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one an expet to be true is that global existene holds for almost all solutions of theequation of motion. As we show, this is in fat true for suitable potentials and initialwavefuntions. As a by-produt, one obtains from almost-sure global existene theequivariane of the j tj2 distributions.The relevane of Bohmian mehanis to the foundations of quantum mehanis arisesfrom the fat that a world governed by Bohmian mehanis satis�es all probability rulesof quantum mehanis [5, 1, 11, 3, 10℄. Bohmian mehanis thus provides an example ofa \quantum theory without observers," one in whih no referene to observers is neededfor the formulation of the theory, and an explanation of the quantum probabilities interms of objetive events.The authoritative paper on global existene of Bohmian trajetories is by Berndl etal. [4℄; see also [2℄. We note that the proof given by Holland [15, p. 85℄ is inorret(see [4℄ for details). We also remark that the general existene theory for �rst orderODEs with veloity vetor �elds that are not Lipshitz but only in some Sobolev spae[9℄ does not apply to Bohmian trajetories. The results of [9℄ hold for vetor �eldswith bounded divergene, while the divergene of a Bohmian veloity �eld, suh as in(3) and (4), typially diverges at nodes of the wave funtion. Berndl et al. [4℄ alreadyproved almost-sure global existene for suitable potentials and initial wavefuntions;while they give a proof only for spinless nonrelativisti partiles, a similar proof ouldpresumably be devised for Bohmian mehanis with spin [1, 3℄ and the Bohm{Diratheory. We provide here an alternative proof that is shorter and more transparent thanthe proof by Berndl et al. Our result overs all ases overed by their existene theorem;in addition, our result also overs Bohmian mehanis with spin and magneti �eldsand Bohm{Dira theory; for the latter our result and its proof beome partiularlysimple thanks to the fat that the Bohm{Dira veloities are bounded by the speed oflight. Even more generally, our result an be applied to any Bohm-type dynamis, aswe formulate onditions on the urrent vetor �eld on on�guration-spae-time that aresuÆient for almost-sure global existene.There are three ways in whih a trajetory an fail to exist globally: it an approah anode of the wavefuntion (where the equation of motion is not de�ned), it an approaha singularity of the potential (where the equation of motion need not be de�ned), or itan esape to in�nity in �nite time. Hene, the main work of any existene proof forBohm-type dynamis is to show that almost every trajetory avoids the \bad points"(nodes, singularities, in�nity) in on�guration spae. The method of Berndl et al. isbased on estimating the probability ux aross surfaes surrounding the bad points andpushing these surfaes loser to the bad points; in the limit in whih the surfaes reahthe bad points, the ux vanishes.The advantage of our approah is that it does not require skillful estimates and doesnot involve limits. Instead, our method is based on onsidering a suitable nonnegativequantity along the trajetory that beomes in�nite when the trajetory approahes abad point; if suh a quantity has �nite expetation, at least loally, then the set of initialon�gurations for whih it beomes in�nite must be a null set. That the expetation beloally �nite an be paraphrased as an integral ondition on the urrent vetor �eld.To illustrate our method, we briey desribe an argument of this kind: the totaldistane D traveled in on�guration spae in the time interval [0; T ℄ beomes in�nite2



when the trajetory esapes to in�nity during [0; T ℄. To prove that D is almost surely�nite, we prove that it has �nite expetation. A alulation shows thatED � TZ0 dt ZR3N dq jJ j ; (1)where J is the spatial omponent of the urrent vetor �eld. Thus, the �niteness ofthe right hand side of (1) is a natural ondition on the urrent ensuring that almost notrajetory esapes to in�nity in [0; T ℄.This argument was already skethed in [14℄; it was inspired by a similar onsiderationin the global existene proof of [13℄ for Bell's jump proess for lattie quantum �eldtheory, another Markov proess depending on a wavefuntion  t and having distributionj tj2 at any time t; the quantity onsidered there was the number of jumps during [0; T ℄.Finally, a related argument was also desribed in Remark 3.4.6 of [4℄, see our Remark 5for a omparison.Our method is also in a way more elementary than that of Berndl et al.: we donot make use of the nontrivial fat that the j j2-probability of rossing a surfae � inon�guration-spae-time is bounded by R� jd� � jj where d� is the normal on � withlength equal to the area of the surfae element and j is the urrent vetor �eld. Indeed,we use this fat only for surfaes lying in t = onst. slies of on�guration-spae-time,for whih it is muh simpler to prove, see Lemma 1. To be sure, the statement aboutgeneral surfaes is interesting in its own right and also relevant to other appliationssuh as sattering theory, but its proof takes several pages in [2℄.While our innovation onerns suÆient onditions on the urrent for almost-sureglobal existene, there remains the funtional analyti question of deriving these ondi-tions from onditions on the potential and the initial wavefuntion. We arry this out inseveral example ases but ontribute nothing original; we employ the same argumentsas Berndl et al. or standard arguments.This artile is organized as follows. In Setion 2 we give the de�nition of Bohmiantrajetories for both the Shr�odinger and the Dira equation; we eluidate the relevaneof the urrent vetor �eld to the trajetories and their distribution. In Setion 3 westate and prove our results in terms of a urrent vetor �eld. In Setion 4 we state andprove our results for Bohm{Dira theory. Finally, in Setion 5 we state and prove ourresults for Bohmian mehanis.2 SetupWe briey reall Bohmian mehanis and the Bohm{Dira theory for a system of Npartiles. Then we desribe what singularities we will allow in the potential. Finally,we point out how for both Bohmian mehanis and Bohm{Dira theory the trajetoriesarise from a urrent vetor �eld on on�guration-spae-time.
