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In this paper we shall be onerned with the following laim: One we deal withpartiles with spin in Bohmian mehanis, we are more or less obliged to regard thequantum state of any system (exept the universe) as given by a density matrix, whihthen has preisely the same dynamial signi�ane as the wave funtion. The aim ofthis paper is to elaborate on this statement, as it is far from obvious in what sense adensity matrix ould represent the dynamial state of a Bohmian system. In fat, ourstatement is in sharp ontrast with that of Bell [2℄:So in the de Broglie{Bohm theory a fundamental signi�ane is given to thewave funtion, and it annot be transferred to the density matrix.Although this is orret for spin 0 partiles, the situation hanges as soon as we onsiderspin or any other internal degree of freedom. To appreiate this point, it is essential todistinguish between di�erent roles that density matries an play in Bohmian mehanis(or, for that matter, in other versions of quantum mehanis). In one of these roles, thedensity matrix is of a purely epistemi harater, i.e., it expresses ignorane, whereasin another role, a role that has as yet not been disussed in the literature and of whihBell was obviously not aware, a density matrix is of diret signi�ane to the Bohmianpartile motion, as the \onditional density matrix."We distinguish in this paper �ve roles of density matries: the statistial, redued,ombined (redued statistial), onditional, and fundamental density matrix. We ex-plain the relations between them and their relevane to the partile motion. We explainin partiular the new notion of onditional density matrix and its relevane to Bohmianmehanis.A partiular onsequene of our disussion is that the same system an, at one andthe same time, have a onditional density matrix and, say, a di�erent redued densitymatrix. Thus, when speaking about \the" density matrix of a system, it is neessaryto speify whether one refers to the redued or the onditional density matrix. Thisis new: among the traditional types of density matries, it is always lear (exept forthe ambiguity in some ases as to whether one should onsider ollapsed or unollapsedwave funtions) whih type of density matrix is relevant to a given system, and whatthis density matrix is|so that it is possible to speak of the density matrix of the system.The fat that a system an have two di�erent density matries at the same time is whywe have to fous on the role that a density matrix plays for the theoretial treatment ofa system, sine that is the only way to understand how more than one density matrixan be relevant to the same system.2 Bohmian MehanisWe begin by briey realling Bohmian mehanis. It is a theory of point partilesmoving in physial spae R3 . For the sake of onreteness, onsider a universe of Nnonrelativisti partiles whose positions we denote by Q1(t); : : : ;QN(t). They move2



aording to Bohm's equation of motion,dQjdt = ~mj Im �rj  � (Q1; : : : ;QN) (1)where mj is the mass of partile j,  : R3N ! C k is the wave funtion, and  � denotesthe salar produt in C k . In the ase k = 1 (spin 0), (1) simpli�es todQjdt = ~mj Imrj  (Q1; : : : ;QN) : (2) evolves aording to the Shr�odinger equationi~� �t = � NXj=1 ~22mj�j + V  =: Ĥ (3)where the potential V may take values in the k�k Hermitian matries. The on�gurationQ(t) = (Q1(t); : : : ;QN(t)) is random and j (t)j2-distributed at every time t,Prob(Q(t) 2 dq) = j (q; t)j2dq : (4)This is possible beause of an equivariane property of (1) and (3): if (4) holds att = 0 then it also holds at every other time. This follows from the following ontinuityequation, a onsequene of (3): �j j2�t = � div (j j2v) (5)where v is the veloity �eld, i.e., the (time-dependent) vetor �eld on R3N whose j-thomponent is the right hand side of (1). We remark that the state at time t of a Bohmianuniverse is desribed by the