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es the notion of 
onditional wave fun
-tion, as the obje
t with the same dynami
al signi�
an
e as the wave fun
tion ofa Bohmian system.PACS number: 03.65.Ta (foundations of quantum me
hani
s)1 Introdu
tionWe wish to dedi
ate this work to the memory of Jim Cushing, our friend, 
oworker and
olleague.�Mathematis
hes Institut der Universit�at M�un
hen, Theresienstra�e 39, 80333 M�un
hen, Germany.E-mail: duerr�mathematik.uni-muen
hen.deyDepartments of Mathemati
s, Physi
s, and Philosophy, Hill Center, Rutgers, The State Uni-versity of New Jersey, 110 Frelinghuysen Road, Pis
ataway, NJ 08854-8019, USA. E-mail: old-stein�math.rutgers.eduzDipartimento di Fisi
a and INFN sezione di Genova, Universit�a di Genova, Via Dode
aneso 33,16146 Genova, Italy. E-mail: tumulka�mathematik.uni-muen
hen.dexDipartimento di Fisi
a and INFN sezione di Genova, Universit�a di Genova, Via Dode
aneso 33,16146 Genova, Italy. E-mail: zanghi�ge.infn.it 1



In this paper we shall be 
on
erned with the following 
laim: On
e we deal withparti
les with spin in Bohmian me
hani
s, we are more or less obliged to regard thequantum state of any system (ex
ept the universe) as given by a density matrix, whi
hthen has pre
isely the same dynami
al signi�
an
e as the wave fun
tion. The aim ofthis paper is to elaborate on this statement, as it is far from obvious in what sense adensity matrix 
ould represent the dynami
al state of a Bohmian system. In fa
t, ourstatement is in sharp 
ontrast with that of Bell [2℄:So in the de Broglie{Bohm theory a fundamental signi�
an
e is given to thewave fun
tion, and it 
annot be transferred to the density matrix.Although this is 
orre
t for spin 0 parti
les, the situation 
hanges as soon as we 
onsiderspin or any other internal degree of freedom. To appre
iate this point, it is essential todistinguish between di�erent roles that density matri
es 
an play in Bohmian me
hani
s(or, for that matter, in other versions of quantum me
hani
s). In one of these roles, thedensity matrix is of a purely epistemi
 
hara
ter, i.e., it expresses ignoran
e, whereasin another role, a role that has as yet not been dis
ussed in the literature and of whi
hBell was obviously not aware, a density matrix is of dire
t signi�
an
e to the Bohmianparti
le motion, as the \
onditional density matrix."We distinguish in this paper �ve roles of density matri
es: the statisti
al, redu
ed,
ombined (redu
ed statisti
al), 
onditional, and fundamental density matrix. We ex-plain the relations between them and their relevan
e to the parti
le motion. We explainin parti
ular the new notion of 
onditional density matrix and its relevan
e to Bohmianme
hani
s.A parti
ular 
onsequen
e of our dis
ussion is that the same system 
an, at one andthe same time, have a 
onditional density matrix and, say, a di�erent redu
ed densitymatrix. Thus, when speaking about \the" density matrix of a system, it is ne
essaryto spe
ify whether one refers to the redu
ed or the 
onditional density matrix. Thisis new: among the traditional types of density matri
es, it is always 
lear (ex
ept forthe ambiguity in some 
ases as to whether one should 
onsider 
ollapsed or un
ollapsedwave fun
tions) whi
h type of density matrix is relevant to a given system, and whatthis density matrix is|so that it is possible to speak of the density matrix of the system.The fa
t that a system 
an have two di�erent density matri
es at the same time is whywe have to fo
us on the role that a density matrix plays for the theoreti
al treatment ofa system, sin
e that is the only way to understand how more than one density matrix
an be relevant to the same system.2 Bohmian Me
hani
sWe begin by brie
y re
alling Bohmian me
hani
s. It is a theory of point parti
lesmoving in physi
al spa
e R3 . For the sake of 
on
reteness, 
onsider a universe of Nnonrelativisti
 parti
les whose positions we denote by Q1(t); : : : ;QN(t). They move2



a

ording to Bohm's equation of motion,dQjdt = ~mj Im �rj  � (Q1; : : : ;QN) (1)where mj is the mass of parti
le j,  : R3N ! C k is the wave fun
tion, and  � denotesthe s
alar produ
t in C k . In the 
ase k = 1 (spin 0), (1) simpli�es todQjdt = ~mj Imrj  (Q1; : : : ;QN) : (2) evolves a