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2.1 Equations of MotionIn Bohmian mehanis, the wavefuntion is a funtion  : R � R3N ! C k where Rrepresents the time axis, R3N the on�guration spae of N partiles, and C k the valuespae of the wavefuntion representing the internal degrees of freedom of the partilessuh as spin (and possibly quark avor et.).  =  (t; q1; : : : ; qN) evolves aording tothe Shr�odinger equationi~� �t = � NXi=1 ~22mi �rqi � iei~A(qi)�2 + V (q1; : : : ; qN) ; (2)where mi and ei denote mass and harge of the i-th partile,  the speed of light, Ais the external eletromagneti vetor potential, and V is the potential, whih may beHermitian k � k-matrix valued. For partiles with spin in the presene of magneti�elds, the potential inludes a term Pi ~ei2mi(r �A)(qi) � �i where �i is the vetor ofspin operators (Pauli matries for spin-12) ating on the spin index of partile i; thisform of the Shr�odinger equation is known as the Pauli equation.The law of motion for the trajetory Qi(t) of the i-th partile readsdQidt (t) = ~mi Im � �rqi � iei~A(qi)�  �  (t; Q(t)); (3)where Q = (Q1; : : : ;QN) is the on�guration, and  �� denotes the inner produt in C k .The right hand side of (3) is ill-de�ned when and only when either  (t; Q) = 0 (node of ) or  is not di�erentiable at (t; Q). For an expliit example of a trajetory that runsinto a node of  , see [4℄.In Bohm{Dira theory, the wavefuntion is a funtion  : R�R 3N ! C 4N = (C 4)
Nevolving aording to the Dira equationi~� �t = � NXi=1 i~�i � rqi + V (q1; : : : ; qN ) ; (4)where �i denotes the vetor of Dira alpha matries ating on the spin index of partile i;we have inluded the mass terms in the potential V , whih is Hermitian 4N �4N -matrixvalued. In the presene of magneti �elds, V inludes a term �Pi eiA(qi) ��i.The law of motion for the trajetory Qi(t) of the i-th partile readsdQidt (t) =  ��i   �  (t; Q(t)) : (5)The right hand side is ill-de�ned at nodes of  and only there.2.2 Singularities of the PotentialAmong the physially relevant examples of potentials V = V (q1; : : : ; qN) is the Coulombpotential, V (q1; : : : ; qN ) =Xi<j eiejjqi � qjj (6)4



whih is singular at oinidene on�gurations (those with qi = qj for some i 6= j).This motivates us to allow that V is de�ned only on a subset Q � R3N ; e.g. in thease of Coulomb interation, Q is the set of non-oinidene on�gurations; in thease of an external Coulomb potential generated by harges loated at z1; : : : ; zM , Q =(R3nfz1; : : : ; zMg)N . One annot expet a Shr�odinger wavefuntion to be di�erentiableon the singular set R3N n Q of the potential, as exempli�ed by the ground state of thehydrogen atom, whih is proportional to exp(��jqj) for suitable � > 0. Thus, the righthand side of (3) may be ill-de�ned on R3N nQ, and we will use di�erentiability of  onlyon Q. For the Coulomb interation and the external Coulomb potential, Q is of theform Q = Rd n[m̀=1S`, where S` are hyperplanes. Our method of proof allows somewhatweaker assumptions:A losed set S � Rd is admissible, if there is a Æ > 0 suh that the distane funtionq 7! dist(q; S) is di�erentiable on the open set (S + Æ) n S, where S + Æ = fq 2 Rd :dist(q; S) < Æg. Then the on�guration spae Q iseither Q = Rd or Q = Rd n m[̀=1S`; (7)where S1; : : : ; Sm are admissible sets. For example hyperplanes are obviously admissiblesets.2.3 The Current Vetor FieldThere is a ommon struture behind the laws of motion (3) and (5): they are of theform dQdt (t) = J(t; Q(t))j0(t; Q(t)) (8)where j = (j0; J) is the urrent vetor �eld on on�guration-spae-time R �Q, de�nedby j = �j j2; ~m1 Im ��rq1 � ie1~A(q1)� ; : : : ; ~mN Im ��rqN � ieN~ A(qN )� � (9)in the Shr�odinger ase andj = �j j2;   ��1 ; : : : ;   ��N � (10)in the Dira ase. Provided that  is suÆiently di�erentiable, j has the followingproperties, whih we take to be the de�ning properties of a urrent vetor �eld :j = (j0; J) is a C1 vetor �eld on R �Q (11a)div j = dX�=0 ��j� = 0 (11b)j0 > 0 whenever j 6= 0 (11)ZQ dq j0(t; q) = 1 8t 2 R : (11d)5