pair (Q(t);  (t)).What we desribe in this paper about onditional density matries applies not only toonventional nonrelativisti Bohmian mehanis as just desribed, but also to Bohmianmehanis on urved manifolds [16, 9℄, to Bohm's trajetories for Dira wave funtions(see [6, p. 272℄ and [8℄), to the photon trajetories of [17℄, to the jump proesses of [12℄,and, in a sense that we will explain more fully in Setion 7.4, also to theories with avariable number of partiles [10, 1, 11, 12℄.3 Three Density MatriesIf H denotes the Hilbert spae of a system S, a density matrix for S is a positive,(bounded) self-adjoint operator Ŵ : H ! H with tr Ŵ = 1. If, as in Bohmian mehan-is, H is a spae of wave funtions on a on�guration spae Q, H = L2(Q; C k ), then adensity matrix an also be viewed as a funtion W : Q�Q ! End(C k ) (where End(C k )3



denotes the spae of linear mappings (endomorphisms) C k ! C k ). The translatingrelations between the two views, operator on H and funtion on Q�Q, are�Ŵ �s(q) = ZQ dq0Xs0 W ss0(q; q0) s0(q0) and (6a)W ss0(q; q0) = hq; sjŴ jq0; s0i (6b)where s and s0 index the standard basis of C k . The funtion W has the propertiesW (q0; q) = W �(q; q0) (7a)0 � ZQ dq ZQ dq0Xs;s0  �s(q)W ss0(q; q0) s0(q0) <1 8 2 H (7b)ZQ dq trCk W (q; q) = 1; (7)where W � denotes the adjoint endomorphism in C k , whose matrix is the onjugatetransposed. Conversely, the properties (7) are suÆient forW to de�ne a density matrixŴ . A partiular onsequene of (7a) is that on the diagonal of Q � Q, W (q; q) is aHermitian endomorphism (and thus trCk W (q; q) 2 R), and a partiular onsequene of(7b) is that trCk W (q; q) � 0 8q 2 Q: (8)There are four ways in whih density matries an arise from Bohmian or quantummehanis. Three of them are well known; we briey reall them anyway.1. First, by statistial mixture. Suppose the wave funtion  of a system is randomwith probability distribution �(d ) on the unit sphere S (H) of the Hilbert spaeH. The assoiated statistial density matrix isŴstat = ZS (H) �(d ) j ih j (9a)respetively Wstatss0(q; q0) = ZS (H) �(d ) s(q) �s0(q0) : (9b)This density matrix was �rst onsidered in [19℄. Note that di�erent distributions �may lead to the same density matrix. (For example, the density matrix 1kI on the�nite-dimensional Hilbert spae C k arises from the disrete uniform distributionover the vetors of any orthonormal basis in C k , as well as from the ontinuousuniform distribution over the unit sphere S (C k).) The signi�ane of Ŵstat lies inthe fat that the distribution of the random outome Z of an experiment performed4



on the system depends on � only trough Ŵstat; i.e., di�erent �'s leading to thesame density matrix also lead to the same statistis of outomes. More preisely,when the experiment \measures the observable" Â, the probability of obtainingan outome Z in the set B � R isProb(Z 2 B) = tr�ŴstatP̂Â(B)� (10)where P̂Â is the projetion-valued measure (PVM) on the real line given by thespetral deomposition of the self-adjoint operator Â.1 This follows by averaging,aording to �, of the probability that the result is in B given that the state vetorof the system is  , whih is (in both standard quantum mehanis and Bohmianmehanis) h jP̂Â(B)j i. A partiular onsequene of (10) is that the outomesof position measurements are distributed aording to the density�(q) = trCkWstat(q; q) (11)on on�guration spae Q.From Shr�odinger's equation (3) for  , one obtains an evolution law [18℄ for Ŵstat:i~�Ŵstat�t = [Ĥ; Ŵstat℄ (12a)respetively i~�Wstat(q; q0)�t = ĤqWstat(q; q0)� Ĥq0Wstat(q; q0) (12b)where Ĥq means that the Hamiltonian Ĥ ats on the variable q, and [ ; ℄ denotes theommutator. We remark that Ŵstat is \pure," i.e., a projetion to a 1-dimensionalsubspae, if and only if � is onentrated on that subspae.2. The seond situation in whih a density matrix is relevant involves a system S1 thatis entangled with another system S2. In this ase, the omposite system S1 [ S2possesses a wave funtion 	s1s2(q1; q2) or 	 2 H1 
