,q") € S;},4¢') =0  for m-almost-every ¢'.

Indeed, by the anti-symmetry of .J;, its positive and negative part J;"
and J;- admit supports S;” and S; that are transpositions of each other,
whence the result follows.

Put more simply, the mechanism is this: When the current J;(dgq,dq’) is
positive, meaning that there should be a net flow from d¢’ to dg, then
o¢(dg,q') > 0 and o¢(dq’, q¢) =0, i.e., only jumps from ¢' to g are allowed;
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the converse holds in the case of a negative current. Under all rates with
Jji = Ji, the minimal rates (8) are characterized by this property.

3 Bohmian Mechanics and Bell-Type QFT

In this section we discuss three particular instances in which jump rates of
the form (8) play a significant role.

A. Bohmian mechanics as continuum limit of jump processes. Consider
nonrelativistic quantum mechanics for IV particles: the configuration space is
Q = R3N | the Hilbert space .# = L?>(R3*N,C*) and the Hamiltonian

h2
H:—ZWAZ'-FV(CIH,...,IEN) (9)

with A; the Laplacian acting on the variable x;, m; the mass of the i-th
particle, and V' the potential function (possibly having values in the Hermitian
k x k matrices). We obtain a Markov process on the configuration space in
the following way: first discretize space, i.e., replace R by a lattice A = £Z?>
and the Laplacian A; by the corresponding lattice Laplacian A;. We then can
consider the jump process Q on AN with rates (8). As the lattice shrinks,
€ — 0, one obtains [Sud87, Vin93] in the limit the deterministic process @
satisfying the ordinary differential equation

th,i _ h Wt*Vth

= —Im ——— . 1
dt m; m Wt* Wt (Qt,l: 7Qt,N) ( 0)

Here ()t is the i-th component of @, i.e., the position of the i-th particle,
¥, obeys the Schriodinger equation (3) with Hamiltonian (9), and &} &, is
the inner product in C*. The process (10) is known as Bohmian mechanics
[Boh52, Bel66, BDDGZ95, Diir01]. For a suitable other choice of jump rates
[Vin93], also satisfying j: = J; but greater than minimal, one obtains in the
continuum limit ¢ — 0 the diffusion process introduced by E. Nelson and
known as stochastic mechanics [Nel85, Gol87].

What makes Bohmian mechanics (or, for that matter, stochastic mechan-
ics) particularly interesting to quantum physicists is that in a Bohmian uni-
verse — one in which the particles move according to (10) and the initial
configuration is chosen according to the |#|? distribution — the inhabitants
find all their observations in agreement with the probabilistic predictions of
quantum mechanics — in sharp contrast with the traditional belief that it be
impossible to explain the probabilities of quantum mechanics by any theory
describing events objectively taking place in the outside world.

B. Bell’s jump process for lattice QFT. The study of jump processes with

rates (8) has been inspired by Bohmian mechanics, in particular by the wish
for a theory similar to Bohmian mechanics covering quantum field theory. The
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first work in this direction was Bell’s seminal paper [Bel86]. For simplicity, Bell
replaces physical 3-space by a lattice A and considers a QFT on that lattice. A
configuration is specified in his model by the number of fermions ¢(z) at every
lattice site z. Thus, with the notation Z, = {0,1,2,...}, the configuration
space is
Q=r(A) = {q ezt:Y q@) < oo},
zEA

the space of all configurations of a variable (but finite) number of identical
particles on the lattice. (In fact, he imposes a bound on the total number of
particles and assumes that A is finite, but this is not necessary.) The PVM
P(-) that he suggests arises from the joint spectral decomposition of the
fermion number operators N (z) for every lattice site, i.e., P(q) := P({q}) is
the projection to the joint eigenspace of the (commuting) operators N (z) for
the eigenvalues ¢(z). The jump rate Bell uses is the appropriate special case
of (8): the rate of jumping from ¢’ to q is

[2Im (& P(q)HP(¢')%:)]
(Wt|P((I')Wt>

For studies of Bell’s process we refer to [Sud87, Vin93, BD99, Col03a, Col03b,
DGTZ03c, GT03], and for some numerical simulations and applications to
[DRO03, Den03]. We return to it in more detail in the next section.