We will all points in N = f(t; q) 2 R � Q : j(t; q) = 0g the nodes of j. We writeNt = fq 2 Q : j(t; q) = 0g for the set of nodes at time t.Let Qq(t) denote the maximal solution of (8) starting in q 2 Q n N0 de�ned fort 2 (��q ; �+q ). It is a reparameterization of an integral urve of j, see Remark 8 fordetails. We will formulate our existene theorem �rst purely in terms of the urrentvetor �eld, and then apply our result to the urrents (9) and (10).2.4 EquivarianeWe now explain the notion of equivariane, and what needs to be shown to prove equiv-ariane. We �rst remark that equivariane is a ruial property of Bohm-type dynamis,in fat the basis of the statistial analysis of Bohmian mehanis [11℄ and thus the basisof the agreement between the preditions of Bohmian mehanis and the presriptionsof quantum mehanis. We also remark that, while full equivariane will be a onse-quene of the existene result, a kind of partial equivariane an be obtained before, seeLemma 1 below; our existene proof will exploit this partial equivariane.Before we de�ne equivariane, we introdue some notation. Let A (Q) denote theBorel �-algebra of Q. Let �t be the measure on A (Q) with density j0(t) relative toLebesgue measure, �t(B) = ZB dq j0(t; q) (12)for all B 2 A (Q). By (11d), �t is a probability measure; in Bohmian mehanis andBohm{Dira theory, �t is the j (t)j2 distribution. We introdue a formal emeteryon�guration } and set Qq(t) := } for all t =2 (��q ; �+q ), respetively, if (0; q) is a node ofj, Qq(t) := } for all t 6= 0. Let 't : Q ! Q [ f}g, 't(q) = Qq(t), denote the ow mapof (8), and let ' : R�Q ! R� (Q[f}g) be the ow map on on�guration-spae-timede�ned by '(t; q) = (t; 't(q)). Let Qt = fq 2 Q n N0 : ��q < t < �+q g = '�1t (Q).Standard theorems (see, e.g., Chapter II of [16℄) on ODEs imply that ' is C1 on themaximal domain f(t; q) 2 R � (Q nN0) : 't(q) 6= }g, whih is open; in partiular, alsoQt is an open set.Let �t be the distribution of Qq(t) if q has distribution �0, i.e.,�t = �0 Æ '�1t : (13)One says that the family of measures �t is equivariant on the time interval I if �t = �tfor all t 2 I. (The interval I may be �nite or in�nite.)Let It := 't(Qt) = 't(Q) \ Q be the image of the ow map in Q at time t. Thefollowing lemma formulates \partial equivariane."Lemma 1 Let j = (j0; J) satisfy (11a), (11b), and (11). Then for all B 2 A (Q) andall t 2 R, �t(B) = �t(B \It) : (14)We know of two ways of proving this lemma, requiring omparable e�ort. Oneproof, given in [4℄ and in more detail in [2℄, goes as follows. �t has a density that obeysa ontinuity equation, and j0 satis�es the same ontinuity equation. By uniqueness of6



solutions of this linear partial di�erential equation, one obtains that j0(t) oinides withthe density of �t on It. An alternative proof, whih we give below, is based on applyingthe Ostrogradski{Gauss integral formula to j on a ylinder formed by the trajetoriesover a polyhedron in Q.Proof of Lemma 1. Without loss of generality, t > 0. For any d-hain of singularsimplies E in Qt, the ylinder F formed by the trajetories over E, F = '([0; t℄� E),is a d + 1-hain in on�guration-spae-time R � Q. Applying the Ostrogradski{Gaussintegral formula to j and F , we obtain0 (11b)= ZF dt dq div j = Z�F d� � jwhere d� is the outward pointing surfae normal with length jd�j equal to the area ofthe surfae element. The surfae �F of the ylinder onsists of three parts: the mantle'([0; t℄ � �E), the lid '(ftg � E), and the bottom '(f0g � E). The integral over themantle vanishes as the mantle onsists of integral urves of j and is thus tangent to j.The integral over the lid is R't(E) dq j0(t; q) and that over the bottom is � RE dq j0(0; q).Therefore, we obtain0 = �t('t(E))� �0(E) = �t('t(E))� �t('t(E)) :Any two measures that agree on the d-hains (and thus in partiular on the ompatretangles) agree on a \-stable generator of the �-algebra A (Qt) and are, by a standardtheorem, equal. Sine 't is a bijetion Qt ! It, we obtain (14). �What remains to be shown to prove equivariane is that �t(Q nIt) = 0.3 A General Existene TheoremLet B(Q) denote the set of all bounded Borel sets in Q.Theorem 1 Let Q � Rd be a on�guration spae as de�ned in (7) and let j = (j0; J)be a urrent as de�ned in (11). Let T > 0 and let 't : Q ! Q [ f}g denote the owmap of (8). Suppose that8B 2 B(Q) : TZ0 dt Z't(B)nf}gdq ����� ��t + Jj0 � rq� j0(t; q)���� <1 ; (15)8B 2 B(Q) : TZ0 dt Z't(B)nf}gdq ����J(t; q) � qjqj���� <1 ; (16)and, if Q = Rd n [`S`, in addition that for every ` 2 f1; : : : ; mg,9Æ > 0 8B 2 B(Q) : TZ0 dt Z't(B)nf}gdq 1�q 2 (S` + Æ)� jJ(t; q) � e`(q)jdist(q; S`) <1 : (17)7



Here dist(q; S`) is the Eulidean distane of q from S` and e`(q) = �rqdist(q; S`) is theradial unit vetor towards S` at q 2 Q. Reall that for Æ suÆiently small the distanefuntion is di�erentiable on S` + Æ.Then for almost every q 2 Q relative to the measure �0(dq) = j0(0; q) dq, the solu-tion of (8) starting at Q(0) = q exists at least up to time T , and the family of measures�t(dq) = j0(t; q) dq is equivariant on [0; T ℄. In partiular, if (15), (16) and, if appropri-ate, (17) are true for every T > 0, then for �0-almost every q 2 Q the solution of (8)starting at q exists for all times t � 0.Remarks:1. We an formulate the meaning of eah of the onditions (15), (16), and (17) asfollows. If (15) holds, then �0-almost no trajetory approahes a node during[0; T ℄. If (16) holds, then �0-almost no trajetory esapes to 1 during [0; T ℄. If(17) holds, then �0-almost no trajetory approahes a point in the singular set[m̀=1S` during [0; T ℄.2. To obtain existene also for negative times, one an apply Theorem 1 to the timereversed urrent �|(t; q) = �j0(�t; q);�J(�t; q)� : (18)The integral urves of �| are the time reverses of the integral urves of j. Obviously,with j also �| satis�es (11). If �| satis�es (15), (16), and, if appropriate, (17) forT > 0, we obtain almost-sure global existene of Qq(t) on [�T; 0℄.3. It suÆes to onsider in (15), (16) and (17) for the sets B instead of all boundedBorel sets just the balls around the origin. This is beause enlarging B annotshrink the integral. For the same reason, it suÆes to integrate over QnNt insteadof the not easily aessible sets 't(B) n f}g.4. Atually the proof of Theorem 1 works in the same way with the following slightlyweaker onditions. Instead of (16) it suÆes to assume that8B 2 B(Q) 9R <1 : TZ0 dt Z't(B)nf}gdq 1(jqj > R) ����J(t; q) � qjqj���� <1 ;and (17) an be replaed by8B 2 B(Q) 9Æ > 0 : TZ0 dt Z't(B)nf}gdq 1�q 2 (S` + Æ)� jJ(t; q) � e`(q)jdist(q; S`) <1 :We hose to state the theorem with the stronger assumption to simplify the pre-sentation and beause the weaker assumptions will not be used in the following.Proof of Theorem 1. Let Qq(t) be the maximal solution of (8) starting in q, as desribedin Setion 2.3. Sine we deal only with positive times in the following, we write �q for�+q . 8



There are three ways in whih Qq(t) an fail to exist globally: the trajetory anapproah a node, approah a point on the singular set [S`, or esape to in�nity in�nite time. More preisely, if q =2 N0 and �q < 1 there exists an inreasing sequene(tn)n2N with tn ! �q suh that either there is x 2 N�q [ Sm̀=1 S` with Qq(tn) ! x orjQq(tn)j ! 1.To see this, suppose that �q < 1 and that suh a sequene did not exist. ThenQq := f(t; Qq(t)) : t 2 (0; �q)g � (R � Q) nN would remain bounded and boundedaway from the omplement (R � [S`) [N . Sine (R � Q) nN is open, there wouldbe a ompat set K � (R � Q) nN suh that Qq � KÆ, with KÆ the interior of K.However, the vetor �eld (1; J=j0) is C1 on (R �Q) nN and thus uniformly Lipshitzon K. Therefore, all of its maximal integral urves either exist for all times or hit theboundary of K, in ontradition to the hypotheses.Let now q =2 N0 and �q � T . If there is x 2 N�q and (tn) suh that Qq(tn) ! x,then j0(tn; Qq(tn)) ! 