 H2, but no wave funtion isassoiated with S1 alone. However, the following redued density matrix an beassoiated with S1: Ŵred = tr2 j	ih	j (13a)1We remind the reader that in Bohmian mehanis suh an experiment need not measure anythingin the literal sense of the word [4, 14℄. We also note that (10) holds not only for \measurementsof observables," but for arbitrary experiments E with results in the value spae V : with every E isassoiated a positive-operator-valued measure (POVM) P̂E [7, 14℄ suh that the probability of obtainingfrom E an outome in the set B � V is tr�ŴstatP̂E(B)�.5



respetively Wreds1s01(q1; q01) = ZQ2 dq2Xs2 	s1s2(q1; q2)	�s01s2(q01; q2) (13b)where tr2 denotes the partial trae over H2. This kind of density matrix was �rstonsidered in [15℄. Note that Ŵred is an operator on H1. Like Ŵstat, Ŵred possessessigni�ane in terms of probability distributions: if one \measures" Â on S1 alone,then the probability of obtaining a result Z in the set B � R isProb(Z 2 B) = tr�ŴredP̂Â(B)� (14)where the trae is, of ourse, taken in H1. This equation follows from the fat thatthe observable on H1
H2 that orresponds to this experiment, as an experimenton S1 [ S2, is Â
 1̂, so that the probability for Z 2 B is h	jP̂Â(B)
 1̂j	i, whihequals (14).If S1 and S2 are deoupled, i.e., if Ĥ = Ĥ1
 1̂+1̂
Ĥ2, the redued density matrixevolves in the same way as statistial density matries do, governed by Ĥ1:i~�Ŵred�t = [Ĥ1; Ŵred℄ (15a)respetively i~�Wred(q; q0)�t = Ĥ1qWred(q; q0)� Ĥ1q0Wred(q; q0) : (15b)In ase S1 and S2 are oupled, Wred does not have an autonomous dynamis, i.e.,its evolution depends on the 	 from whih it arises. We remark that Ŵred is \pure"if and only if S1 and S2 are disentangled, 	s1s2(q1; q2) =  s11 (q1) s22 (q2).3. The third possibility is the ombination of the �rst and the seond types of densitymatries: the redued density matrix of a statistial mixture. Suppose the wavefuntion 	 of the system S1 [ S2 is random with distribution � on S (H1 
H2).Then de�ne the ombined density matrix byŴomb = ZS (H1
H2) �(d	) tr2 j	ih	j (16a)respetivelyWombs1s01(q1; q01) = ZS (H1
H2) �(d	) ZQ2 dq2Xs2 	s1s2(q1; q2)	�s01s2(q01; q2) : (16b)6



This kind of density matrix was �rst onsidered in [18, p. 424℄. Ŵomb an be ob-tained either by averaging the redued density matrix assoiated with the randomstate 	, or by reduing, i.e., taking the partial trae of, the statistial densitymatrix on H1 
H2 assoiated with �. Again, the probability that the result Z ofan experiment on S1 \measuring" Â lies in the set B � R isProb(Z 2 B) = tr�ŴombP̂Â(B)� : (17)This follows either from averaging (14) over � or from applying (10) to Â
 1̂.Like the redued density matrix, Ŵomb follows the unitary evolution governed byĤ1 whenever that makes sense, i.e., whenever S1 and S2 are deoupled. Ŵomb ispure if and only if � is onentrated on the subspae C  1 
H2 for some  1 2 H1.4 A Fourth Density MatrixWe now turn to the fourth, novel, kind of density matrix: the onditional density matrix.It also involves a system S1 that is entangled with S2, and it is related to the notionof onditional wave funtion [13℄ whih we reall �rst. For the sake of de�niteness, wetake S2 to be the environment of S1, i.e., the rest of the universe.In Bohmian mehanis for spin 0 partiles, more preisely in Bohmian mehaniswith omplex-valued wave funtions, the onditional wave funtion of S1 is obtainedfrom the wave funtion 	(q1; q2) of S1 [ S2 by inserting the atual on�guration Q2 ofS2,  ond(q1) = 1pN 	(q1; Q2) (18a)where N = ZQ1 dq1 j	(q1; Q2)j2 (18b)is a normalizing fator ensuring that R j ondj2 = 1.  ond an be viewed as the wavefuntion of S1 alone. It does not, in general, evolve aording to a Shr�odinger equation(3), indeed it does not have an autonomous dynamis at all.2 In fat, in appropriatesituations the evolution of  ond leads to ollapse, in the usual textbook manner, whihseems quite appropriate for the wave funtion of a subsystem.  