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tWe address the question whether Bohmian traje
tories exist for all times.Bohmian traje
tories are solutions of an ordinary di�erential equation involv-ing a wavefun
tion obeying either the S
hr�odinger or the Dira
 equation. Sometraje
tories may end in �nite time, for example by running into a node of thewavefun
tion, where the law of motion is ill-de�ned. The aim is to show, undersuitable assumptions on the initial wavefun
tion and the potential, global exis-ten
e of almost all solutions. We provide a simpler and more transparent proofof the known global existen
e result for spinless S
hr�odinger parti
les and extendthe result to parti
les with spin, to the presen
e of magneti
 �elds, and to Dira
wavefun
tions. Our main new result are 
onditions on the 
urrent ve
tor �eld on
on�guration-spa
e-time whi
h are suÆ
ient for almost-sure global existen
e.MSC (2000): 34A12; 81P99. PACS: 02.30.Hq; 03.65.Ta; 03.65.Pm. Key words:Bohmian me
hani
s; ordinary di�erential equations: existen
e of solutions; equiv-ariant probability distribution; 
urrent ve
tor �eld; S
hr�odinger equation; Dira
equation.1 Introdu
tionWe study a mathemati
al question arising from and relevant to Bohmian me
hani
s[5, 1, 11, 3, 10℄ and its variant based on the Dira
 equation [6, 7℄ (hen
eforth referredto as the \Bohm{Dira
 theory"). In these theories, the motion of parti
les is de�nedby ordinary di�erential equations (ODEs) involving the wavefun
tion, see (3) and (5)below. The mathemati
al question we address is global existen
e, i.e., whether (underwhat 
onditions and how often) the parti
le traje
tories are well de�ned for all times.One obstru
tion to global existen
e is that the velo
ity given by (3) or (5) is singular atthe nodes (i.e., zeros) of the wavefun
tion. In parti
ular, there are traje
tories that arenot de�ned for all times be
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one 
an expe
t to be true is that global existen
e holds for almost all solutions of theequation of motion. As we show, this is in fa
t true for suitable potentials and initialwavefun
tions. As a by-produ
t, one obtains from almost-sure global existen
e theequivarian
e of the j tj2 distributions.The relevan
e of Bohmian me
hani
s to the foundations of quantum me
hani
s arisesfrom the fa
t that a world governed by Bohmian me
hani
s satis�es all probability rulesof quantum me
hani
s [5, 1, 11, 3, 10℄. Bohmian me
hani
s thus provides an example ofa \quantum theory without observers," one in whi
h no referen
e to observers is neededfor the formulation of the theory, and an explanation of the quantum probabilities interms of obje
tive events.The authoritative paper on global existen
e of Bohmian traje
tories is by Berndl etal. [4℄; see also [2℄. We note that the proof given by Holland [15, p. 85℄ is in
orre
t(see [4℄ for details). We also remark that the general existen
e theory for �rst orderODEs with velo
ity ve
tor �elds that are not Lips
hitz but only in some Sobolev spa
e[9℄ does not apply to Bohmian traje
tories. The results of [9℄ hold for ve
tor �eldswith bounded divergen
e, while the divergen
e of a Bohmian velo
ity �eld, su
h as in(3) and (4), typi
ally diverges at nodes of the wave fun
tion. Berndl et al. [4℄ alreadyproved almost-sure global existen
e for suitable potentials and initial wavefun
tions;while they give a proof only for spinless nonrelativisti
 parti
les, a similar proof 
ouldpresumably be devised for Bohmian me
hani
s with spin [1, 3℄ and the Bohm{Dira
theory. We provide here an alternative proof that is shorter and more transparent thanthe proof by Berndl et al. Our result 
overs all 
ases 
overed by their existen
e theorem;in addition, our result also 
overs Bohmian me
hani
s with spin and magneti
 �eldsand Bohm{Dira
 theory; for the latter our result and its proof be
ome parti
ularlysimple thanks to the fa
t that the Bohm{Dira
 velo
ities are bounded by the speed oflight. Even more generally, our result 
an be applied to any Bohm-type dynami
s, aswe formulate 
onditions on the 
urrent ve
tor �eld on 
on�guration-spa
e-time that aresuÆ
ient for almost-sure global existen
e.There are three ways in whi
h a traje
tory 
an fail to exist globally: it 
an approa
h anode of the wavefun
tion (where the equation of motion is not de�ned), it 
an approa
ha singularity of the potential (where the equation of motion need not be de�ned), or it
an es
ape to in�nity in �nite time. Hen
e, the main work of any existen
e proof forBohm-type dynami
s is to show that almost every traje
tory avoids the \bad points"(nodes, singularities, in�nity) in 
on�guration spa
e. The method of Berndl et al. isbased on estimating the probability 
ux a
ross surfa
es surrounding the bad points andpushing these surfa
es 
loser to the bad points; in the limit in whi
h the surfa
es rea
hthe bad points, the 
ux vanishes.The advantage of our approa
h is that it does not require skillful estimates and doesnot involve limits. Instead, our method is based on 
onsidering a suitable nonnegativequantity along the traje
tory that be
omes in�nite when the traje
tory approa
hes abad point; if su
h a quantity has �nite expe
tation, at least lo
ally, then the set of initial
on�gurations for whi
h it be
omes in�nite must be a null set. That the expe
tation belo
ally �nite 
an be paraphrased as an integral 
ondition on the 
urrent ve
tor �eld.To illustrate our method, we brie
y des
ribe an argument of this kind: the totaldistan
e D traveled in 
on�guration spa
e in the time interval [0; T ℄ be
omes in�nite2