0. Hene, the total variation of t 7! log j0(t; Qq(t)) up to time Tdiverges, i.e., Lq =1 whereLq = min(T;�q)Z0 dt ��� ddt log j0�t; Qq(t)���� for q 2 Q nN0 : (19)We now show that L1 := fq 2 Q nN0 : Lq =1g is a �0-null set. For this it suÆes toshow that for any bounded set B 2 B(Q), B \ L1 is a �0-null set. For this in turn, itsuÆes that the average of Lq over B relative to the measure �0 be �nite:ZB dq j0(0; q)Lq = ZB dq j0(0; q) min(T;�q)Z0 dt �� ddtj0�t; Qq(t)���j0(t; Qq(t)) =[the order of integration an be hanged sine the integrand is nonnegative℄= TZ0 dt ZB dq j0(0; q) 1(�q > t) �� ddtj0�t; Qq(t)���j0(t; Qq(t))= TZ0 dt Z't(B)nf}g�t(dq0) ��(�=�t + Jj0 � rq0)j0(t; q0)��j0(t; q0) =[by Lemma 1℄ = TZ0 dt Z't(B)nf}gdq0 ��(�=�t + Jj0 � rq0)j0(t; q0)�� (15)< 1:This shows �0(L1) = 0 and thus that the solution Qq(t) of (8) �0-almost surely doesnot approah a node during [0; T ℄.Now we onsider the ases that eitherlimn!1 jQq(tn)j =1 :9



or 9 x 2 [m̀=1S` : Qq(tn)! x :Hene, for suh initial onditions either the total variation of t 7! jQq(t)j is in�nite, i.e.,Dq =1 where Dq = min(T;�q)Z0 dt ��� ddt jQq(t)j��� for q 2 Q nN0 ;or the total variation of t 7! log dist(Qq(t); S`) restrited to S` + Æ is in�nite for some` 2 f1; : : : ; mg and any Æ > 0, in partiular for the one in (17), i.e., Vq;` =1 whereVq;` = min(T;�q)Z0 dt 1(Qq(t) 2 (S` + Æ)) ��� ddt log dist(Qq(t); S`)��� for q 2 Q nN0 :Therefore it suÆes to show that D1 := fq 2 Q nN0 : Dq = 1g and V1;` := fq 2Q nN0 : Vq;` =1g are �0-null sets, and for this we proeed as for L1.Let B 2 B(Q). Then (8), followed by exatly the same arguments as for Lq, showsthat loal expetations of Dq are �nite, i.e.ZB dq j0(0; q)Dq = TZ0 dt Z't(B)nf}gdq0 ����J�t; q0� � q0jq0j ���� (16)< 1 :Hene �0(D1) = 0. For loal expetations of Vq;` we obtain, again with (8) and Lemma 1ZB dq j0(0; q)Vq;` = ZB dq j0(0; q) min(T;�q)Z0 dt 1(Qq(t) 2 (S` + Æ)) ����� _Qq(t) � e`(Qq(t))dist(Qq(t); S`) �����= TZ0 dt Z't(B)nf}gdq0 1(q0 2 (S` + Æ)) ����J(t; q0) � e`(q0)dist(q0; S`) ���� (17)< 1 :Hene also �0(V1;`) = 0, onluding the existene part of the theorem.It remains to show equivariane. Sine the probability of reahing } before time Tvanishes, we have �t(Q) = 1 for all t 2 [0; T ℄. Sine �t � �t by Lemma 1 and �t(Q) = 1by (11d), we must have �t = �t, whih is equivariane. �Remarks.5. A reasoning losely related to our method of proof is also applied in [4℄, Re-mark 3.4.6. There, an expression analogous to (15) is used to ontrol the proba-bility of reahing an "-neighborhood of N before letting " ! 0. Apart from thefat that the argument is applied there only to the nodes and not to singularitiesand in�nity, it is also unneessarily ompliated, mainly beause it onsiders an"-neighborhood instead of fully exploiting the integral (19).10



6. The proof of equivariane was the only plae where we used the property (11d)of a urrent vetor �eld. The existene statement of Theorem 1 holds as well if jsatis�es (11) exept for (11d); in partiular, we may allow �t(Q) =1.7. Here is another equivariane result that does not use (11d): Let Q be a on-�guration spae as in (7) and let j satisfy (11) exept for (11d). Suppose thatalmost-sure global existene holds in both time diretions, starting from any time.Then the family of measures �t is equivariant on R.To see this, note that for equivariane we need to show merely that Q n It is a�t-null set, or, in other words, that for �t-almost every q 2 Q the integral urveof j starting in (t; q) reahes bak in time to time 0. But this is immediate fromalmost-sure global existene in the other time diretion, starting at