ond shares the followingbasi properties with the wave funtion  in Bohmian mehanis:� The onditional distribution of Q1 given Q2 is j ondj2. More preisely, we havethe following formula for the onditional probability:Prob(Q1 2 dq1jQ2) = j ond(q1)j2dq1 ; (19)2The onditional wave funtion at time t = 0 need not determine the onditional wave funtion atlater times. As an example, onsider two situations with the same 	, the same Q2(0) and di�erentQ1(0): sine  ond does not depend on Q1, it will be the same in the two situations at t = 0, but sinethe motion of Q2 typially depends on Q1, the two situations will typially have di�erent Q2's at latertimes, and thus typially di�erent  ond's. 7



whih resembles the formula (4) for the probability in terms of the wave funtion.(19) follows from the fat that the pair (Q1; Q2) is j	j2 distributed.� The motion of Q1 an be omputed from  ond aording todQ1jdt = ~m1j Imr1j ond ond (Q11; : : : ;Q1N1) ; (20)whih is the same formula as (2) for the veloity in terms of the wave funtion.An analogous onditional wave funtion annot be formed, however, when the par-tiles of S2 have spin or any other internal degree of freedom entailing that the wavefuntion has several omplex omponents. The reason is that  ond as de�ned in (18a)would have too many omponents, i.e., more spin indies than appropriate for a wavefuntion of S1 alone. In partiular,  ond would not be an element of H1.We propose to onsider instead the onditional density matrix, whih is obtainedfrom 	(q1; q2)	�(q01; q02) by inserting the atual on�guration Q2 of S2 for both q2 andq02, and ontrating over the spin index belonging to S2:Wonds1s01(q1; q01) = 1N Xs2 	s1s2(q1; Q2)	�s01s2(q01; Q2) (21)with normalizing fator3N = ZQ1 dq1Xs1s2 	s1s2(q1; Q2)	�s1s2(q1; Q2) : (22)One easily heks that Wond satis�es (7) and thus is a density matrix.4 The expressionfor the orresponding operator Ŵond readsŴond = tr2�j	ih	j1̂
 P̂q̂2(dq2)�tr�j	ih	j1̂
 P̂q̂2(dq2)� (q2 = Q2) (23)where P̂q̂2 is the projetion-valued measure on Q2 de�ned by the joint spetral deom-position of all position operators of S2, and the fration is a Radon{Nikod�ym derivativeof an operator-valued measure on Q2 with respet to a real-valued measure on Q2, andthus an operator-valued funtion on Q2, into whih we insert Q2.We remark that Ŵond is pure if and only if 	(q1; Q2) as an element of L2(Q1; C k1 )
C k2 is a tensor produt, 	s1s2(q1; Q2) =  s11 (q1) s22 . In partiular, Ŵond is pure if 	 isomplex valued.The onditional density matrix has the following properties analogous to those ofthe onditional wave funtion:3One an show that for almost every on�guration Q = (Q1; Q2) (almost every with respet to thej	j2 distribution), N will be neither zero nor in�nite.4The only step that may not be obvious is the �niteness part of (7b), whih follows from the fatthat N <1 so that for any �xed value of s2, 	s1s2(q1; Q2) as a funtion of s1 and q1 lies in L2(Q1; C k1 );thus the salar produt with any  2 L2(Q1; C k1 ) is �nite.8



� The onditional distribution of Q1 given Q2 an be omputed fromWond by takingthe trae on the diagonal. More preisely, we have the following formula for theonditional probability:Prob(Q1 2 dq1jQ2) = trCk1 Wond(q1; q1) dq1 : (24)This follows from the fat that the pair (Q1; Q2) is j	j2 distributed. Note thatthe right hand side is the usual expression (11) for the probability distribution onon�guration spae when a system is desribed by a density matrix.