when the traje
tory es
apes to in�nity during [0; T ℄. To prove that D is almost surely�nite, we prove that it has �nite expe
tation. A 
al
ulation shows thatED � TZ0 dt ZR3N dq jJ j ; (1)where J is the spatial 
omponent of the 
urrent ve
tor �eld. Thus, the �niteness ofthe right hand side of (1) is a natural 
ondition on the 
urrent ensuring that almost notraje
tory es
apes to in�nity in [0; T ℄.This argument was already sket
hed in [14℄; it was inspired by a similar 
onsiderationin the global existen
e proof of [13℄ for Bell's jump pro
ess for latti
e quantum �eldtheory, another Markov pro
ess depending on a wavefun
tion  t and having distributionj tj2 at any time t; the quantity 
onsidered there was the number of jumps during [0; T ℄.Finally, a related argument was also des
ribed in Remark 3.4.6 of [4℄, see our Remark 5for a 
omparison.Our method is also in a way more elementary than that of Berndl et al.: we donot make use of the nontrivial fa
t that the j j2-probability of 
rossing a surfa
e � in
on�guration-spa
e-time is bounded by R� jd� � jj where d� is the normal on � withlength equal to the area of the surfa
e element and j is the 
urrent ve
tor �eld. Indeed,we use this fa
t only for surfa
es lying in t = 
onst. sli
es of 
on�guration-spa
e-time,for whi
h it is mu
h simpler to prove, see Lemma 1. To be sure, the statement aboutgeneral surfa
es is interesting in its own right and also relevant to other appli
ationssu
h as s
attering theory, but its proof takes several pages in [2℄.While our innovation 
on
erns suÆ
ient 
onditions on the 
urrent for almost-sureglobal existen
e, there remains the fun
tional analyti
 question of deriving these 
ondi-tions from 
onditions on the potential and the initial wavefun
tion. We 
arry this out inseveral example 
ases but 
ontribute nothing original; we employ the same argumentsas Berndl et al. or standard arguments.This arti
le is organized as follows. In Se
tion 2 we give the de�nition of Bohmiantraje
tories for both the S
hr�odinger and the Dira
 equation; we elu
idate the relevan
eof the 
urrent ve
tor �eld to the traje
tories and their distribution. In Se
tion 3 westate and prove our results in terms of a 
urrent ve
tor �eld. In Se
tion 4 we state andprove our results for Bohm{Dira
 theory. Finally, in Se
tion 5 we state and prove ourresults for Bohmian me
hani
s.2 SetupWe brie
y re
all Bohmian me
hani
s and the Bohm{Dira
 theory for a system of Nparti
les. Then we des
ribe what singularities we will allow in the potential. Finally,we point out how for both Bohmian me
hani
s and Bohm{Dira
 theory the traje
toriesarise from a 
urrent ve
tor �eld on 
on�guration-spa
e-time.
3



2.1 Equations of MotionIn Bohmian me
hani
s, the wavefun
tion is a fun
tion  : R � R3N ! C k where Rrepresents the time axis, R3N the 
on�guration spa
e of N parti
les, and C k the valuespa
e of the wavefun
tion representing the internal degrees of freedom of the parti
lessu
h as spin (and possibly quark 
avor et
.).  =  (t; q1; : : : ; qN) evolves a

ording tothe S
hr�odinger equationi~� �t = � NXi=1 ~22mi �rqi � iei
~A(qi)�2 + V (q1; : : : ; qN) ; (2)where mi and ei denote mass and 
harge of the i-th parti
le, 
 the speed of light, Ais the external ele
tromagneti
 ve
tor potential, and V is the potential, whi
h may beHermitian k � k-matrix valued. For parti
les with spin in the presen
e of magneti
�elds, the potential in
ludes a term Pi ~ei2mi
(r �A)(qi) � �i where �i is the ve
tor ofspin operators (Pauli matri
es for spin-12) a
ting on the spin index of parti
le i; thisform of the S
hr�odinger equation is known as the Pauli equation.The law of motion for the traje
tory Qi(t) of the i-th parti
le readsdQidt (t) = ~mi Im � �rqi � iei
~A(qi)�  �  (t; Q(t)); (3)where Q = (Q1; : : : ;QN) is the 
on�guration, and  �� denotes the inner produ
t in C k .The right hand side of (3) is ill-de�ned when and only when either  (t; Q) = 0 (node of ) or  is not di�erentiable at (t; Q). For an expli
it example of a traje
tory that runsinto a node of  , see [4℄.In Bohm{Dira
 theory, the wavefun
tion is a fun
tion  : R�R 3N ! C 4N = (C 4)
Nevolving a

ording to the Dira
 equationi~� �t = � NXi=1 i
~�i � rqi + V (q1; : : : ; qN ) ; (4)where �i denotes the ve
tor of Dira
 alpha matri
es a
ting on the spin index of parti
le i;we have in
luded the mass terms in the potential V , whi
h is Hermitian 4N �4N -matrixvalued. In the presen
e of magneti
 �elds, V in
ludes a term �Pi eiA(qi) ��i.The law of motion for the traje
tory Qi(t) of the i-th parti
le readsdQidt (t) = 
 ��i   �  (t; Q(t)) : (5)The right hand side is ill-de�ned at nodes of  and only there.2.2 Singularities of the PotentialAmong the physi
ally relevant examples of potentials V = V (q1; : : : ; qN) is the Coulombpotential, V (q1; : : : ; qN ) =Xi<j eiejjqi � qjj (6)4