ording to the S
hr�odinger equationi~� �t = � NXj=1 ~22mj�j + V  =: Ĥ (3)where the potential V may take values in the k�k Hermitian matri
es. The 
on�gurationQ(t) = (Q1(t); : : : ;QN(t)) is random and j (t)j2-distributed at every time t,Prob(Q(t) 2 dq) = j (q; t)j2dq : (4)This is possible be
ause of an equivarian
e property of (1) and (3): if (4) holds att = 0 then it also holds at every other time. This follows from the following 
ontinuityequation, a 
onsequen
e of (3): �j j2�t = � div (j j2v) (5)where v is the velo
ity �eld, i.e., the (time-dependent) ve
tor �eld on R3N whose j-th
omponent is the right hand side of (1). We remark that the state at time t of a Bohmianuniverse is des
ribed by the pair (Q(t);  (t)).What we des
ribe in this paper about 
onditional density matri
es applies not only to
onventional nonrelativisti
 Bohmian me
hani
s as just des
ribed, but also to Bohmianme
hani
s on 
urved manifolds [16, 9℄, to Bohm's traje
tories for Dira
 wave fun
tions(see [6, p. 272℄ and [8℄), to the photon traje
tories of [17℄, to the jump pro
esses of [12℄,and, in a sense that we will explain more fully in Se
tion 7.4, also to theories with avariable number of parti
les [10, 1, 11, 12℄.3 Three Density Matri
esIf H denotes the Hilbert spa
e of a system S, a density matrix for S is a positive,(bounded) self-adjoint operator Ŵ : H ! H with tr Ŵ = 1. If, as in Bohmian me
han-i
s, H is a spa
e of wave fun
tions on a 
on�guration spa
e Q, H = L2(Q; C k ), then adensity matrix 
an also be viewed as a fun
tion W : Q�Q ! End(C k ) (where End(C k )3



denotes the spa
e of linear mappings (endomorphisms) C k ! C k ). The translatingrelations between the two views, operator on H and fun
tion on Q�Q, are�Ŵ �s(q) = ZQ dq0Xs0 W ss0(q; q0) s0(q0) and (6a)W ss0(q; q0) = hq; sjŴ jq0; s0i (6b)where s and s0 index the standard basis of C k . The fun
tion W has the propertiesW (q0; q) = W �(q; q0) (7a)0 � ZQ dq ZQ dq0Xs;s0  �s(q)W ss0(q; q0) s0(q0) <1 8 2 H (7b)ZQ dq trCk W (q; q) = 1; (7
)where W � denotes the adjoint endomorphism in C k , whose matrix is the 
onjugatetransposed. Conversely, the properties (7) are suÆ
ient forW to de�ne a density matrixŴ . A parti
ular 
onsequen
e of (7a) is that on the diagonal of Q � Q, W (q; q) is aHermitian endomorphism (and thus trCk W (q; q) 2 R), and a parti
ular 
onsequen
e of(7b) is that trCk W (q; q) � 0 8q 2 Q: (8)There are four ways in whi
h density matri
es 
an arise from Bohmian or quantumme
hani
s. Three of them are well known; we brie
y re
all them anyway.1. First, by statisti
al mixture. Suppose the wave fun
tion  of a system is randomwith probability distribution �(d ) on the unit sphere S (H) of the Hilbert spa
eH. The asso
iated statisti
al density matrix isŴstat = ZS (H) �(d ) j ih j (9a)respe
tively Wstatss0(q; q0) = ZS (H) �(d ) s(q) �s0(q0) : (9b)This density matrix was �rst 
onsidered in [19℄. Note that di�erent distributions �may lead to the same density matrix. (For example, the density matrix 1kI on the�nite-dimensional Hilbert spa
e C k arises from the dis
rete uniform distributionover the ve
tors of any orthonormal basis in C k , as well as from the 
ontinuousuniform distribution over the unit sphere S (C k).) The signi�
an
e of Ŵstat lies inthe fa
t that the distribution of the random out
ome Z of an experiment performed4



on the system depends on � only trough Ŵstat; i.e., di�erent �'s leading to thesame density matrix also lead to the same statisti
s of out
omes. More pre
isely,when the experiment \measures the observable" Â, the probability of obtainingan out
ome Z in the set B � R isProb(Z 2 B) = tr�ŴstatP̂Â(B)� (10)where P̂Â is the proje
tion-valued measure (PVM) on the real line given by thespe
tral de
omposition of the self-adjoint operator Â.1 This follows by averaging,a

ording to �, of the probability that the result is in B given that the state ve
torof the system is  , whi
h is (in both standard quantum me
hani
s and Bohmianme
hani
s) h jP̂Â(B)j i. A parti
ular 
onsequen
e of (10) is that the out
omesof position measurements are distributed a