� The motion of Q1 an be omputed from Wond aording todQ1jdt = ~m1j Imrq1j trCk1 Wond(q1; q01)trCk1 Wond(q1; q01) (q1 = q01 = Q1) : (25)To be able to appreiate (25), we have to onsider a �fth type of density matrix.5 A Fifth Density MatrixA density matrix is relevant in yet another way: in a modi�ed version of Bohmianmehanis in whih the partiles are guided not by a wave funtion but by a densitymatrix. Let us all this W -Bohmian mehanis. Whereas in the onventional version ofBohmian mehanis the wave funtion (of the universe) is something real, as an objetiveomponent of the state of the universe at a given time, inW -Bohmian mehanis insteadof a wave funtion (of the universe) we may have only a density matrix. This densitymatrix does not arise in any way from an analysis of the theory, but is built into thefundamental postulates of W -Bohmian mehanis. It is a fundamental density matrix,Wfund, in ontrast to the four other density matries we have disussed, whih werederived objets, derived from  and Q. Like the onditional density matrix, Wfund hasnot been onsidered previously in the literature. The state at time t of a W -Bohmianuniverse is given by the pair (Q(t);Wfund(t)), and it evolves aording todQjdt = ~mj Imrqj trCk Wfund(q; q0)trCk Wfund(q; q0) (q = q0 = Q) (26)as the equation of motion for Q, andi~�Ŵfund�t = [Ĥ; Ŵfund℄ (27a)respetively i~�Wfund(q; q0)�t = ĤqWfund(q; q0)� Ĥq0Wfund(q; q0) (27b)9



for Ŵfund, respetively Wfund(q; q0). Note that equations (27) are the same as (12) and(15). (26) was �rst written down by Bell [2℄ for the purpose of ontrasting it withthe impliations of Bohm's equation of motion (1) for a system with a random wavefuntion, hene desribed by Ŵstat.The on�guration Q(t) is random with distribution given by the trae of the diagonalof Wfund(t), i.e., Prob(Q(t) 2 dq) = trCk Wfund(q; q; t) dq: (28)This is possible beause of the following equivariane theorem: if (28) holds at t = 0then it also holds at every other time. To see this, note that (27) implies that�trCk Wfund(q; q)�t = � div (trCk Wfund(q; q) v) (29)where v is the veloity �eld, i.e., the (time-dependent) vetor �eld on Q whose j-thomponent is the right hand side of (26).6 DisussionBohmian mehanis, as desribed in Setion 2, is a speial ase of W -Bohmian mehan-is: if Wfund is pure, i.e., if it arises from a wave funtion  viaWfundss0(q; q0) =  s(q) �s0(q0) ; (30)then the equation of motion (26) redues to Bohm's equation of motion (1), the prob-ability law (28) redues to the j j2 law (4), and the evolution (27) entails that Wfundremains pure and arises from a wave funtion that evolves aording to the Shr�odingerequation (3).Conversely, the equations (26) and (28) of W -Bohmian mehanis arise for the be-havior of subsystems from Bohmian mehanis for systems of many partiles with spin:The motion of the partiles of subsystem S1 is governed aording to (25) by a densitymatrix, Ŵond, in the same way as in W -Bohmian mehanis the motion of partilesis governed aording to (26) by a density matrix, Ŵfund. In addition to the veloi-ties, also the probabilities (24) are determined by a density matrix in the same wayas in W -Bohmian mehanis (28). Thus, even were the universe as a whole governedby Bohmian mehanis, for most subsystems the state would be desribed by a densitymatrix, Wond, with the veloities and probabilities of the subsystem governed by theequations of W -Bohmian mehanis for Wond. In this sense, W -Bohmian mehanis isthe theory relevant to most systems in a Bohmian universe. (More preisely, this holdsfor all those systems for whih Ŵond is not pure.)A big di�erene, however, between the dynamis of a subsystem and W -Bohmianmehanis lies in the fat that, unlike the fundamental density matrix, see (27), theonditional density matrix need not evolve unitarily. Nevertheless, there are speialsituations in whih Wond does evolve unitarily, at least as a good approximation. Thishappens trivially when S1 and S2 are disentangled, 	(q1; q2) =  1(q1) 
  2(q2), and10



deoupled (so that they stay disentangled). It also happens when (and for as long as)S1 and S2 are deoupled and	(q1; q2) =  1(q1)