whi
h is singular at 
oin
iden
e 
on�gurations (those with qi = qj for some i 6= j).This motivates us to allow that V is de�ned only on a subset Q � R3N ; e.g. in the
ase of Coulomb intera
tion, Q is the set of non-
oin
iden
e 
on�gurations; in the
ase of an external Coulomb potential generated by 
harges lo
ated at z1; : : : ; zM , Q =(R3nfz1; : : : ; zMg)N . One 
annot expe
t a S
hr�odinger wavefun
tion to be di�erentiableon the singular set R3N n Q of the potential, as exempli�ed by the ground state of thehydrogen atom, whi
h is proportional to exp(��jqj) for suitable � > 0. Thus, the righthand side of (3) may be ill-de�ned on R3N nQ, and we will use di�erentiability of  onlyon Q. For the Coulomb intera
tion and the external Coulomb potential, Q is of theform Q = Rd n[m̀=1S`, where S` are hyperplanes. Our method of proof allows somewhatweaker assumptions:A 
losed set S � Rd is admissible, if there is a Æ > 0 su
h that the distan
e fun
tionq 7! dist(q; S) is di�erentiable on the open set (S + Æ) n S, where S + Æ = fq 2 Rd :dist(q; S) < Æg. Then the 
on�guration spa
e Q iseither Q = Rd or Q = Rd n m[̀=1S`; (7)where S1; : : : ; Sm are admissible sets. For example hyperplanes are obviously admissiblesets.2.3 The Current Ve
tor FieldThere is a 
ommon stru
ture behind the laws of motion (3) and (5): they are of theform dQdt (t) = J(t; Q(t))j0(t; Q(t)) (8)where j = (j0; J) is the 
urrent ve
tor �eld on 
on�guration-spa
e-time R �Q, de�nedby j = �j j2; ~m1 Im ��rq1 � ie1
~A(q1)� ; : : : ; ~mN Im ��rqN � ieN
~ A(qN )� � (9)in the S
hr�odinger 
ase andj = �j j2; 
  ��1 ; : : : ; 
  ��N � (10)in the Dira
 
ase. Provided that  is suÆ
iently di�erentiable, j has the followingproperties, whi
h we take to be the de�ning properties of a 
urrent ve
tor �eld :j = (j0; J) is a C1 ve
tor �eld on R �Q (11a)div j = dX�=0 ��j� = 0 (11b)j0 > 0 whenever j 6= 0 (11
)ZQ dq j0(t; q) = 1 8t 2 R : (11d)5



We will 
all points in N = f(t; q) 2 R � Q : j(t; q) = 0g the nodes of j. We writeNt = fq 2 Q : j(t; q) = 0g for the set of nodes at time t.Let Qq(t) denote the maximal solution of (8) starting in q 2 Q n N0 de�ned fort 2 (��q ; �+q ). It is a reparameterization of an integral 
urve of j, see Remark 8 fordetails. We will formulate our existen
e theorem �rst purely in terms of the 
urrentve
tor �eld, and then apply our result to the 
urrents (9) and (10).2.4 Equivarian
eWe now explain the notion of equivarian
e, and what needs to be shown to prove equiv-arian
e. We �rst remark that equivarian
e is a 
ru
ial property of Bohm-type dynami
s,in fa
t the basis of the statisti
al analysis of Bohmian me
hani
s [11℄ and thus the basisof the agreement between the predi
tions of Bohmian me
hani
s and the pres
riptionsof quantum me
hani
s. We also remark that, while full equivarian
e will be a 
onse-quen
e of the existen
e result, a kind of partial equivarian
e 
an be obtained before, seeLemma 1 below; our existen
e proof will exploit this partial equivarian
e.Before we de�ne equivarian
e, we introdu
e some notation. Let A (Q) denote theBorel �-algebra of Q. Let �t be the measure on A (Q) with density j0(t) relative toLebesgue measure, �t(B) = ZB dq j0(t; q) (12)for all B 2 A (Q). By (11d), �t is a probability measure; in Bohmian me
hani
s andBohm{Dira
 theory, �t is the j (t)j2 distribution. We introdu
e a formal 
emetery
on�guration } and set Qq(t) := } for all t =2 (��q ; �+q ), respe
tively, if (0; q) is a node ofj, Qq(t) := } for all t 6= 0. Let 't : Q ! Q [ f}g, 't(q) = Qq(t), denote the 
ow mapof (8), and let ' : R�Q ! R� (Q[f}g) be the 
ow map on 
on�guration-spa
e-timede�ned by '(t; q) = (t; 't(q)). Let Qt = fq 2 Q n N0 : ��q < t < �+q g = '�1t (Q).Standard theorems (see, e.g., Chapter II of [16℄) on ODEs imply that ' is C1 on themaximal domain f(t; q) 2 R � (Q nN0) : 't(q) 6= }g, whi
h is open; in parti
ular, alsoQt is an open set.Let �t be the distribution of Qq(t) if q has distribution �0, i.e.,�t = �0 Æ '�1t : (13)One says that the family of measures �t is equivariant on the time interval I if �t = �tfor all t 2 I. (The interval I may be �nite or in�nite.)Let It := 't(Qt) = 't(Q) \ Q be the image of the 
ow map in Q at time t. Thefollowing lemma formulates \partial equivarian
e."Lemma 1 Let j = (j0; J) satisfy (11a), (11b), and (11
). Then for all B 2 A (Q) andall t 2 R, �t(B) = �t(B \It) : (14)We know of two ways of proving this lemma, requiring 
omparable e�ort. Oneproof, given in [4℄ and in more detail in [2℄, goes as follows. �t has a density that obeysa 
ontinuity equation, and j0 satis�es the same 
ontinuity equation. By uniqueness of6