ording to the density�(q) = trCkWstat(q; q) (11)on 
on�guration spa
e Q.From S
hr�odinger's equation (3) for  , one obtains an evolution law [18℄ for Ŵstat:i~�Ŵstat�t = [Ĥ; Ŵstat℄ (12a)respe
tively i~�Wstat(q; q0)�t = ĤqWstat(q; q0)� Ĥq0Wstat(q; q0) (12b)where Ĥq means that the Hamiltonian Ĥ a
ts on the variable q, and [ ; ℄ denotes the
ommutator. We remark that Ŵstat is \pure," i.e., a proje
tion to a 1-dimensionalsubspa
e, if and only if � is 
on
entrated on that subspa
e.2. The se
ond situation in whi
h a density matrix is relevant involves a system S1 thatis entangled with another system S2. In this 
ase, the 
omposite system S1 [ S2possesses a wave fun
tion 	s1s2(q1; q2) or 	 2 H1 
 H2, but no wave fun
tion isasso
iated with S1 alone. However, the following redu
ed density matrix 
an beasso
iated with S1: Ŵred = tr2 j	ih	j (13a)1We remind the reader that in Bohmian me
hani
s su
h an experiment need not measure anythingin the literal sense of the word [4, 14℄. We also note that (10) holds not only for \measurementsof observables," but for arbitrary experiments E with results in the value spa
e V : with every E isasso
iated a positive-operator-valued measure (POVM) P̂E [7, 14℄ su
h that the probability of obtainingfrom E an out
ome in the set B � V is tr�ŴstatP̂E(B)�.5



respe
tively Wreds1s01(q1; q01) = ZQ2 dq2Xs2 	s1s2(q1; q2)	�s01s2(q01; q2) (13b)where tr2 denotes the partial tra
e over H2. This kind of density matrix was �rst
onsidered in [15℄. Note that Ŵred is an operator on H1. Like Ŵstat, Ŵred possessessigni�
an
e in terms of probability distributions: if one \measures" Â on S1 alone,then the probability of obtaining a result Z in the set B � R isProb(Z 2 B) = tr�ŴredP̂Â(B)� (14)where the tra
e is, of 
ourse, taken in H1. This equation follows from the fa
t thatthe observable on H1
H2 that 
orresponds to this experiment, as an experimenton S1 [ S2, is Â
 1̂, so that the probability for Z 2 B is h	jP̂Â(B)
 1̂j	i, whi
hequals (14).If S1 and S2 are de
oupled, i.e., if Ĥ = Ĥ1
 1̂+1̂
Ĥ2, the redu
ed density matrixevolves in the same way as statisti
al density matri
es do, governed by Ĥ1:i~�Ŵred�t = [Ĥ1; Ŵred℄ (15a)respe
tively i~�Wred(q; q0)�t = Ĥ1qWred(q; q0)� Ĥ1q0Wred(q; q0) : (15b)In 
ase S1 and S2 are 
oupled, Wred does not have an autonomous dynami
s, i.e.,its evolution depends on the 	 from whi
h it arises. We remark that Ŵred is \pure"if and only if S1 and S2 are disentangled, 	s1s2(q1; q2) =  s11 (q1) s22 (q2).3. The third possibility is the 
ombination of the �rst and the se
ond types of densitymatri
es: the redu
ed density matrix of a statisti
al mixture. Suppose the wavefun
tion 	 of the system S1 [ S2 is random with distribution � on S (H1 
H2).Then de�ne the 
ombined density matrix byŴ
omb = ZS (H1
H2) �(d	) tr2 j	ih	j (16a)respe
tivelyW
ombs1s01(q1; q01) = ZS (H1
H2) �(d	) ZQ2 dq2Xs2 	s1s2(q1; q2)	�s01s2(q01; q2) : (16b)6



This kind of density matrix was �rst 
onsidered in [18, p. 424℄. Ŵ
omb 
an be ob-tained either by averaging the redu
ed density matrix asso
iated with the randomstate 	, or by redu
ing, i.e., taking the partial tra
e of, the statisti
al densitymatrix on H1 
H2 asso
iated with �. Again, the probability that the result Z ofan experiment on S1 \measuring" Â lies in the set B � R isProb(Z 2 B) = tr�Ŵ
ombP̂Â(B)� : (17)This follows either from averaging (14) over � or from applying (10) to Â
 1̂.Like the redu
ed density matrix, Ŵ
omb follows the unitary evolution governed byĤ1 whenever that makes sense, i.e., whenever S1 and S2 are de
oupled. Ŵ
omb ispure if and only if � is 
on
entrated on the subspa
e C  1 
H2 for some  1 2 H1.4 A Fourth Density MatrixWe now turn to the fourth, novel, kind of density matrix: the 
onditional density matrix.It also involves a system S1 that is entangled with S2, and it is related to the notionof 
onditional wave fun
tion [13℄ whi
h we re
all �rst. For the sake of de�niteness, wetake S2 to be the environment of S1, i.e., the rest of the universe.In Bohmian me
hani
s for spin 0 parti
les, more pre
isely in Bohmian me
hani
swith 
omplex-valued wave fun
tions, the 
onditional wave fun
tion of S1 is obtainedfrom the wave fun
tion 	(q1; q2) of S1 [ S2 by inserting the a
tual 
on�guration Q2 ofS2,  
ond(q1) = 1pN 	(q1; Q2) (18a)where N = ZQ1 dq1 j	(q1; Q2)j2 (18b)is a normalizing fa
tor ensuring that R j 
ondj2 = 1.  
ond 
an be viewed as the wavefun
tion of S1 alone. It does not, in general, evolve a