  2(q2) + 	?(q1; q2); (31)i.e., 	s1s2(q1; q2) =  s11 (q1) s22 (q2) + (	?)s1s2(q1; q2); (32)where  2 and 	? have disjoint q2-supports and Q2 2 support 2. Suh a situation oftenours after a measurement, and indeed allows us to regard  1 as the (e�etive) wavefuntion of S1, obeying Shr�odinger's equation (3). For spin 0, (32) haraterizes thesituation in whih we an expet the onditional wave funtion to evolve unitarily; thus,the onditional density matrix evolves unitarily in all situations in whih the onditionalwave funtion would for spin 0. We obtain another ase of unitarily evolving Wond byreplaing (32) by 	s1s2(q1; q2) =  s1s21 (q1) 2(q2) + (	?)s1s2(q1; q2); (33)with a omplex-valued  2, and assuming in addition that the Hamiltonian Ĥ2 for S2involves no interation between spin and on�gurational degrees of freedom.For example, onsider an EPR{Bohm{Bell pair of spin 1/2 partiles, eah headedtowards its Stern{Gerlah magnet, with q1 and q2 the positions of the partiles. Supposeboth magnets are oriented so as to measure �z and that the geometry is suh that partile1 ompletely passes its SG magnet before partile 2 reahes its SG magnet. Initially thespin state is the singlet state, depending on neither q1 nor q2, and we may assume as wellthat the on�guration spae wave paket is initially of produt form  1(q1) 2(q2). Thenthe initial wave funtion is of the form (33) with 	? = 0 and (regarding the possiblevalues of si as �1)  s1s21 (q1) = 1p2(Æs1;1Æs2;�1 � Æs1;�1Æs2;1) 1(q1) ; (34)orresponding to 1p2 (j" ij# i � j# ij" i)
  1 (35)in the standard �z representation.Until partile 1 reahes its magnet the Shr�odinger evolution preserves this form andŴond = 12I 
 j 1ih 1j, where  1 =  1(t) obeys Shr�odinger's equation for partile 1.Moreover, until partiles 2 reahes its magnet (i.e., in the absene of a magneti �eldating on partile 2), Ĥ2 involves no oupling between spin and translational degreesof freedom, so that the form (33) is preserved and Ŵond evolves unitarily aording to(27), even after partile 1 has reahed its magnet. After partile 1 has passed trough itsmagnet (but before partile 2 reahes its magnet) Ŵond = 12(Ŵup+ Ŵdown), where Ŵup,respetively Ŵdown, orresponds to the pure state j " i 
  up, respetively j # i 
  down,the states to whih j" i
 1, respetively j# i
 1, would evolve under the Shr�odinger11



evolution for partile 1. After partile 2 reahes its magnet, Ŵond no longer evolvesunitarily (or even autonomously). Rather it ollapses either to Ŵup or Ŵdown aordingto whether the initial on�guration is suh that Q2 ends up going down or up.Throughout the ourse of the entire experiment Q1 evolves aording to (25). (Notealso that after partile 2 has rossed its magnet, (33) is again approximately satis�ed,with 	? the wave paket that does not ontain Q2.)We now turn to the relations between the various density matries, and disuss �rstthe relation between Wond and Wred. Wred is the average onditional density matrix,with the average taken with respet to quantum equilibrium, i.e., over the ensemble inwhih Q = (Q1; Q2) is j	j2 distributed:Wreds1s01(q1; q01) = ZQ1�Q2 dQ1 dQ2 j	(Q1; Q2)j2Wonds1s01(q1; q01)(Q2): (36)This relation makes lear that a system an have a onditional and a redued densitymatrix at the same time, the two being di�erent from eah other: the onditionaldensity matrix of a system depends on the on�guration Q2 of its environment; whenthis dependene is averaged out by taking the quantum equilibrium expeted value oneobtains the redued density matrix of the system. (Note that for spin 0 (36) is thequantum equilibrium average of j ondih ondj.)Similarly, the ombined (redued statistial) density matrix is an average of theonditional density matrix, with the average taken over the ensemble in whih 	 is �distributed and, given 	, Q is j	j2 distributed:Wombs1s01(q1; q01) = ZS (H) �(d	) ZQ1�Q2 dQ1 dQ2 j	(Q1; Q2)j2Wonds1s01(q1; q01)(Q2;	): (37)Of ourse, Wstat an also be viewed as an average (of j ih j) over the ensemble with�-distributed  , but