solutions of this linear partial di�erential equation, one obtains that j0(t) 
oin
ides withthe density of �t on It. An alternative proof, whi
h we give below, is based on applyingthe Ostrogradski{Gauss integral formula to j on a 
ylinder formed by the traje
toriesover a polyhedron in Q.Proof of Lemma 1. Without loss of generality, t > 0. For any d-
hain of singularsimpli
es E in Qt, the 
ylinder F formed by the traje
tories over E, F = '([0; t℄� E),is a d + 1-
hain in 
on�guration-spa
e-time R � Q. Applying the Ostrogradski{Gaussintegral formula to j and F , we obtain0 (11b)= ZF dt dq div j = Z�F d� � jwhere d� is the outward pointing surfa
e normal with length jd�j equal to the area ofthe surfa
e element. The surfa
e �F of the 
ylinder 
onsists of three parts: the mantle'([0; t℄ � �E), the lid '(ftg � E), and the bottom '(f0g � E). The integral over themantle vanishes as the mantle 
onsists of integral 
urves of j and is thus tangent to j.The integral over the lid is R't(E) dq j0(t; q) and that over the bottom is � RE dq j0(0; q).Therefore, we obtain0 = �t('t(E))� �0(E) = �t('t(E))� �t('t(E)) :Any two measures that agree on the d-
hains (and thus in parti
ular on the 
ompa
tre
tangles) agree on a \-stable generator of the �-algebra A (Qt) and are, by a standardtheorem, equal. Sin
e 't is a bije
tion Qt ! It, we obtain (14). �What remains to be shown to prove equivarian
e is that �t(Q nIt) = 0.3 A General Existen
e TheoremLet B(Q) denote the set of all bounded Borel sets in Q.Theorem 1 Let Q � Rd be a 
on�guration spa
e as de�ned in (7) and let j = (j0; J)be a 
urrent as de�ned in (11). Let T > 0 and let 't : Q ! Q [ f}g denote the 
owmap of (8). Suppose that8B 2 B(Q) : TZ0 dt Z't(B)nf}gdq ����� ��t + Jj0 � rq� j0(t; q)���� <1 ; (15)8B 2 B(Q) : TZ0 dt Z't(B)nf}gdq ����J(t; q) � qjqj���� <1 ; (16)and, if Q = Rd n [`S`, in addition that for every ` 2 f1; : : : ; mg,9Æ > 0 8B 2 B(Q) : TZ0 dt Z't(B)nf}gdq 1�q 2 (S` + Æ)� jJ(t; q) � e`(q)jdist(q; S`) <1 : (17)7



Here dist(q; S`) is the Eu
lidean distan
e of q from S` and e`(q) = �rqdist(q; S`) is theradial unit ve
tor towards S` at q 2 Q. Re
all that for Æ suÆ
iently small the distan
efun
tion is di�erentiable on S` + Æ.Then for almost every q 2 Q relative to the measure �0(dq) = j0(0; q) dq, the solu-tion of (8) starting at Q(0) = q exists at least up to time T , and the family of measures�t(dq) = j0(t; q) dq is equivariant on [0; T ℄. In parti
ular, if (15), (16) and, if appropri-ate, (17) are true for every T > 0, then for �0-almost every q 2 Q the solution of (8)starting at q exists for all times t � 0.Remarks:1. We 
an formulate the meaning of ea
h of the 
onditions (15), (16), and (17) asfollows. If (15) holds, then �0-almost no traje
tory approa
hes a node during[0; T ℄. If (16) holds, then �0-almost no traje
tory es
apes to 1 during [0; T ℄. If(17) holds, then �0-almost no traje
tory approa
hes a point in the singular set[m̀=1S` during [0; T ℄.2. To obtain existen
e also for negative times, one 
an apply Theorem 1 to the timereversed 
urrent �|(t; q) = �j0(�t; q);�J(�t; q)� : (18)The integral 
urves of �| are the time reverses of the integral 
urves of j. Obviously,with j also �| satis�es (11). If �| satis�es (15), (16), and, if appropriate, (17) forT > 0, we obtain almost-sure global existen
e of Qq(t) on [�T; 0℄.3. It suÆ
es to 
onsider in (15), (16) and (17) for the sets B instead of all boundedBorel sets just the balls around the origin. This is be
ause enlarging B 
annotshrink the integral. For the same reason, it suÆ
es to integrate over QnNt insteadof the not easily a

essible sets 't(B) n f}g.4. A
tually the proof of Theorem 1 works in the same way with the following slightlyweaker 
onditions. Instead of (16) it suÆ
es to assume that8B 2 B(Q) 9R <1 : TZ0 dt Z't(B)nf}gdq 1(jqj > R) ����J(t; q) � qjqj���� <1 ;and (17) 
an be repla
ed by8B 2 B(Q) 9Æ > 0 : TZ0 dt Z't(B)nf}gdq 1�q 2 (S` + Æ)� jJ(t; q) � e`(q)jdist(q; S`) <1 :We 
hose to state the theorem with the stronger assumption to simplify the pre-sentation and be
ause the weaker assumptions will not be used in the following.Proof of Theorem 1. Let Qq(t) be the maximal solution of (8) starting in q, as des
ribedin Se
tion 2.3. Sin
e we deal only with positive times in the following, we write �q for�+q . 8