C. Bohmian mechanics with variable number of particles. A third example
of a process for a QFT was considered in [DGTZ03a]. It arose from an attempt
to include particle creation and annihilation into Bohmian mechanics by sim-
ply introducing the possibility that world lines of particles can begin and end.
That is, the aim is to provide a generalization of the Bohmian motion (10)
to a configuration space of a variable number of particles. Here we describe
this model in a simplified version. For the numerous similarities between our
model process and Bell’s discrete process, we called it a “Bell-type QFT.”
In [DGTZ03c, DGTZ04], methods are developed for obtaining a canonical
Bell-type process for more or less any regularized QFT.

A configuration of finitely many identical particles can be described by
a finite counting measure on R*. Since the coincidence configurations, those
in which there are two or more particles at the same location, form a subset
of codimension 3, they are basically irrelevant, and it will be convenient to
exclude them from the configuration space. What remains, as the space of
“simple configurations”, is the set of all finite subsets of R?,

oi(q,q) = (11)

I;(R?) = {g C R’ : #¢ < o0},

Under the physical conditions prevailing in everyday life, the most frequent
type of particle creation and annihilation is the emission and absorption of
photons by electrons. This can be described in a model QFT as follows. Par-
ticles (photons) move in a Bohmian way and can be emitted and absorbed by
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another kind of particles (electrons). For simplicity, we will assume here that
the electrons remain at fixed locations, given by a finite set  C R?; the case of
moving electrons is described in [DGTZ03a]. The configuration space is thus
the space of photon configurations, Q@ = I+(R?), and ¥ a square-integrable
complex-valued function on Q; the Hilbert space J# of these functions is
known as the bosonic Fock space arising from L?(R?).

The Markov process @; in Q has piecewise smooth paths. It obeys the
deterministic motion (10), interrupted by stochastic jumps. The process is
piecewise deterministic in the sense that, conditional on the times of two
subsequent jumps and the destination of the first, the path in between these
jumps is deterministic. The jumps correspond to creation or annihilation of a
photon near some point of 7; in particular, every jump changes the number of
photons by one. The process is thus a special kind of a spatial birth-and-death
process with moving individuals [Pre76].

The deterministic motion, during which the number of photons is kept
constant, is defined by (10); for simplicity, we deviate a little from the physical
facts and assume that the “photons” have a positive mass mpn. The rate for
the transition ¢ — g Uz := q U {x}, i.e., the creation of a new photon at the
location z € R® \ ¢, has density (with respect to Lebesgue measure dx)

[% Im &} (qUx) (#q+ 1)1/ > yen (@ —y) Yi(q) "

7 (q) Ve(q)

Ut(q Uill',q) =

where ¢ : R® — R is a fixed function, a spherically symmetric, square-
integrable potential supported by the ball of radius § > 0. Likewise, for any
x € q the rate for the transition ¢ — ¢ \ z := ¢\ {z}, i.e., annihilation of the
photon at x, is

2Im ¥y (q \ z) (#q) /2 > yen P —y) ¥lq) "

@ (q) P (q)

These rates, together with vanishing rate for any other transition, are in fact
a special case of (8), for a suitable integral operator H; in place of H. For the
definition of Hr and the derivation of the above expressions from (8) we refer
to Sect. 3.12 of [DGTZ03c].

Now, Hj is not the Hamiltonian of the relevant QFT, but its interaction
part; i.e., the complete Hamiltonian is H = Hy + Hj, where Hy, the free
Hamiltonian, is given by

Ut(q \ xaq) =

#4q hQ
HoP(q) == 5 - A (q).
i=1 p

Observe that there is a correspondence between the splitting H = Ho+ Hy and
the two constituents of the process, the motion (10) and the jump rates just
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given. Deterministic motion corresponds to Hy while the jumps correspond to
Hy. Indeed, the minimal process, the one arising as a limiting case from jump
processes with minimal rates (8), associated with Hy alone is the continuous
motion (10) while the minimal process associated with H; is the pure jump
process with the above rates.

This is an instance of the general rule of process additivity: If the minimal
process associated with H; has generator .%; w, and the one associated with
H> has generator %5 w,, then the minimal process associated with H; + H»
has generator .2 w, +.%»,w,, provided that the (formal) integral kernels of Hy
and H» have disjoint supports. The sum of the generators of a deterministic
flow and of a pure jump process generates the piecewise deterministic process
that follows the flow between stochastic jumps. In QFT, it is a typical situ-
ation that H = Hg + Hy where Hy is a differential operator associated with
continuous motion while H; is an integral operator (often linking different
particle numbers) associated with jumps.