time t.Thus, if both j and �| as de�ned in (18) and their time translates satisfy (15), (16),and, if appropriate, (17) for all T > 0, we obtain equivariane without (11d).8. Condition (16) an be replaed by the onditionthe �rst order derivatives of J are bounded on [0; T ℄�Q : (20)To show this, we show that under this assumption every unbounded solution Qq(t)with �q � T has Lq =1, with Lq de�ned in (19).To see this, �rst note that the solutions of (8) are reparameterizations of theintegral urves of j. In more detail, let q(s) = �0q (s);�q(s)� be the uniquemaximal integral urve to j, dq(s)ds = j(q(s)) ; (21)starting in (0; q) 2 R� (QnN0) and de�ned for s 2 (��q ; �+q ). Sine j0 > 0 outsidenodes, 0q (s) is monotonially inreasing, and hene the maps 7! tq(s) = 0q (s) = sZ0 d~s d0qd~s = sZ0 d~s j0(q(~s))is invertible on its image (��q ; �+q ), where ��q = lims!��q tq(s), with inverse sq(t).Sine ddt�q(sq(t)) = J�(sq(t))�j0�(sq(t))� ;Qq(t) = �q(sq(t)) is the unique maximal solution of (8) with Qq(0) = q; it isde�ned for t 2 (��q ; �+q ).Now suppose that jQq(tn)j ! 1 for some tn ! �+q . Then also j�q(sq(tn))j ! 1.Sine the derivatives of J are bounded, there are onstants A, R > 0 suh thatjJ(t; q)j � Ajqj for all t 2 [0; T ℄ and all q 2 Q with jqj > R. Sine d�q=ds =J(q(s)), it follows that j�q(s)j � max(j�q(0)j; R) eAs; thus, an integral urve of j11



annot esape to spatial in�nity in a �nite interval of the parameter s; in otherwords, �+q =1. But then �+q = Z 10 ds j0(q(s)) <1implies the existene of an inreasing sequene (sn) with sn ! 1 suh thatj0(q(sn))! 0, and therefore Lq =1.4 Global Existene of Bohm{Dira TheoryThe Dira Hamiltonian for N partiles isHD = � NXi=1 i~�i � rqi + V (q1; : : : ; qN) ;where we assume a nonsingular V 2 C1(R3N ; Herm(C 4N )). Aording to [8℄, HD isessentially self-adjoint on C10 (R3N ; C 4N ) and we denote by HD the unique self-adjointextension.Sine the Dira matries � have eigenvalues �1, the veloities in (5) are boundedby . Consequently, the Dira urrent (10) satis�es jJ j � pN j0. This fat makes theproof of global existene partiularly simple, as expressed in the following orollary toTheorem 1.Corollary 1 Let Q = Rd and let j = (j0; J) be a urrent as de�ned in (11). Supposethat there is a global bound on veloities, i.e., a onstant  > 0 suh that jJ j �  j0.Then for �0-almost all q 2 Rd , the solution of (8) starting at Q(0) = q exists for alltimes, and the family of measures �t is equivariant.Proof of Corollary 1. We show that assumptions (15) and (16) of Theorem 1 aresatis�ed for any T > 0. The key observation is that due to the bound on veloities,bounded sets in on�guration spae stay bounded under the ow. More expliitly, forany bounded set B 2 B(Rd) ontained in, say, the ball Br of radius r > 0 around theorigin, 't(B) n f}g will be ontained in Br+t and thus in Br+T provided t 2 [0; T ℄.Now ��(�t + Jj0 � rq)j0�� � ���tj0�� + ��rqj0��, and the funtions jJ j, ���tj0��, and ��rqj0��are ontinuous and therefore bounded on the ompat set [0; T ℄ � Br+T . Hene theintegrals in (15) and (16) are �nite. This implies existene for all positive times. Fornegative times apply the same argument to the time-reversed urrent �|, for whih thesame veloity bound holds. �Applying Corollary 1 to Bohm{Dira theory, we obtain global existene of Bohm{Dira trajetories under very general onditions.Theorem 2 Let V 2 C1(R3N ; Herm(C 4N )) and  (t) = e�itHD (0) with  (0) 2C1(R3N ; C 4N ) \ L2(R3N ; C 4N ) and k (0)k = 1.Then the solution Qq(t) = (Q1(t); : : : ;QN(t)) of (5) with Qq(0) = q exists globallyin time for almost all q 2 R3N relative to the measure �0(dq) = j (0; q)j2dq, and thej (t)j2 distributions are equivariant. 12