There are three ways in whi
h Qq(t) 
an fail to exist globally: the traje
tory 
anapproa
h a node, approa
h a point on the singular set [S`, or es
ape to in�nity in�nite time. More pre
isely, if q =2 N0 and �q < 1 there exists an in
reasing sequen
e(tn)n2N with tn ! �q su
h that either there is x 2 N�q [ Sm̀=1 S` with Qq(tn) ! x orjQq(tn)j ! 1.To see this, suppose that �q < 1 and that su
h a sequen
e did not exist. ThenQq := f(t; Qq(t)) : t 2 (0; �q)g � (R � Q) nN would remain bounded and boundedaway from the 
omplement (R � [S`) [N . Sin
e (R � Q) nN is open, there wouldbe a 
ompa
t set K � (R � Q) nN su
h that Qq � KÆ, with KÆ the interior of K.However, the ve
tor �eld (1; J=j0) is C1 on (R �Q) nN and thus uniformly Lips
hitzon K. Therefore, all of its maximal integral 
urves either exist for all times or hit theboundary of K, in 
ontradi
tion to the hypotheses.Let now q =2 N0 and �q � T . If there is x 2 N�q and (tn) su
h that Qq(tn) ! x,then j0(tn; Qq(tn)) ! 0. Hen
e, the total variation of t 7! log j0(t; Qq(t)) up to time Tdiverges, i.e., Lq =1 whereLq = min(T;�q)Z0 dt ��� ddt log j0�t; Qq(t)���� for q 2 Q nN0 : (19)We now show that L1 := fq 2 Q nN0 : Lq =1g is a �0-null set. For this it suÆ
es toshow that for any bounded set B 2 B(Q), B \ L1 is a �0-null set. For this in turn, itsuÆ
es that the average of Lq over B relative to the measure �0 be �nite:ZB dq j0(0; q)Lq = ZB dq j0(0; q) min(T;�q)Z0 dt �� ddtj0�t; Qq(t)���j0(t; Qq(t)) =[the order of integration 
an be 
hanged sin
e the integrand is nonnegative℄= TZ0 dt ZB dq j0(0; q) 1(�q > t) �� ddtj0�t; Qq(t)���j0(t; Qq(t))= TZ0 dt Z't(B)nf}g�t(dq0) ��(�=�t + Jj0 � rq0)j0(t; q0)��j0(t; q0) =[by Lemma 1℄ = TZ0 dt Z't(B)nf}gdq0 ��(�=�t + Jj0 � rq0)j0(t; q0)�� (15)< 1:This shows �0(L1) = 0 and thus that the solution Qq(t) of (8) �0-almost surely doesnot approa
h a node during [0; T ℄.Now we 
onsider the 
ases that eitherlimn!1 jQq(tn)j =1 :9



or 9 x 2 [m̀=1S` : Qq(tn)! x :Hen
e, for su
h initial 
onditions either the total variation of t 7! jQq(t)j is in�nite, i.e.,Dq =1 where Dq = min(T;�q)Z0 dt ��� ddt jQq(t)j��� for q 2 Q nN0 ;or the total variation of t 7! log dist(Qq(t); S`) restri
ted to S` + Æ is in�nite for some` 2 f1; : : : ; mg and any Æ > 0, in parti
ular for the one in (17), i.e., Vq;` =1 whereVq;` = min(T;�q)Z0 dt 1(Qq(t) 2 (S` + Æ)) ��� ddt log dist(Qq(t); S`)��� for q 2 Q nN0 :Therefore it suÆ
es to show that D1 := fq 2 Q nN0 : Dq = 1g and V1;` := fq 2Q nN0 : Vq;` =1g are �0-null sets, and for this we pro
eed as for L1.Let B 2 B(Q). Then (8), followed by exa
tly the same arguments as for Lq, showsthat lo
al expe
tations of Dq are �nite, i.e.ZB dq j0(0; q)Dq = TZ0 dt Z't(B)nf}gdq0 ����J�t; q0� � q0jq0j ���� (16)< 1 :Hen
e �0(D1) = 0. For lo
al expe
tations of Vq;` we obtain, again with (8) and Lemma 1ZB dq j0(0; q)Vq;` = ZB dq j0(0; q) min(T;�q)Z0 dt 1(Qq(t) 2 (S` + Æ)) ����� _Qq(t) � e`(Qq(t))dist(Qq(t); S`) �����= TZ0 dt Z't(B)nf}gdq0 1(q0 2 (S` + Æ)) ����J(t; q0) � e`(q0)dist(q0; S`) ���� (17)< 1 :Hen
e also �0(V1;`) = 0, 
on
luding the existen
e part of the theorem.It remains to show equivarian
e. Sin
e the probability of rea
hing } before time Tvanishes, we have �t(Q) = 1 for all t 2 [0; T ℄. Sin
e �t � �t by Lemma 1 and �t(Q) = 1by (11d), we must have �t = �t, whi
h is equivarian
e. �Remarks.5. A reasoning 
losely related to our method of proof is also applied in [4℄, Re-mark 3.4.6. There, an expression analogous to (15) is used to 
ontrol the proba-bility of rea
hing an "-neighborhood of N before letting " ! 0. Apart from thefa
t that the argument is applied there only to the nodes and not to singularitiesand in�nity, it is also unne
essarily 
ompli
ated, mainly be
ause it 
onsiders an"-neighborhood instead of fully exploiting the integral (19).10