4 Global Existence of Bell’s Jump Process

In this section we deal with Bell’s jump process introduced as model B in the
last section. As we have shown in [GT03], this process exists globally in time.
In fact, for our proof it is not relevant whether the configuration corresponds
to the fermion number operators. We only need that Q is any countable set,
and P(-) a PVM on Q acting on J#. In fact we can allow that P(-) is a
positive-operator-valued measure (POVM), a concept somewhat weaker than
a PVM.? Here is our result.

Theorem 1. Let J# be a Hilbert space, H a self-adjoint operator on S, Q a
countable set, and P(-) a POVM on Q acting on J€. For every initial state
vector Wy with ||$o|| = 1 satisfying

U, € domain(H) VteR, (12a)
P(q)¥; € domain(H) VteR, qe Q, (12b)

2
/ dt Z |<!pt|P(q)HP(ql)Wt>| < oo Vi, ty € R with ty < to, (12(})

t1 7,9'€Q

there exists a (right-continuous) Markovian pure jump process (Q¢)ier on Q
with transition rates (11) such that, for every t, Q¢ has distribution m =
(Pe|P(-)W;). This process is unique in distribution.

Some comments are necessary. First of all, how could the process fail to
exist globally in time? Two kinds of catastrophes could occur. On the one

3 That is, P takes values in the positive (bounded, self-adjoint) operators on .#
(instead of the projection operators as a PVM) and shares the countable additivity
and normalization of a PVM.
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hand, the jump rate (11) is singular at the nodes of ¥ (i.e., at such ¢ and ¢
for which (#;|P(q)¥:) = 0). While Q; is sitting on a configuration ¢ it might
become a node, and then the process would not know how to proceed. It turns
out that this problem does not arise because, with probability one, there is
no t at which ; is a node. This is because the increase of the rates close to
the nodes has the positive effect of forcing the process to jump away before
the singularity time is reached.

The second kind of possible catastrophe would be an explosion, i.e., an
accumulation of infinitely many jumps in finite time. The main task is to
show that this does not occur, with probability one. The standard criteria for
non-explosion of pure jump processes are confined to transition rates that are
homogeneous in time, relying heavily on the fact that the holding times are
then exponentially distributed and independent conditionally on the positions;
see, e.g., Sect. 2.7 of [Nor97]. This conditional independence, however, fails to
hold in the case of time-dependent jump rates, and the singularities of Bell’s
transition rates do not allow any a priori bounds as they were used, e.g., in
[Pre76, RL53] to exclude explosion. The only thing one knows is that the
process is designed to have the prescribed quantum distribution (4) at fixed
(deterministic) times, and it is this fact we will exploit. We will sketch our
main arguments below.

Steps towards a proof of global existence of Bell’s process have also been
made by G. Bacciagaluppi [Bac96, BD99]; his approach is, however, very dif-
ferent from ours.

Concerning the technical assumptions (12) on H, P, and ¥, we note the
following. For fixed H and P, the conditions (12) define a set of “good” initial
state vectors ¥, for which we can prove global existence; this set is obviously
invariant under the time evolution (1). In fact, when H is a Hilbert—Schmidt
operator (i.e., tr H> < 00), the conditions (12) are satisfied for all POVMs
P and all ¥y € 7, this is also true when H is bounded and Q is finite.
(Usually, the Hamiltonian of a lattice QFT is not Hilbert—Schmidt but can,
at least, be approximated by Hilbert—Schmidt operators. And it is not unusual
in quantum field theory that Hamiltonians need to be “cut off” in one way
or another to make them treatable, or well-defined at all.) Condition (12b)
ensures that the expression P(q)H P(q')¥; can be formed, and thus that (11)
is well-defined whenever ¢’ is not a node.

The main construction is obvious. Starting from any fixed initial time tg,
the process @; can be expressed for ¢t > o in terms of T} and X, the time
and the destination of the k-th jump after time %y, via

Qr=Xp T <t <Tpy

with Ty := tp and Xy = Q¢,- The variables T} and X}, are defined by their
conditional distributions:
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]P(Tk—i-l € dt,Xk+1 = q|T0,X0, Ce ,Tk,Xk) =

7, <ty 0e(q, Xi) exp(—/
T

t

74(Q, X3) ds) dt,

where the role of the “failure rate function” is played by

0:(Q,0) = Y au(dsa),

7'€eQ
the total jump rate, to whatever destination, at g.