this does not involve the onditional density matrix.The fat that Wond determines the Bohmian veloities aording to (25) should beontrasted with the failure of suh a onnetion for Wstat, Wred, and Womb: If the wavefuntion  of a system is random, the Bohmian veloities have to be omputed from theatual realization of  , and thus ould assume di�erent values, orresponding to di�erent 's, even when Q is held �xed. Inserting, for example, Wstat in a formula like (25) or(26) would yield, in ontrast, an average veloity at Q, averaged over the ensemble ofdi�erent  's (with the additional Q-dependent weight proportional to j (Q)j2). This iswhat Bell referred to in the phrase we quoted in the beginning, and what he eluidated in[2℄. Similarly, sine Wred is the average of the onditional density matrix, over a ertainensemble, it leads to an average veloity (in fat to the best guess at the veloity thatone ould make without knowing Q2). In ontrast, Wond depends on the atual valueof Q2 and yields the true Bohmian veloity, as de�ned by (1) and the wave funtion ofthe universe.The statistial analysis of Bohmian mehanis in [13℄ remains valid when onditionalwave funtions are replaed by onditional density matries.12



7 Remarks7.1 Conditional Density Matrix in Orthodox Quantum Me-hanisIn orthodox quantum mehanis, the de�nition (21) of the onditional density matrixannot be written down, for lak of a on�guration Q2 that ould be inserted into 	.However, orthodox quantum mehanis arguably maintains that marosopi objetsan be viewed and treated lassially, whih presumably means that there should existsomething like a \marosopi on�guration." In ase that 	 is suh that the onditionaldensity matrix does not hange muh with the mirosopi details of Q2 (i.e., that itis quite aurately determined by merely the marosopi information about Q2), aonditional density matrix also makes sense in orthodox quantum mehanis. In thisase the onditional density matrix of orthodox quantum mehanis would equal, withinits auray, the one of Bohmian mehanis. Another way of obtaining this densitymatrix is to ollapse the wave funtion (to the region of on�guration spae havingq2 ompatible with the atual marosopi on�guration of S2), and then to take theredued density matrix.7.2 Seond QuantizationIn [12℄, we desribe a onstrution that might be alled the \seond quantization of aMarkov proess." Parallel to the \seond quantization" algorithm of forming a Fokspae out of a given 1-partile Hilbert spae and the free Hamiltonian on Fok spaeout of a given 1-partile Hamiltonian, this onstrution builds a dynamis on the on-�guration spae of a variable number of partiles out of a given 1-partile dynamis. Akey step in this onstrution is a general proedure for forming the law of motion for Npartiles, given an arbitrary 1-partile law. Interestingly, the onditional density matrixis indispensable for this proedure (exept when wave funtions are omplex{valued).A Bohm-type law of motion for one partile assoiates a veloity vetor �eld on R3with every (smooth) 1-partile wave funtion. We now regard this assoiation abstratlyas a given mapping, from whih we want to systematially onstrut the N -partile lawthat provides the veloities of all partiles from an N -partile wave funtion and thepositions of all partiles. By inserting the positions of all but one partile into the wavefuntion, we get a onditional objet for one partile|for spin 0 a onditional wavefuntion, otherwise a onditional density matrix. Only if the one-partile law assoiateswith this onditional objet a veloity vetor �eld on R3 , an we insert the position ofthe remaining partile into the vetor �eld and get the partile's veloity. For spin > 0we thus need more than what we mentioned at the beginning of this paragraph: we needthat the one-partile law provide a veloity �eld for every density matrix, asW -Bohmianmehanis does, and not merely for every wave funtion.