6. The proof of equivarian
e was the only pla
e where we used the property (11d)of a 
urrent ve
tor �eld. The existen
e statement of Theorem 1 holds as well if jsatis�es (11) ex
ept for (11d); in parti
ular, we may allow �t(Q) =1.7. Here is another equivarian
e result that does not use (11d): Let Q be a 
on-�guration spa
e as in (7) and let j satisfy (11) ex
ept for (11d). Suppose thatalmost-sure global existen
e holds in both time dire
tions, starting from any time.Then the family of measures �t is equivariant on R.To see this, note that for equivarian
e we need to show merely that Q n It is a�t-null set, or, in other words, that for �t-almost every q 2 Q the integral 
urveof j starting in (t; q) rea
hes ba
k in time to time 0. But this is immediate fromalmost-sure global existen
e in the other time dire
tion, starting at time t.Thus, if both j and �| as de�ned in (18) and their time translates satisfy (15), (16),and, if appropriate, (17) for all T > 0, we obtain equivarian
e without (11d).8. Condition (16) 
an be repla
ed by the 
onditionthe �rst order derivatives of J are bounded on [0; T ℄�Q : (20)To show this, we show that under this assumption every unbounded solution Qq(t)with �q � T has Lq =1, with Lq de�ned in (19).To see this, �rst note that the solutions of (8) are reparameterizations of theintegral 
urves of j. In more detail, let 
q(s) = �
0q (s);�q(s)� be the uniquemaximal integral 
urve to j, d
q(s)ds = j(
q(s)) ; (21)starting in (0; q) 2 R� (QnN0) and de�ned for s 2 (��q ; �+q ). Sin
e j0 > 0 outsidenodes, 
0q (s) is monotoni
ally in
reasing, and hen
e the maps 7! tq(s) = 
0q (s) = sZ0 d~s d
0qd~s = sZ0 d~s j0(
q(~s))is invertible on its image (��q ; �+q ), where ��q = lims!��q tq(s), with inverse sq(t).Sin
e ddt�q(sq(t)) = J�
(sq(t))�j0�
(sq(t))� ;Qq(t) = �q(sq(t)) is the unique maximal solution of (8) with Qq(0) = q; it isde�ned for t 2 (��q ; �+q ).Now suppose that jQq(tn)j ! 1 for some tn ! �+q . Then also j�q(sq(tn))j ! 1.Sin
e the derivatives of J are bounded, there are 
onstants A, R > 0 su
h thatjJ(t; q)j � Ajqj for all t 2 [0; T ℄ and all q 2 Q with jqj > R. Sin
e d�q=ds =J(
q(s)), it follows that j�q(s)j � max(j�q(0)j; R) eAs; thus, an integral 
urve of j11




annot es
ape to spatial in�nity in a �nite interval of the parameter s; in otherwords, �+q =1. But then �+q = Z 10 ds j0(
q(s)) <1implies the existen
e of an in
reasing sequen
e (sn) with sn ! 1 su
h thatj0(
q(sn))! 0, and therefore Lq =1.4 Global Existen
e of Bohm{Dira
 TheoryThe Dira
 Hamiltonian for N parti
les isHD = � NXi=1 i
~�i � rqi + V (q1; : : : ; qN) ;where we assume a nonsingular V 2 C1(R3N ; Herm(C 4N )). A

ording to [8℄, HD isessentially self-adjoint on C10 (R3N ; C 4N ) and we denote by HD the unique self-adjointextension.Sin
e the Dira
 matri
es � have eigenvalues �1, the velo
ities in (5) are boundedby 
. Consequently, the Dira
 
urrent (10) satis�es jJ j � 
pN j0. This fa
t makes theproof of global existen
e parti
ularly simple, as expressed in the following 
orollary toTheorem 1.Corollary 1 Let Q = Rd and let j = (j0; J) be a 
urrent as de�ned in (11). Supposethat there is a global bound on velo
ities, i.e., a 
onstant 
 > 0 su
h that jJ j � 
 j0.Then for �0-almost all q 2 Rd , the solution of (8) starting at Q(0) = q exists for alltimes, and the family of measures �t is equivariant.Proof of Corollary 1. We show that assumptions (15) and (16) of Theorem 1 aresatis�ed for any T > 0. The key observation is that due to the bound on velo
ities,bounded sets in 
on�guration spa
e stay bounded under the 
ow. More expli
itly, forany bounded set B 2 B(Rd) 
ontained in, say, the ball Br of radius r > 0 around theorigin, 't(B) n f}g will be 
ontained in Br+
t and thus in Br+
T provided t 2 [0; T ℄.Now ��(�t + Jj0 � rq)j0�� � ���tj0�� + 
��rqj0��, and the fun
tions jJ j, ���tj0��, and 
��rqj0��are 
ontinuous and therefore bounded on the 
ompa
t set [0; T ℄ � Br+
T . Hen
e theintegrals in (15) and (16) are �nite. This implies existen
e for all positive times. Fornegative times apply the same argument to the time-reversed 
urrent �|, for whi
h thesame velo
ity bound holds. �Applying Corollary 1 to Bohm{Dira
 theory, we obtain global existen
e of Bohm{Dira
 traje
tories under very general 
onditions.Theorem 2 Let V 2 C1(R3N ; Herm(C 4N )) and  (t) = e�itHD (0) with  (0) 2C1(R3N ; C 4N ) \ L2(R3N ; C 4N ) and k (0)k = 1.Then the solution Qq(t) = (Q1(t); : : : ;QN(t)) of (5) with Qq(0) = q exists globallyin time for almost all q 2 R3N relative to the measure �0(dq) = j (0; q)j2dq, and thej (t)j2 distributions are equivariant. 12