Here is the reason why the process cannot run into a node. By definition,
the conditional probability of remaining at g until at least time t,, given that

Qt, =g, is N
eXp(—/ 0:(Q,q) dt)-

t1
We want to show that this probability vanishes whenever ¢ is a node at ¢,
but not at any ¢t with ¢; <t < 5. Ignoring some technical subtleties, this can
be derived by the following simple calculation. Since a sum of positive parts
exceeds the positive part of the sum, we conclude from (11) that

I @PQHPTN _ [3Im (B HP@)B)
e D e Y 7 B 2 VT

Omitting the positive part and using (5) we find

01(Q,q") > _(d@fig{qﬁg)%) = —%log(%lP(q')%)

at every ¢ with (%|P(¢')¥:) > 0. Hence, by the fundamental theorem of
calculus,

to
[ Q. dt > ~log@i P} + 0B [P(0)) = .
1

since ¢ is a node at to (so that the first term is infinite) but not at #; (so that
the second term is finite).

Another part of the proof we would like to sketch here is the core of the
argument, why the jump times cannot accumulate. As a convenient notation,
we introduce an additional “cemetery” configuration co and set (J; := oo for
all ¢ after the explosion time sup;, Ty,. Let S(t1,t2) be the number of jumps that
the process performs in the time interval [¢1, ¢3]. The random variable S(¢1,t2)
is either a nonnegative integer or infinite. Our assumption (12c¢) implies in fact
that S(t1,t2) has finite expectation, for all ¢; < t2, and thus is finite almost
surely. To see this we use the equation

BStt) = [ 3 ala.d)pula)d, (13)

ty 7,4 €Q
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with p;(¢') = P(Q¢ = ¢'). Intuitively, equation (13) can be understood as
follows. a4(q,q") pt(q') dt is the probability of a jump from ¢’ to ¢ in the in-
finitesimal time interval [¢,¢ + d¢]. Summing over ¢ and ¢', we obtain (the
expected total jump rate and thus) the total probability of a jump during
[t,t + dt]. Integrating over ¢, we obtain the expected number of jumps. The
point of equation (13) is that its right-hand side involves exclusively the one-
time quantities oy and p;. Now, one can deduce from the definition of the
process that

pe(q) < (W|P(q) %), (14)

where any case of strict inequality would have to go along with a positive
probability P(Q; = oo) of accumulation before ¢. Combining (13) and (14),
we obtain

ES(t1,t2) S/Z > oula,d) (| P(d) ) dt

ty 7,4’ €Q

- [ Y Bum@mir@ure)w)]

ty 7,4’ €Q

<303 [wmiPwrPE)m)]at < oo

7,4’ €Q

by assumption (12¢) of Theorem 1. Indeed, this reasoning more or less dictates
the assumption (12c).

5 Other Global Existence Questions

Variants of the reasoning in the previous paragraph could be used in the
future in other global existence proofs. Here is an example concerning the
global existence of Bohmian mechanics (with fixed number of particles). This
was first proved in [BDGPZ95] under suitable assumptions on the potential
V and the initial wavefunction ¥y. One way in which a solution @; of (10)
may fail to exist globally is by escaping to infinity (i.e., leaving every bounded
set in R*Y) in finite time. To control this behavior, we suggest to consider an
analogue of S(t;,t5): Let D(t1,t>) be the Euclidean distance in R3" traveled
by @Q: between t; and t5. Then

ED(.) = [ dt [ dglon(a)l (o) (15)

where v; is the Bohmian velocity vector field on R3V, with i-th compo-
nent given by the right-hand side of (10), and the expectation is taken
over the randomness coming from the initial configuration. If this expecta-
tion can be shown to be finite, D(t;,t2) must be almost surely finite. Using
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pt(q) < |%(q)|?, the analogue of (14), we see that the escape to infinity is
almost surely excluded provided that

ta
/ dt/ dq ¥/ (q) V¥:(q)| < oo whenever t; < ts.
R3N

This is a condition analogous to (12c); it is almost equivalent to the assump-
tion A4 of [BDGPZ95]. The proof there, however, is different, using skillful
estimates of the probability flux across suitable surfaces in configuration space-
time R*N x R surrounding the “bad” points (nodes, infinity, points where ¥
is not differentiable). The above argument based on (15) might contribute to
a simpler global existence proof [TT04].