Proof. Aording to [8℄, for  (0) 2 C10 (R3N ; C 4N ) one has  (t) 2 C10 (R3N ; C 4N ) and (t; q) 2 C1(R � R3N ; C 4N ). But then linearity and the �nite propagation speed(Proposition 1.1 in [8℄) imply that  (t; q) 2 C1(R � R3N ; C 4N ) also for  (0) 2C1(R3N ; C 4N ) \ L2(R3N ; C 4N ). Hene, the Dira urrent (10) satis�es (11). SinejJ j � pN j0, Corollary 1 implies the theorem. �Corollary 2 Let now Q = Rd n [m̀=1S`, where S` is a hyperplane with odimension � 2for ` = 1; : : : ; m, and let j = (j0; J) be a urrent as de�ned in (11). Suppose that thereis a global bound  on veloities, jJ j �  j0, and that J and the �rst order derivatives ofj0 are bounded on bounded sets.Then for �0-almost all q 2 Rd , the solution of (8) starting at Q(0) = q exists for alltimes, and the family of measures �t is equivariant.Proof. First note that Rd n Q is a Lebesgue-null set and hene also a �0-null set. Forq 2 Q we apply Theorem 1. The onditions (15) and (16) of Theorem 1 follow as in theproof of Corollary 1 using the fat that J and the derivatives of j0 are loally bounded.To hek (17), let d` be the dimension of S` and assume without loss of generalitythat S` ontains the origin. Then with jJ j � C on Bdr+T , the ball of radius r + Taround the origin in Rd , and Bdr+T � Bd`r+T �Bd�d`r+T we �nd thatZ T0 dt ZBdr+T dq jJ(t; q)jdist(q; S`) � T ZBd`r+T dx ZBd�d`r+T dy Cjyj <1 : �5 Global Existene of Bohmian MehanisWe now apply Theorem 1 to Bohmian mehanis and onsider the abstrat HamiltonianH0 = �12 �m� 12 �rq � iA(q)��2 1Ck + V (q) ; D(H0) = C10 (Q; C k) ; (22)where, for the moment, A 2 H1lo(Rd ;Rd) and V 2 L2lo(Q;Herm(C k )). The massmatrix m = diag(m1; : : : ; md) has positive entries mi > 0. These onditions assurethat H0 is well de�ned and symmetri on C10 (Q; C k). Sine H0 ommutes with omplexonjugation, H0 has at least on self-adjoint extension. We also assume that Q = Rd n[m̀=1S` where eah S` is a (d � 3)-dimensional hyperplane in Rd . As to be explainedin the example below, for d = 3N the oinidene set of N partiles moving in R3 hasexatly this struture and therefore singular pair-potentials like the Coulomb potentialare inluded. In these abstrat terms the Bohmian equation of motion readsdQdt (t) = m�1Im � �rq � iA�  �  (t; Q(t)) : (23)13



Theorem 3 Let H be a self-adjoint extension of H0 as in (22) with domain D(H).Suppose that for some  (0) 2 D(H) with k (0)k = 1 the solution  (t) = e�itH (0) ofthe Shr�odinger equation satis�es(i)  2 C2(R �Q; C k ),(ii) for every T > 0 there is a onstant CT <1 suh thatZ T�T dt � k jr (t)j k2 + k jA (t)j k2 + kA � r (t) k2 � < CT :Then the solution Qq(t) of (23) with Qq(0) = q exists globally in time for almost allq 2 Rd relative to the measure �0(dq) = j (0; q)j2dq, and the j (t)j2 distributions areequivariant.Remark.9. Note that ondition (i) in Theorem 3 is typially satis�ed only if the potentials Aand V are suÆiently smooth on Q, more than we required after (22). We deidedto state the ondition in terms of  sine the exat type of smoothness requiredfor A and V depends on, among other fators, the dimension d.Proof of Theorem 3. First note that Rd n Q is a Lebesgue-null set and hene also a�0-null set. For q 2 Q we apply Theorem 1. Aording to Setion 2.3 and by virtue of(i), the Shr�odinger urrentj(t; q) = � �(t; q) (t; q); m�1Im �(t; q)(rq � iA(q)) (t; q)�satis�es (11). We now hek (15), (16) and (17), in order to prove existene for positivetimes. For negative times one onludes analogously by applying exatly the samearguments to the time reversed urrent.With  (t) = e�itH (0), the Cauhy{Shwarz inequality, and (ii) we obtainZQ dq ���tj0(t; q)�� = ZRd dq j�t �(t; q) (t; q)j � 2 ZRd dq j �(t; q)H (t; q)j� 2kH (t)k = 2kH (0)k :For the seond term in (15) we �nd, after a straightforward omputation involvingCauhy{Shwarz �rst on C k and then on L2(Rd) and �nally on L2([0; T ℄), thatTZ0 dt ZQnNtdq ���� Jj0 � rj0(t; q)���� � 1m0 TZ0 dt ZRd dq �jr (t; q)j2 + j (t; q)j jA(q) � r (t; q)j�� CT +pTCTm0 ;where m0 = minfm1; : : : ; mdg. Hene, (15) holds. Analogously (16) follows fromTZ0 dt ZQ dq jJ(t; q)j � TZ0 dt 1m0 ZRd dq j (t; q)j (jr (t; q)j+ jA(q) (t; q)j) � pTCTm0 :14