Proof. A

ording to [8℄, for  (0) 2 C10 (R3N ; C 4N ) one has  (t) 2 C10 (R3N ; C 4N ) and (t; q) 2 C1(R � R3N ; C 4N ). But then linearity and the �nite propagation speed(Proposition 1.1 in [8℄) imply that  (t; q) 2 C1(R � R3N ; C 4N ) also for  (0) 2C1(R3N ; C 4N ) \ L2(R3N ; C 4N ). Hen
e, the Dira
 
urrent (10) satis�es (11). Sin
ejJ j � 
pN j0, Corollary 1 implies the theorem. �Corollary 2 Let now Q = Rd n [m̀=1S`, where S` is a hyperplane with 
odimension � 2for ` = 1; : : : ; m, and let j = (j0; J) be a 
urrent as de�ned in (11). Suppose that thereis a global bound 
 on velo
ities, jJ j � 
 j0, and that J and the �rst order derivatives ofj0 are bounded on bounded sets.Then for �0-almost all q 2 Rd , the solution of (8) starting at Q(0) = q exists for alltimes, and the family of measures �t is equivariant.Proof. First note that Rd n Q is a Lebesgue-null set and hen
e also a �0-null set. Forq 2 Q we apply Theorem 1. The 
onditions (15) and (16) of Theorem 1 follow as in theproof of Corollary 1 using the fa
t that J and the derivatives of j0 are lo
ally bounded.To 
he
k (17), let d` be the dimension of S` and assume without loss of generalitythat S` 
ontains the origin. Then with jJ j � C on Bdr+
T , the ball of radius r + 
Taround the origin in Rd , and Bdr+
T � Bd`r+
T �Bd�d`r+
T we �nd thatZ T0 dt ZBdr+
T dq jJ(t; q)jdist(q; S`) � T ZBd`r+
T dx ZBd�d`r+
T dy Cjyj <1 : �5 Global Existen
e of Bohmian Me
hani
sWe now apply Theorem 1 to Bohmian me
hani
s and 
onsider the abstra
t HamiltonianH0 = �12 �m� 12 �rq � iA(q)��2 1Ck + V (q) ; D(H0) = C10 (Q; C k) ; (22)where, for the moment, A 2 H1lo
(Rd ;Rd) and V 2 L2lo
(Q;Herm(C k )). The massmatrix m = diag(m1; : : : ; md) has positive entries mi > 0. These 
onditions assurethat H0 is well de�ned and symmetri
 on C10 (Q; C k). Sin
e H0 
ommutes with 
omplex
onjugation, H0 has at least on self-adjoint extension. We also assume that Q = Rd n[m̀=1S` where ea
h S` is a (d � 3)-dimensional hyperplane in Rd . As to be explainedin the example below, for d = 3N the 
oin
iden
e set of N parti
les moving in R3 hasexa
tly this stru
ture and therefore singular pair-potentials like the Coulomb potentialare in
luded. In these abstra
t terms the Bohmian equation of motion readsdQdt (t) = m�1Im � �rq � iA�  �  (t; Q(t)) : (23)13



Theorem 3 Let H be a self-adjoint extension of H0 as in (22) with domain D(H).Suppose that for some  (0) 2 D(H) with k (0)k = 1 the solution  (t) = e�itH (0) ofthe S
hr�odinger equation satis�es(i)  2 C2(R �Q; C k ),(ii) for every T > 0 there is a 
onstant CT <1 su
h thatZ T�T dt � k jr (t)j k2 + k jA (t)j k2 + kA � r (t) k2 � < CT :Then the solution Qq(t) of (23) with Qq(0) = q exists globally in time for almost allq 2 Rd relative to the measure �0(dq) = j (0; q)j2dq, and the j (t)j2 distributions areequivariant.Remark.9. Note that 
ondition (i) in Theorem 3 is typi
ally satis�ed only if the potentials Aand V are suÆ
iently smooth on Q, more than we required after (22). We de
idedto state the 
ondition in terms of  sin
e the exa
t type of smoothness requiredfor A and V depends on, among other fa
tors, the dimension d.Proof of Theorem 3. First note that Rd n Q is a Lebesgue-null set and hen
e also a�0-null set. For q 2 Q we apply Theorem 1. A

ording to Se
tion 2.3 and by virtue of(i), the S
hr�odinger 
urrentj(t; q) = � �(t; q) (t; q); m�1Im �(t; q)(rq � iA(q)) (t; q)�satis�es (11). We now 
he
k (15), (16) and (17), in order to prove existen
e for positivetimes. For negative times one 
on
ludes analogously by applying exa
tly the samearguments to the time reversed 
urrent.With  (t) = e�itH (0), the Cau
hy{S
hwarz inequality, and (ii) we obtainZQ dq ���tj0(t; q)�� = ZRd dq j�t �(t; q) (t; q)j � 2 ZRd dq j �(t; q)H (t; q)j� 2kH (t)k = 2kH (0)k :For the se
ond term in (15) we �nd, after a straightforward 
omputation involvingCau
hy{S
hwarz �rst on C k and then on L2(Rd) and �nally on L2([0; T ℄), thatTZ0 dt ZQnNtdq ���� Jj0 � rj0(t; q)���� � 1m0 TZ0 dt ZRd dq �jr (t; q)j2 + j (t; q)j jA(q) � r (t; q)j�� CT +pTCTm0 ;where m0 = minfm1; : : : ; mdg. Hen
e, (15) holds. Analogously (16) follows fromTZ0 dt ZQ dq jJ(t; q)j � TZ0 dt 1m0 ZRd dq j (t; q)j (jr (t; q)j+ jA(q) (t; q)j) � pTCTm0 :14