ording to a S
hr�odinger equation(3), indeed it does not have an autonomous dynami
s at all.2 In fa
t, in appropriatesituations the evolution of  
ond leads to 
ollapse, in the usual textbook manner, whi
hseems quite appropriate for the wave fun
tion of a subsystem.  
ond shares the followingbasi
 properties with the wave fun
tion  in Bohmian me
hani
s:� The 
onditional distribution of Q1 given Q2 is j 
ondj2. More pre
isely, we havethe following formula for the 
onditional probability:Prob(Q1 2 dq1jQ2) = j 
ond(q1)j2dq1 ; (19)2The 
onditional wave fun
tion at time t = 0 need not determine the 
onditional wave fun
tion atlater times. As an example, 
onsider two situations with the same 	, the same Q2(0) and di�erentQ1(0): sin
e  
ond does not depend on Q1, it will be the same in the two situations at t = 0, but sin
ethe motion of Q2 typi
ally depends on Q1, the two situations will typi
ally have di�erent Q2's at latertimes, and thus typi
ally di�erent  
ond's. 7



whi
h resembles the formula (4) for the probability in terms of the wave fun
tion.(19) follows from the fa
t that the pair (Q1; Q2) is j	j2 distributed.� The motion of Q1 
an be 
omputed from  
ond a

ording todQ1jdt = ~m1j Imr1j 
ond 
ond (Q11; : : : ;Q1N1) ; (20)whi
h is the same formula as (2) for the velo
ity in terms of the wave fun
tion.An analogous 
onditional wave fun
tion 
annot be formed, however, when the par-ti
les of S2 have spin or any other internal degree of freedom entailing that the wavefun
tion has several 
omplex 
omponents. The reason is that  
ond as de�ned in (18a)would have too many 
omponents, i.e., more spin indi
es than appropriate for a wavefun
tion of S1 alone. In parti
ular,  
ond would not be an element of H1.We propose to 
onsider instead the 
onditional density matrix, whi
h is obtainedfrom 	(q1; q2)	�(q01; q02) by inserting the a
tual 
on�guration Q2 of S2 for both q2 andq02, and 
ontra
ting over the spin index belonging to S2:W
onds1s01(q1; q01) = 1N Xs2 	s1s2(q1; Q2)	�s01s2(q01; Q2) (21)with normalizing fa
tor3N = ZQ1 dq1Xs1s2 	s1s2(q1; Q2)	�s1s2(q1; Q2) : (22)One easily 
he
ks that W
ond satis�es (7) and thus is a density matrix.4 The expressionfor the 
orresponding operator Ŵ
ond readsŴ
ond = tr2�j	ih	j1̂
 P̂q̂2(dq2)�tr�j	ih	j1̂
 P̂q̂2(dq2)� (q2 = Q2) (23)where P̂q̂2 is the proje
tion-valued measure on Q2 de�ned by the joint spe
tral de
om-position of all position operators of S2, and the fra
tion is a Radon{Nikod�ym derivativeof an operator-valued measure on Q2 with respe
t to a real-valued measure on Q2, andthus an operator-valued fun
tion on Q2, into whi
h we insert Q2.We remark that Ŵ
ond is pure if and only if 	(q1; Q2) as an element of L2(Q1; C k1 )
C k2 is a tensor produ
t, 	s1s2(q1; Q2) =  s11 (q1) s22 . In parti
ular, Ŵ
ond is pure if 	 is
omplex valued.The 
onditional density matrix has the following properties analogous to those ofthe 
onditional wave fun
tion:3One 
an show that for almost every 
on�guration Q = (Q1; Q2) (almost every with respe
t to thej	j2 distribution), N will be neither zero nor in�nite.4The only step that may not be obvious is the �niteness part of (7b), whi
h follows from the fa
tthat N <1 so that for any �xed value of s2, 	s1s2(q1; Q2) as a fun
tion of s1 and q1 lies in L2(Q1; C k1 );thus the s
alar produ
t with any  2 L2(Q1; C k1 ) is �nite.8