The global existence question is still open for the Bohm—Dirac law of mo-
tion [Boh53, BH93], a version of Bohmian mechanics suitable for wavefunc-
tions ¥ obeying the Dirac equation. The Dirac equation is a relativistic version
of the Schrédinger equation and reads

BT o
ihﬁ - _ ;(ichai Vi + 5imi02‘/’) (16)

where 1); is a function R?N — (C*)®N | ¢ is the speed of light, m; the mass
of the i-th particle, a; the vector of Dirac alpha matrices acting on the i-th
spin index of the wavefunction, and (; the Dirac beta matrix acting on the
i-th index. The Bohm—Dirac equation of motion reads

th,z N ¢t a1y
dt Vi

where ¢* is the inner product in Dirac spin-space. Since these velocities are
bounded by the speed of light, the question of escape to infinity does not arise
here. But the question of running into a node does because, like the minimal
jump rate (8), the velocity formula (17) is ill-defined at nodes.

This question can be treated in a way analogous to the previous arguments
based on (13) and (15). To this end, let L(#1,t2) be the total variation, between
t; and ta, of log |1(Q¢)|?; in other words,

(Qt1,---,Q¢N) (17)

to d
L(tl,tQ):/ dt‘aloghpt(Qt)F
t1

It takes values in [0,00] and is infinite if the trajectory @ runs into a node
between ¢, and t2. This must be a null event if L(#1,¢2) has finite expectation;
for the latter we have the formula

to
L(ti,ts) = /dt/ dq\ +ulq) - V) log [va(@)| pula),
R3N

where v; is the vector field on R*V whose i-th component is the right-hand
side of (17). Using p;(q) < |¢¢(q)|> we obtain
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s < [t [ an|(5 4w 9)wiar].

As the velocities are bounded, the last expression is at most

/tht/RaN ( t|¢t(Q)|2‘+c‘V|¢t(q)|2D_

Inserting (16) and using that the alpha and beta matrices have norm 1 we see
that this in turn is not larger than

/ at [ | dq (2c\w:th\ # 3 (e Joivi+ zc\u]zwt\) .

Since ||¢¢]| = 1, the last integral coincides with

%(Xi:mic2)(t2 — 1) +4c/: dt/w dg |07 Vi

The question remains under which conditions on 1 the last term is finite for
arbitrary ¢; < to. This is presumably the case when g lies in Schwartz space
(containing all smooth functions f such that f and all its derivatives decay,
at infinity, faster than |¢|™" for any n > 0). To work out the proof remains
for future research [TT04].

While global existence of the Bohm—Dirac trajectories can presumably be
proved with the same methods as used in [BDGPZ95] for (10) (estimating the
flux across suitable surfaces surrounding the bad points), such a proof requires
a lot of effort. It seems that the argument just sketched would be much easier
and more elegant.

Another global existence question that is still open is that concerning the
process defined in [DGTZ03a] and described above in Part C of Sect. 3, and for
similar processes, on a configuration space that is a disjoint union of manifolds,
following deterministic trajectories interrupted by stochastic jumps.

6 Deterministic Jumps and Boundaries in Configuration
Space

In this last section we describe another application of minimal jump rates,
one that has not yet been discussed in the literature and that raises some
questions for further research. Suppose that the configuration space Q is a
Riemannian manifold with boundaries, or more generally the disjoint union
of (at most countably many) Riemannian manifolds with boundaries. We write
Q = 09 U Q° where 9Q denotes the boundary and Q° the interior.

We develop below an analogue of Bohmian mechanics on Q, consisting of
smooth motion interrupted by jumps from the boundary to the interior or
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vice versa. The jumps from 9Q to Q° are deterministic and occur whenever
the process hits the boundary. The jumps from Q° to dQ are stochastic, and
their rates are fully determined by requiring that (i) the process is Markovian
and equivariant, and (ii) the construction is invariant under time reversal, in
that the processes associated with ¥, resp. ¥*, are reverse to each other, in
distribution. These rates are, in fact, another instance of minimal jump rates.
Configuration spaces with boundaries arise from QFT if a particular kind
of “ultraviolet cutoff” is applied, which can be regarded as corresponding to
smearing out the charge of an electron over a sphere rather than a ball. Here is
an example. Consider again electrons and photons, with the electrons fixed at
locations given by the finite set n C R?, and suppose that photons cannot get
closer than a fixed (small) distance 6 > 0 to an electron, as they get absorbed
when they reach that distance. Thus, the available configuration space is

Q = {q € Ix(R®) : d(q,n) > 0}, (18)

where d(gq,n) is the Euclidean distance of the finite sets ¢ and n. The space Q
is a countable disjoint union of Riemannian manifolds with boundary,

Q= G{qEQ:#q:n}.

n=0

Its interior is Q° = {q € Ix(R*) : d(q,n) > &}, and its boundary 9Q = {q €
IL(R?) : d(q,n) = 6}.
For this or any other configuration space with boundaries, the law of mo-

tion
dQ: h UV,

e = —1T1
q — @)= Im A

on Q° must be completed by specifying what should happen to the process at
the time 7 when it reaches the boundary. (No specification is needed, however,
for what should happen when two photons collide, as this has probability zero
ever to occur.) The specification we consider here is a deterministic jump law

Qr+ = f(QT*)

for a fixed mapping f : 9Q — Q°. In our example (18), the obvious choice of
fis

(Q¢) (19)

flg) ={z € q:d(z,n) >4},

which means that all photons having reached the critical distance d to some
electron disappear.