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7.3 Empirial Consequenes of W -Bohmian MehanisOne may wonder whether one an deide empirially between Bohmian mehanis andW -Bohmian mehanis, or, in other words, whether one an determine empirially in auniverse governed by W -Bohmian mehanis if the fundamental density matrix is pure(30). The question is deliate. We think that the answer is no, for the following reason:ompare a W -Bohmian universe with a Bohmian universe with a random wave fun-tion suh that the assoiated statistial density matrix equals the fundamental densitymatrix of the W -Bohmian universe. Sine an empirial deision, if it an be made attime t0, would have to be based solely on the on�guration Qt0 at that time, and sinethe distribution of Qt0 is the same in both situations, it seems that there annot be adetetable di�erene: A given Qt0 ould as well have arisen from an appropriate wavefuntion from the random wave funtion ensemble as from the orresponding fundamen-tal density matrix.What makes the question deliate, however, is, in part, the following: we might nottake seriously a theory involving a wave funtion of the universe or a density matrixof the universe that is \unreasonable" or \onspiratorial." Therefore, the question isonneted to questions suh as what would ount as a \reasonable" Wfund, and whethera statistial mixture mimiking a given \reasonable" Wfund might have to ontain some\unreasonable" wave funtions.7.4 Conditioning on Spatial RegionsIt is often desirable to de�ne the subsystems Si, i = 1; 2, as enompassing all thosepartiles whih are presently loated in the regions Ri � R3 , with R1 [ R2 = R3 andR1 \ R2 = ;. To ondition on the on�guration Q2 of S2 then means to ondition onthe on�guration in the region R2. We desribe below what appears to be the mostonvenient way to arry out suh a onditioning on a spatial region. One might suspetthat onditioning on a spatial region is a very ompliated story. But, in fat, it ouldnot be simpler.Sine the number of partiles in the region Ri an vary over time, it is helpful toonsider right from the start a on�guration spae of a variable number of partiles. Weonsider the spae �(R3) := 1[n=0R3n=Sn (38)where Sn denotes the group of permutations of n objets, whih ats on R3n by permutingthe partile labels. A on�guration from �(R3) represents any number of idential(unlabeled) partiles. For a disussion of this spae, see [12℄.We an extend the de�nition of � to arbitrary sets R,�(R) := 1[n=0Rn=Sn: (39)
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When R � R3 , �(R) an be viewed as a subset of �(R3), ontaining those on�gurationsfor whih all partiles are loated in R. Now observe that, when R1 and R2 are disjointsets, then �(R1 [ R2) = �(R1)� �(R2) : (40)This property is helpful, as it tells us that the de�nition of the subsystems Si in termsof spatial regions Ri leads to a Cartesian produt deomposition Q = Q1 � Q2 ofon�guration spae, and thus allows us to use, without hange, all of our onsiderationson onditional density matries, whih assumed suh a deomposition.8 ConlusionsWe have introdued the notion of onditional density matrix in Bohmian mehanis,and ontrasted it, on the one hand, with the notion of onditional wave funtion, andon the other hand, with various other notions of density matries. In ontrast to thestatistial, redued, or ombined (redued statistial) density matrix, the onditionaldensity matrix possesses diret signi�ane for the partile veloities.The fat that with the same system an be assoiated several density matries bringsinto sharp fous that the meaning of a density matrix is not a priori; instead, variousmeanings are oneivable. Ultimately, the meaning of a density matrix arises from itsrelevane to the primitive objets, suh as partile world lines, that the theory is about.In Bohmian mehanis, the various types of density matries that we have onsideredare all relevant to the partiles, but in very di�erent ways.Referenes[1℄ J.S. Bell: \Beables for quantum �eld theory", Phys. Rep. 137, 49-54 (1986).Reprinted in [3℄, p. 173.[2℄ J.S. Bell: \De Broglie{Bohm, delayed-hoie double-slit experiment, and densitymatrix", Int. J. Quant. Chem. 14, 155-159 (1980). Reprinted in [3℄, p. 111.[3℄ J.S. Bell: Speakable and unspeakable in quantum mehanis (Cambridge UniversityPress, Cambridge, 1987)[4℄ K. Berndl, M. Daumer, D. D�urr, S. Goldstein, and N. Zangh��: \A survey ofBohmian mehanis", Il Nuovo Cimento 110B, 737-750 (1995)[5℄ D. Bohm: \A suggested interpretation of the quantum theory in terms of \hidden"variables, I", Phys. Rev. 85, 166-179 (1952). D. Bohm: \A suggested interpretationof the quantum theory in terms of \hidden" variables, II", Phys. Rev. 85, 180-193(1952)[6℄ D. Bohm and B.J. Hiley: The Undivided Universe: An Ontologial Interpretationof Quantum Theory (Routledge, London, 1993)15
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