� The 
onditional distribution of Q1 given Q2 
an be 
omputed fromW
ond by takingthe tra
e on the diagonal. More pre
isely, we have the following formula for the
onditional probability:Prob(Q1 2 dq1jQ2) = trCk1 W
ond(q1; q1) dq1 : (24)This follows from the fa
t that the pair (Q1; Q2) is j	j2 distributed. Note thatthe right hand side is the usual expression (11) for the probability distribution on
on�guration spa
e when a system is des
ribed by a density matrix.� The motion of Q1 
an be 
omputed from W
ond a

ording todQ1jdt = ~m1j Imrq1j trCk1 W
ond(q1; q01)trCk1 W
ond(q1; q01) (q1 = q01 = Q1) : (25)To be able to appre
iate (25), we have to 
onsider a �fth type of density matrix.5 A Fifth Density MatrixA density matrix is relevant in yet another way: in a modi�ed version of Bohmianme
hani
s in whi
h the parti
les are guided not by a wave fun
tion but by a densitymatrix. Let us 
all this W -Bohmian me
hani
s. Whereas in the 
onventional version ofBohmian me
hani
s the wave fun
tion (of the universe) is something real, as an obje
tive
omponent of the state of the universe at a given time, inW -Bohmian me
hani
s insteadof a wave fun
tion (of the universe) we may have only a density matrix. This densitymatrix does not arise in any way from an analysis of the theory, but is built into thefundamental postulates of W -Bohmian me
hani
s. It is a fundamental density matrix,Wfund, in 
ontrast to the four other density matri
es we have dis
ussed, whi
h werederived obje
ts, derived from  and Q. Like the 
onditional density matrix, Wfund hasnot been 
onsidered previously in the literature. The state at time t of a W -Bohmianuniverse is given by the pair (Q(t);Wfund(t)), and it evolves a

ording todQjdt = ~mj Imrqj trCk Wfund(q; q0)trCk Wfund(q; q0) (q = q0 = Q) (26)as the equation of motion for Q, andi~�Ŵfund�t = [Ĥ; Ŵfund℄ (27a)respe
tively i~�Wfund(q; q0)�t = ĤqWfund(q; q0)� Ĥq0Wfund(q; q0) (27b)9



for Ŵfund, respe
tively Wfund(q; q0). Note that equations (27) are the same as (12) and(15). (26) was �rst written down by Bell [2℄ for the purpose of 
ontrasting it withthe impli
ations of Bohm's equation of motion (1) for a system with a random wavefun
tion, hen
e des
ribed by Ŵstat.The 
on�guration Q(t) is random with distribution given by the tra
e of the diagonalof Wfund(t), i.e., Prob(Q(t) 2 dq) = trCk Wfund(q; q; t) dq: (28)This is possible be
ause of the following equivarian
e theorem: if (28) holds at t = 0then it also holds at every other time. To see this, note that (27) implies that�trCk Wfund(q; q)�t = � div (trCk Wfund(q; q) v) (29)where v is the velo
ity �eld, i.e., the (time-dependent) ve
tor �eld on Q whose j-th
omponent is the right hand side of (26).6 Dis
ussionBohmian me
hani
s, as des
ribed in Se
tion 2, is a spe
ial 
ase of W -Bohmian me
han-i
s: if Wfund is pure, i.e., if it arises from a wave fun
tion  viaWfundss0(q; q0) =  s(q) �s0(q0) ; (30)then the equation of motion (26) redu
es to Bohm's equation of motion (1), the prob-ability law (28) redu
es to the j j2 law (4), and the evolution (27) entails that Wfundremains pure and arises from a wave fun
tion that evolves a

ording to the S
hr�odingerequation (3).Conversely, the equations (26) and (28) of W -Bohmian me
hani
s arise for the be-havior of subsystems from Bohmian me
hani
s for systems of many parti
les with spin:The motion of the parti
les of subsystem S1 is governed a

ording to (25) by a densitymatrix, Ŵ
ond, in the same way as in W -Bohmian me
hani
s the motion of parti
lesis governed a

ording to (26) by a density matrix, Ŵfund. In addition to the velo
i-ties, also the probabilities (24) are determined by a density matrix in the same wayas in W -Bohmian me
hani
s (28). Thus, even were the universe as a whole governedby Bohmian me
hani
s, for most subsystems the state would be des
ribed by a densitymatrix, W
ond, with the velo
ities and probabilities of the subsystem governed by theequations of W -Bohmian me
hani
s for W
ond. In this sense, W -Bohmian me
hani
s isthe theory relevant to most systems in a Bohmian universe. (More pre
isely, this holdsfor all those systems for whi
h Ŵ
ond is not pure.)A big di�eren
e, however, between the dynami
s of a subsystem and W -Bohmianme
hani
s lies in the fa
t that, unlike the fundamental density matrix, see (27), the
onditional density matrix need not evolve unitarily. Nevertheless, there are spe
ialsituations in whi
h W
ond does evolve unitarily, at least as a good approximation. Thishappens trivially when S1 and S2 are disentangled, 	(q1; q2) =  1(q1) 
  2(q2), and10