We now ome to (17). Sine S` is a (d�3)-dimensional hyperplane, it an be writtenas S` = fq 2 Rd : y`(q) = a`g with y` : Rd ! R3 , q 7! (q � y1̀; q � y2̀; q � y3̀) where y1̀, y2̀,y3̀ are 3 orthogonal unit vetors normal to the hyperplane S` and a` 2 R3 a onstant.The distane to the hyperplane is given by dist(q; S`) = jy`(q)� a`j.To prove (17) for Æ =1, we use the generalized Hardy inequality introdued in [4℄,Equation (25). It states that for all � 2 H1(Rd ; C ), the �rst Sobolev spae,ZRd dq j�(q)j24jy`(q)� a`j2 � ZRd dq jr�(q)j2 :Hene, TZ0 dt ZQ dq jJ(t; q) � e`(q)jdist(q; S`) � 1m0 TZ0 dt ZRd dq j �(t; q)(r� iA(q)) (t; q)jjy`(q)� a`j� 1m0 TZ0 dt ZRd dq j (t; q)j(jr (t; q)j+ jA(q) (t; q)j)jy`(q)� a`j� 1m0 TZ0 dt�ZRd dq j (t; q)j2jy`(q)� a`j2� 12 (k jr (t)j k+ k jA (t)j k)� 1m0 TZ0 dt (2k jr (t)j k2 + k jr (t)j k k jA (t)j k) � 3CTm0 : �We shall not try to verify the assumptions of Theorem 3 under as general as possibleonditions on A and V . Instead we onsider two examples where they an be hekedwithout too muh e�ort.Our �rst example onerns a moleular system in external �elds. More preiselywe onsider N eletrons in R3 with on�guration q = (q1; : : : ; qN) 2 R3N interatingthrough Coulomb potentials Vel(q) = N�1Xi=1 NXj=i+1 1jqi � qjjin the eletri potential Vnu(q) = � NXi=1 MXj=1 Zjjqi � zjjof M stati nulei loated at zj 2 R3 with harges Zj, j = 1; : : : ;M . Furthermore weallow for an external magneti �eld B(x) = r�A(x) with A 2 C1(R3 ;R3) suh thatr �A = 0 and B and A are bounded. The Hamiltonian of the system thus isHmol =  �12 NXi=1 �rqi + iA(qi)�2 + Vel(q) + Vnu(q)!1(C 2 )
N � NXi=1 B(qi) � �i (24)15



with domainD(Hmol) = H2(R3N ; (C 2)
N). Here �i is the vetor of Pauli matries atingon the spin index of partile i. It is well known that Vel, Vnu, and rq are in�nitesimallybounded with respet to �q. Hene Hmol = �12�q +R withR :=  �12 NXi=1 �2iA(qi) � rqi �A(qi)2�+ Vel(q) + Vnu(q)!1(C 2 )
N � NXi=1 B(qi) � �iis self-adjoint by virtue of Kato's theorem.Corollary 3 Let  (t) = e�itHmol (0) with  (0) 2 C1(Hmol) = \1n=1D((Hmol)n) andk (0)k = 1. Then the Bohmian trajetories Qq(t) exist globally in time for almost allq 2 R3N relative to the measure j (0; q)j2dq, and the j (t)j2 distributions are equivariant.Proof. First note that Hmol is of the form (22) with d = 3N and k = 2N . The on�gu-ration spae of the system isQ = R3N n ��[N�1i=1 [Nj=i fq 2 R3N : qi = qjg� [ �[Ni=1 [Mj=1 fq 2 R3N : qi = zjg�� ;where the N(N � 1)=2 eletron{eletron and the NM eletron{nuleus oinidene hy-perplanes are all (3N � 3)-dimensional. As remarked above, Hmol is self-adjoint onH2(R3N ; (C 2)
N) and thus satis�es the hypotheses of Theorem 3. Hene it suÆes tohek that  (t) satis�es the hypotheses (i) and (ii) of Theorem 3. As for (i), note thatall potentials in (24) are C1 on Q. Then methods of ellipti regularity an be appliedto show that for  (0) 2 C1(Hmol) the solution of the Shr�odinger equation satis�es 2 C1(R � Q). For details see the appendix in [4℄. Finally notie that, sine A isassumed to be bounded and sine k (t)k = k (0)k, (ii) follows if we an show that thekineti energy k jr (t)j k remains bounded. This is also standard but we give the shortargument anyway: sine R is in�nitesimally bounded with respet to �, there are on-stants 0 < a < 1 and b > 0 suh that kR�k � ak12��k+bk�k for all � 2 H2 = D(Hmol).Hene k� (t)k = 2k(12�� R +R) (t)k � 2kH (t)k+ 2kR (t)k� 2kH (t)k+ ak� (t)k+ 2bk (t)ktogether with kH (t)k = kH (0)k and k (t)k = k (0)k impliesk� (t)k � 2kH (0)k+ 2bk (0)k1� a = C :But then alsok jr (t)j k2 = hr (t); �r (t)i = �h (t);� (t)i � k (t)k k� (t)k � k (0)kC : �The last orollary oinides exatly with the result of [4℄ (see their Corollary 3.2).16
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