Since we want the theory to be reversible, we must also allow for spon-
taneous jumps from interior points to boundary points. Since we want the
process to be an equivariant Markov process, the rate for a jump from ¢’ € Q°
to a surface element dg C 0Q must be, as one can derive,
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[(n(q) - vi(q) 1% (q)*] "
| (q")|?

where n(q) is the inward unit normal vector to the boundary at ¢ € 9Q, the
dot - denotes the Riemannian inner product, and v(dg,q’) is the measure-
valued function defined in terms of the Riemannian volume measure y on Q
and the Riemannian surface area measure A on 9Q by

n_ ABNf(dg))
v(B.q) = p(dg') 7

with B C 09, and the right-hand side denoting a Radon-Nikodym derivative
(the existence of which we presuppose). The measure v( -, q’) is concentrated
on the subset f~!(¢') of the boundary for almost every ¢'. For a probability
distribution on Q having a density function p with respect to u, one obtains
the following probability transport equation at ¢’ € Q°:

v(dg,q'), (20)

oi(dg,q') =

v(da,q') [n(a)-01(@) pula)]

(21)
For equivariance we need that (21), with |%|? in place of p;, has the structure
of the transport equation for |¥|? that follows from the Schrédinger equation

(3),

%(q’) ==V (pve)(q) = 01(0Q. ) pe(q') +/BQ

ELACHI
ot

This is not automatically the case, but it follows from (and therefore suggests)
the following boundary condition relating ¥;|sg to ¥;|g-: for all ¢ € 0Q,

n(q) - V¥%(q) = v(q) % (f(q)) (23)

where v(¢) is any complex number.? This condition prescribes the normal
derivative of the wavefunction on the boundary. Some boundary condition
would be needed anyway to define the evolution of the wavefunction, i.e., to
select a self-adjoint extension of the Laplacian; whether (23) actually suffices
for this, we have to leave to future research. Note that (23) is a linear condition
and thus defines a subspace of the Hilbert space L?(Q). From (23) and (19),
one obtains equivariance with respect to the formal Hamiltonian H = —%A-%
Hy, where

= 2Im ¥ (¢') (HO) (). (22)

(@|Hw) =12 /Q u(de') / v(da, ') 5 (¢') 7" (a) ¥ (q)

0Q
2 *
+ 90 u(dq)/ v(dd',q) 2*(d') v(d") ¥ (a).
Q 0Q
* More generally, if ¥ takes values not in C but in a higherdimensional complex

vector space, Y(q) would be a C-linear mapping from the value space at f(q) to
the value space at q.
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Furthermore, the jump rate (20) is indeed the minimal jump rate (8) associ-
ated with Hy, thanks to (23).

Let us emphasize the following aspects. First, starting from the picture
of a piecewise deterministic process that jumps whenever it hits the bound-
ary, we arrived with remarkable ease at the probability transport equation
(21) and thus at the boundary condition (23). Second, we have derived what
the interaction Hamiltonian H7 is; once the destination mapping f and the
corresponding coefficients v had been selected, there was no further freedom.
Third, it turned out that the minimal jump rate is the only possible jump
rate in this setting. Its very minimality plays a crucial role: a jump to a
boundary point ¢ at which the velocity field is pointing towards the bound-
ary, n(q) - v¢(q) < 0, would not allow any continuation of the process since
there is no trajectory starting from ¢. The problem is absent if the velocity
at ¢ is pointing eway from the boundary, n(q) - v:(¢) > 0. (We are leaving out
the case n(q) - v¢(¢) = 0.) On the other hand, jumps from ¢ to f(g) cannot
occur when v:(q) is pointing away from the boundary since in that case there
is no trajectory arriving at ¢q. Thus, the jumps must be such that at each time
t, one of the transitions ¢ — f(q) or f(q) — ¢ is forbidden, and the decision
is made by the sign of n(q) - v+(q).
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