de
oupled (so that they stay disentangled). It also happens when (and for as long as)S1 and S2 are de
oupled and	(q1; q2) =  1(q1)
  2(q2) + 	?(q1; q2); (31)i.e., 	s1s2(q1; q2) =  s11 (q1) s22 (q2) + (	?)s1s2(q1; q2); (32)where  2 and 	? have disjoint q2-supports and Q2 2 support 2. Su
h a situation ofteno

urs after a measurement, and indeed allows us to regard  1 as the (e�e
tive) wavefun
tion of S1, obeying S
hr�odinger's equation (3). For spin 0, (32) 
hara
terizes thesituation in whi
h we 
an expe
t the 
onditional wave fun
tion to evolve unitarily; thus,the 
onditional density matrix evolves unitarily in all situations in whi
h the 
onditionalwave fun
tion would for spin 0. We obtain another 
ase of unitarily evolving W
ond byrepla
ing (32) by 	s1s2(q1; q2) =  s1s21 (q1) 2(q2) + (	?)s1s2(q1; q2); (33)with a 
omplex-valued  2, and assuming in addition that the Hamiltonian Ĥ2 for S2involves no intera
tion between spin and 
on�gurational degrees of freedom.For example, 
onsider an EPR{Bohm{Bell pair of spin 1/2 parti
les, ea
h headedtowards its Stern{Gerla
h magnet, with q1 and q2 the positions of the parti
les. Supposeboth magnets are oriented so as to measure �z and that the geometry is su
h that parti
le1 
ompletely passes its SG magnet before parti
le 2 rea
hes its SG magnet. Initially thespin state is the singlet state, depending on neither q1 nor q2, and we may assume as wellthat the 
on�guration spa
e wave pa
ket is initially of produ
t form  1(q1) 2(q2). Thenthe initial wave fun
tion is of the form (33) with 	? = 0 and (regarding the possiblevalues of si as �1)  s1s21 (q1) = 1p2(Æs1;1Æs2;�1 � Æs1;�1Æs2;1) 1(q1) ; (34)
orresponding to 1p2 (j" ij# i � j# ij" i)
  1 (35)in the standard �z representation.Until parti
le 1 rea
hes its magnet the S
hr�odinger evolution preserves this form andŴ
ond = 12I 
 j 1ih 1j, where  1 =  1(t) obeys S
hr�odinger's equation for parti
le 1.Moreover, until parti
les 2 rea
hes its magnet (i.e., in the absen
e of a magneti
 �elda
ting on parti
le 2), Ĥ2 involves no 
oupling between spin and translational degreesof freedom, so that the form (33) is preserved and Ŵ
ond evolves unitarily a

ording to(27), even after parti
le 1 has rea
hed its magnet. After parti
le 1 has passed trough itsmagnet (but before parti
le 2 rea
hes its magnet) Ŵ
ond = 12(Ŵup+ Ŵdown), where Ŵup,respe
tively Ŵdown, 
orresponds to the pure state j " i 
  up, respe
tively j # i 
  down,the states to whi
h j" i
 1, respe
tively j# i
 1, would evolve under the S
hr�odinger11



evolution for parti
le 1. After parti
le 2 rea
hes its magnet, Ŵ
ond no longer evolvesunitarily (or even autonomously). Rather it 
ollapses either to Ŵup or Ŵdown a

ordingto whether the initial 
on�guration is su
h that Q2 ends up going down or up.Throughout the 
ourse of the entire experiment Q1 evolves a