We now 
ome to (17). Sin
e S` is a (d�3)-dimensional hyperplane, it 
an be writtenas S` = fq 2 Rd : y`(q) = a`g with y` : Rd ! R3 , q 7! (q � y1̀; q � y2̀; q � y3̀) where y1̀, y2̀,y3̀ are 3 orthogonal unit ve
tors normal to the hyperplane S` and a` 2 R3 a 
onstant.The distan
e to the hyperplane is given by dist(q; S`) = jy`(q)� a`j.To prove (17) for Æ =1, we use the generalized Hardy inequality introdu
ed in [4℄,Equation (25). It states that for all � 2 H1(Rd ; C ), the �rst Sobolev spa
e,ZRd dq j�(q)j24jy`(q)� a`j2 � ZRd dq jr�(q)j2 :Hen
e, TZ0 dt ZQ dq jJ(t; q) � e`(q)jdist(q; S`) � 1m0 TZ0 dt ZRd dq j �(t; q)(r� iA(q)) (t; q)jjy`(q)� a`j� 1m0 TZ0 dt ZRd dq j (t; q)j(jr (t; q)j+ jA(q) (t; q)j)jy`(q)� a`j� 1m0 TZ0 dt�ZRd dq j (t; q)j2jy`(q)� a`j2� 12 (k jr (t)j k+ k jA (t)j k)� 1m0 TZ0 dt (2k jr (t)j k2 + k jr (t)j k k jA (t)j k) � 3CTm0 : �We shall not try to verify the assumptions of Theorem 3 under as general as possible
onditions on A and V . Instead we 
onsider two examples where they 
an be 
he
kedwithout too mu
h e�ort.Our �rst example 
on
erns a mole
ular system in external �elds. More pre
iselywe 
onsider N ele
trons in R3 with 
on�guration q = (q1; : : : ; qN) 2 R3N intera
tingthrough Coulomb potentials Vel(q) = N�1Xi=1 NXj=i+1 1jqi � qjjin the ele
tri
 potential Vnu(q) = � NXi=1 MXj=1 Zjjqi � zjjof M stati
 nu
lei lo
ated at zj 2 R3 with 
harges Zj, j = 1; : : : ;M . Furthermore weallow for an external magneti
 �eld B(x) = r�A(x) with A 2 C1(R3 ;R3) su
h thatr �A = 0 and B and A are bounded. The Hamiltonian of the system thus isHmol =  �12 NXi=1 �rqi + iA(qi)�2 + Vel(q) + Vnu(q)!1(C 2 )
N � NXi=1 B(qi) � �i (24)15



with domainD(Hmol) = H2(R3N ; (C 2)
N). Here �i is the ve
tor of Pauli matri
es a
tingon the spin index of parti
le i. It is well known that Vel, Vnu, and rq are in�nitesimallybounded with respe
t to �q. Hen
e Hmol = �12�q +R withR :=  �12 NXi=1 �2iA(qi) � rqi �A(qi)2�+ Vel(q) + Vnu(q)!1(C 2 )
N � NXi=1 B(qi) � �iis self-adjoint by virtue of Kato's theorem.Corollary 3 Let  (t) = e�itHmol (0) with  (0) 2 C1(Hmol) = \1n=1D((Hmol)n) andk (0)k = 1. Then the Bohmian traje
tories Qq(t) exist globally in time for almost allq 2 R3N relative to the measure j (0; q)j2dq, and the j (t)j2 distributions are equivariant.Proof. First note that Hmol is of the form (22) with d = 3N and k = 2N . The 
on�gu-ration spa
e of the system isQ = R3N n ��[N�1i=1 [Nj=i fq 2 R3N : qi = qjg� [ �[Ni=1 [Mj=1 fq 2 R3N : qi = zjg�� ;where the N(N � 1)=2 ele
tron{ele
tron and the NM ele
tron{nu
leus 
oin
iden
e hy-perplanes are all (3N � 3)-dimensional. As remarked above, Hmol is self-adjoint onH2(R3N ; (C 2)
N) and thus satis�es the hypotheses of Theorem 3. Hen
e it suÆ
es to
he
k that  (t) satis�es the hypotheses (i) and (ii) of Theorem 3. As for (i), note thatall potentials in (24) are C1 on Q. Then methods of ellipti
 regularity 
an be appliedto show that for  (0) 2 C1(Hmol) the solution of the S
hr�odinger equation satis�es 2 C1(R � Q). For details see the appendix in [4℄. Finally noti
e that, sin
e A isassumed to be bounded and sin
e k (t)k = k (0)k, (ii) follows if we 
an show that thekineti
 energy k jr (t)j k remains bounded. This is also standard but we give the shortargument anyway: sin
e R is in�nitesimally bounded with respe
t to �, there are 
on-stants 0 < a < 1 and b > 0 su
h that kR�k � ak12��k+bk�k for all � 2 H2 = D(Hmol).Hen
e k� (t)k = 2k(12�� R +R) (t)k � 2kH (t)k+ 2kR (t)k� 2kH (t)k+ ak� (t)k+ 2bk (t)ktogether with kH (t)k = kH (0)k and k (t)k = k (0)k impliesk� (t)k � 2kH (0)k+ 2bk (0)k1� a = C :But then alsok jr (t)j k2 = hr (t); �r (t)i = �h (t);� (t)i � k (t)k k� (t)k � k (0)kC : �The last 
orollary 
oin
ides exa
tly with the result of [4℄ (see their Corollary 3.2).16



Corollary 4 In (22) let k = 1, A = 0 and V = V1 + V2 2 C1(Q; C ), where V1is bounded below and V2 is �12�-form bounded with relative bound < 1. Then theform sum H = �12� + V is a self-adjoint extension of H0 and for  (t) = e�itH (0)with  (0) 2 C1(H) = \1n=1D(Hn), k (0)k = 1, the Bohmian traje
tories Qq(t) existglobally in time for almost all q 2 Rd relative to the measure j (0; q)j2dq, and the j (t)j2distributions are equivariant.Proof. For the statement about the form sum see [12℄. Again, as shown in the appendix of[4℄, ellipti
 regularity implies that  2 C1(R�Q). Hen
e, in order to apply Theorem 3it suÆ
es to show that that k jr (t)j k remains bounded. This follows by an argumentanalogous to the one given in the proof of Corollary 3. For the details see the proof ofCorollary 3.2 in [4℄. �A
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