ording to (25). (Notealso that after parti
le 2 has 
rossed its magnet, (33) is again approximately satis�ed,with 	? the wave pa
ket that does not 
ontain Q2.)We now turn to the relations between the various density matri
es, and dis
uss �rstthe relation between W
ond and Wred. Wred is the average 
onditional density matrix,with the average taken with respe
t to quantum equilibrium, i.e., over the ensemble inwhi
h Q = (Q1; Q2) is j	j2 distributed:Wreds1s01(q1; q01) = ZQ1�Q2 dQ1 dQ2 j	(Q1; Q2)j2W
onds1s01(q1; q01)(Q2): (36)This relation makes 
lear that a system 
an have a 
onditional and a redu
ed densitymatrix at the same time, the two being di�erent from ea
h other: the 
onditionaldensity matrix of a system depends on the 
on�guration Q2 of its environment; whenthis dependen
e is averaged out by taking the quantum equilibrium expe
ted value oneobtains the redu
ed density matrix of the system. (Note that for spin 0 (36) is thequantum equilibrium average of j 
ondih 
ondj.)Similarly, the 
ombined (redu
ed statisti
al) density matrix is an average of the
onditional density matrix, with the average taken over the ensemble in whi
h 	 is �distributed and, given 	, Q is j	j2 distributed:W
ombs1s01(q1; q01) = ZS (H) �(d	) ZQ1�Q2 dQ1 dQ2 j	(Q1; Q2)j2W
onds1s01(q1; q01)(Q2;	): (37)Of 
ourse, Wstat 
an also be viewed as an average (of j ih j) over the ensemble with�-distributed  , but this does not involve the 
onditional density matrix.The fa
t that W
ond determines the Bohmian velo
ities a

ording to (25) should be
ontrasted with the failure of su
h a 
onne
tion for Wstat, Wred, and W
omb: If the wavefun
tion  of a system is random, the Bohmian velo
ities have to be 
omputed from thea
tual realization of  , and thus 
ould assume di�erent values, 
orresponding to di�erent 's, even when Q is held �xed. Inserting, for example, Wstat in a formula like (25) or(26) would yield, in 
ontrast, an average velo
ity at Q, averaged over the ensemble ofdi�erent  's (with the additional Q-dependent weight proportional to j (Q)j2). This iswhat Bell referred to in the phrase we quoted in the beginning, and what he elu
idated in[2℄. Similarly, sin
e Wred is the average of the 
onditional density matrix, over a 
ertainensemble, it leads to an average velo
ity (in fa
t to the best guess at the velo
ity thatone 
ould make without knowing Q2). In 
ontrast, W
ond depends on the a
tual valueof Q2 and yields the true Bohmian velo
ity, as de�ned by (1) and the wave fun
tion ofthe universe.The statisti
al analysis of Bohmian me
hani
s in [13℄ remains valid when 
onditionalwave fun
tions are repla
ed by 
onditional density matri
es.12



7 Remarks7.1 Conditional Density Matrix in Orthodox Quantum Me-
hani
sIn orthodox quantum me
hani
s, the de�nition (21) of the 
onditional density matrix
annot be written down, for la
k of a 
on�guration Q2 that 
ould be inserted into 	.However, orthodox quantum me
hani
s arguably maintains that ma
ros
opi
 obje
ts
an be viewed and treated 
lassi
ally, whi
h presumably means that there should existsomething like a \ma
ros
opi
 
on�guration." In 
ase that 	 is su
h that the 
onditionaldensity matrix does not 
hange mu
h with the mi
ros
opi
 details of Q2 (i.e., that itis quite a

urately determined by merely the ma
ros
opi
 information about Q2), a
onditional density matrix also makes sense in orthodox quantum me
hani
s. In this
ase the 
onditional density matrix of orthodox quantum me
hani
s would equal, withinits a

ura
y, the one of Bohmian me
hani
s. Another way of obtaining this densitymatrix is to 
ollapse the wave fun
tion (to the region of 
on�guration spa
e havingq2 
ompatible with the a
tual ma
ros
opi
 
on�guration of S2), and then to take theredu
ed density matrix.7.2 Se
ond QuantizationIn [12℄, we des
ribe a 
onstru
tion that might be 
alled the \se
ond quantization of aMarkov pro
ess." Parallel to the \se
ond quantization" algorithm of forming a Fo
kspa
e out of a given 1-parti
le Hilbert spa
e and the free Hamiltonian on Fo
k spa
eout of a given 1-parti
le Hamiltonian, this 
onstru
tion builds a dynami
s on the 
on-�guration spa
e of a variable number of parti
les out of a given 1-parti
le dynami
s. Akey step in this 
onstru
tion is a general pro
edure for forming the law of motion for Nparti
les, given an arbitrary 1-parti
le law. Interestingly, the 
onditional density matrixis indispensable for this pro
edure (ex
ept when wave fun
tions are 
omplex{valued).A Bohm-type law of motion for one parti
le asso
iates a velo
ity ve
tor �eld on R3with every (smooth) 1-parti
le wave fun
tion. We now regard this asso
iation abstra
tlyas a given mapping, from whi
h we want to systemati
ally 
onstru
t the N -parti
le lawthat provides the velo
ities of all parti
les from an N -parti
le wave fun
tion and thepositions of all parti
les. By inserting the positions of all but one parti
le into the wavefun
tion, we get a 
onditional obje
t for one parti
le|for spin 0 a 
onditional wavefun
tion, otherwise a 
onditional density matrix. Only if the one-parti
le law asso
iateswith this 
onditional obje
t a velo
ity ve
tor �eld on R3 , 
an we insert the position ofthe remaining parti
le into the ve
tor �eld and get the parti
le's velo
ity. For spin > 0we thus need more than what we mentioned at the beginning of this paragraph: we needthat the one-parti
le law provide a velo
ity �eld for every density matrix, asW -Bohmianme
hani
s does, and not merely for every wave fun
tion.
13



7.3 Empiri
al Consequen
es of W -Bohmian Me
hani
sOne may wonder whether one 
an de
ide empiri
ally between Bohmian me
hani
s andW -Bohmian me
hani
s, or, in other words, whether one 
an determine empiri
ally in auniverse governed by W -Bohmian me
hani
s if the fundamental density matrix is pure(30). The question is deli
ate. We think that the answer is no, for the following reason:
ompare a W -Bohmian universe with a Bohmian universe with a random wave fun
-tion su
h that the asso
iated statisti
al density matrix equals the fundamental densitymatrix of the W -Bohmian universe. Sin
e an empiri
al de
ision, if it 
an be made attime t0, would have to be based solely on the 
on�guration Qt0 at that time, and sin
ethe distribution of Qt0 is the same in both situations, it seems that there 
annot be adete
table di�eren
e: A given Qt0 
ould as well have arisen from an appropriate wavefun
tion from the random wave fun
tion ensemble as from the 
orresponding fundamen-tal density matrix.What makes the question deli
ate, however, is, in part, the following: we might nottake seriously a theory involving a wave fun
tion of the universe or a density matrixof the universe that is \unreasonable" or \
onspiratorial." Therefore, the question is
onne
ted to questions su
h as what would 
ount as a \reasonable" Wfund, and whethera statisti
al mixture mimi
king a given \reasonable" Wfund might have to 
ontain some\unreasonable" wave fun
tions.7.4 Conditioning on Spatial RegionsIt is often desirable to de�ne the subsystems Si, i = 1; 2, as en
ompassing all thoseparti
les whi
h are presently lo
ated in the regions Ri � R3 , with R1 [ R2 = R3 andR1 \ R2 = ;. To 
ondition on the 
on�guration Q2 of S2 then means to 
ondition onthe 
on�guration in the region R2. We des
ribe below what appears to be the most
onvenient way to 
arry out su
h a 
onditioning on a spatial region. One might suspe
tthat 
onditioning on a spatial region is a very 
ompli
ated story. But, in fa
t, it 
ouldnot be simpler.Sin
e the number of parti
les in the region Ri 
an vary over time, it is helpful to
onsider right from the start a 
on�guration spa
e of a variable number of parti
les. We
onsider the spa
e �(R3) := 1[n=0R3n=Sn (38)where Sn denotes the group of permutations of n obje
ts, whi
h a
ts on R3n by permutingthe parti
le labels. A 
on�guration from �(R3) represents any number of identi
al(unlabeled) parti
les. For a dis
ussion of this spa
e, see [12℄.We 
an extend the de�nition of � to arbitrary sets R,�(R) := 1[n=0Rn=Sn: (39)
14



When R � R3 , �(R) 
an be viewed as a subset of �(R3), 
ontaining those 
on�gurationsfor whi
h all parti
les are lo
ated in R. Now observe that, when R1 and R2 are disjointsets, then �(R1 [ R2) = �(R1)� �(R2) : (40)This property is helpful, as it tells us that the de�nition of the subsystems Si in termsof spatial regions Ri leads to a Cartesian produ
t de
omposition Q = Q1 � Q2 of
on�guration spa
e, and thus allows us to use, without 
hange, all of our 
onsiderationson 
onditional density matri
es, whi
h assumed su
h a de
omposition.8 Con
lusionsWe have introdu
ed the notion of 
onditional density matrix in Bohmian me
hani
s,and 
ontrasted it, on the one hand, with the notion of 
onditional wave fun
tion, andon the other hand, with various other notions of density matri
es. In 
ontrast to thestatisti
al, redu
ed, or 
ombined (redu
ed statisti
al) density matrix, the 
onditionaldensity matrix possesses dire
t signi�
an
e for the parti
le velo
ities.The fa
t that with the same system 
an be asso
iated several density matri
es bringsinto sharp fo
us that the meaning of a density matrix is not a priori; instead, variousmeanings are 
on
eivable. Ultimately, the meaning of a density matrix arises from itsrelevan
e to the primitive obje
ts, su
h as parti
le world lines, that the theory is about.In Bohmian me
hani
s, the various types of density matri
es that we have 
onsideredare all relevant to the parti
les, but in very di�erent ways.Referen
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