
Bohmian Mehanis and Quantum Field TheoryDetlef D�urr,1, � Sheldon Goldstein,2, y Roderih Tumulka,3, z and Nino Zangh��3, x1Mathematishes Institut der Universit�at M�unhen, Theresienstra�e 39, 80333 M�unhen, Germany2Departments of Mathematis and Physis - Hill Center, Rutgers,The State University of New Jersey, 110 Frelinghuysen Road, Pisataway, NJ 08854-8019, USA3Dipartimento di Fisia dell'Universit�a di Genova and INFN sezione di Genova, Via Dodeaneso 33, 16146 Genova, Italy(Dated: August 23, 2004)We disuss a reently proposed extension of Bohmian mehanis to quantum �eld theory. Formore or less any regularized quantum �eld theory there is a orresponding theory of partile motion,whih in partiular asribes trajetories to the eletrons or whatever sort of partiles the quantum�eld theory is about. Corresponding to the nononservation of the partile number operator in thequantum �eld theory, the theory desribes expliit reation and annihilation events: the world linesfor the partiles an begin and end.PACS numbers: 03.65.Ta, 03.70.+k, 11.10.-zDespite the unertainty priniple, the preditions ofnonrelativisti quantum mehanis permit partiles tohave preise positions at all times. The simplest the-ory demonstrating that this is so is Bohmian mehan-is [1{3℄; in this theory the position of a partile an-not be known to marosopi observers more auratelythan the j j2 distribution would allow. A frequent om-plaint about Bohmian mehanis is that, in the words ofSteven Weinberg [4℄, \it does not seem possible to ex-tend Bohm's version of quantum mehanis to theoriesin whih partiles an be reated and destroyed, whihinludes all known relativisti quantum theories."To remove the grounds of the onern that suh an ex-tension may be impossible, we show how, with (moreor less) any regularized quantum �eld theory (QFT),one an assoiate a partile theory|desribing movingpartiles|that is empirially equivalent to that QFT. Inpartiular, there is a partile theory that reovers all pre-ditions of regularized QED [5℄.However, we will not attempt to ahieve full Lorentzinvariane; that would lead to quite a di�erent set ofquestions, orthogonal to those with whih we shall beonerned here. But we note that though the theories wepresent here require a preferred referene frame, therean be no experiment that would allow an observer todetermine whih frame is the preferred one, provided theorresponding QFTs are suh that their empirial pre-ditions are Lorentz invariant.The theories we present are based on the work of Bell[7℄ and our own reent results [8{10℄; in [8℄ we studya simple model QFT, and in [9, 10℄ we give a detailedaount of the mathematis needed for treating otherQFTs. While Bell replaed physial 3-spae by a lattie,we desribe diretly what presumably is the ontinuumlimit of Bell's model [9{12℄. Sine Bell's proposal wasthe �rst in this diretion, we all these models \Bell-typeQFTs". The trajetories we use as the world lines onsistof piees of Bohmian trajetories, or similar ones. A novelelement is that the world lines an begin and end. This

is essential for desribing proesses involving partile re-ation or annihilation, suh as, e.g., positron{eletron pairreation. Our desription of suh events is the most naiveand natural one: the world line of the partile begins atsome spae-time point, its reation event, and ends atanother (see �gure 1). The models thus involve \partilereation" in the literal sense.

FIG. 1: Two patterns of world lines as they may arise fromsome Bell-type QFT. (a) The world line of a photon (dashedurve) starts at an emission event (at time t1) on the worldline of an eletron (bold urve), and ends at an absorptionevent (at time t2) on the world line of another eletron. (b) Aneletron{positron pair (bold urves) is reated at the endpoint of a photon world line.The patterns of world lines are reminisent of Feyn-man diagrams, and the possible Feynman diagrams orre-spond to the possible types of world-line patterns. Note,however, that the role of Feynman diagrams is to aidwith omputing the evolution of the state vetor 	, whilethe world lines here are supposed to exist in addition to	. Unlike Feynman diagrams, whih are omputationaltools not to be onfused with atual partile paths, theworld-line patterns of our models are to be regarded as



2desribing the possibilities for what might atually hap-pen (in a universe governed by that model).Whatever the pattern of world lines may look like,it an be desribed by a time-dependent on�gurationQt = Q(t) moving in the on�guration spae Q of pos-sible positions for a variable number of partiles. In thease of a single partile speies, this is the disjoint unionof the n-partile on�guration spaes,Q = 1[n=0Q[n℄ : (1)Sine the partiles are idential, the setorQ[n℄ is best de-�ned as R3n modulo permutations, R3n=Sn. For simpli-ity, we will heneforth pretend that Q[n℄ is simply R3n ;we disuss R3n=Sn in [10℄. For several partile speies,one forms the Cartesian produt of several opies of thespae (1), one for eah speies. One obtains in this way aon�guration spae whih is, like (1), a union of setorsQ[n℄ where, however, now n = (n1; : : : ; n`) is an `-tupleof partile numbers for the ` speies of partiles. ForQED, for example, Q is the produt of three opies ofthe spae (1), orresponding to eletrons, positrons, andphotons; thus, a on�guration spei�es the number andpositions of all eletrons, positrons, and photons [13℄.Let us explore what Q(t) looks like for a typial worldline pattern (see �gure 2).
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FIG. 2: Shemati representation of the on�guration spaeof a variable number of partiles. (a){(d) show the setorsQ[0℄ through Q[3℄. A on�gurational history Q(t) jumps tothe next higher setor at eah reation event, and to the nextlower setor at eah annihilation event. The history shownorresponds to a world-line pattern like that of �gure 1(a).Q(t) will typially have disontinuities, even if there isnothing disontinuous in the world line pattern (�gure 1),beause it jumps to a di�erent setor at every reationor annihilation event. Between suh events, Q(t) movessmoothly within one setor.

It is helpful to note that the bosoni Fok spae anbe understood as a spae of L2 (i.e., square-integrable)funtions on Sn R3n=Sn. The fermioni Fok spae on-sists of L2 funtions on Sn R3n whih are anti-symmetriunder permutations.A Bell-type QFT spei�es suh world-line patterns, orhistories in on�guration spae, by speifying three sortsof \laws of motion": when to jump, where to jump, andhow to move between the jumps. Before we say more onwhat preisely the laws are, we eluidate one onsequeneof the laws: if at t = 0, the on�gurationQ(0) is hosen atrandom with probability distribution j	0j2, then at anylater time t, Q(t) has distribution j	tj2. This propertywe all equivariane. The main onsequene is that thesetheories are empirially equivalent to their orrespond-ing QFTs. This onlusion has been explained in detail in[14℄ for Bohmian mehanis and the preditions of non-relativisti quantum mehanis, and the same reasoningapplies here. It involves a law of large numbers govern-ing the empirial frequenies in a typial universe, andinvolves the reognition that the variables that reordthe outome of an experiment are ultimately partile po-sitions (orientations of meter pointers, ink marks on pa-per, et.).In a Bell-type QFT, the state of a system is desribedby the pair (	t; Qt), where 	t is an (arbitrary) vetor inthe appropriate Fok spae and may well involve a su-perposition of states of di�erent partile numbers. As re-marked before, 	t an thus be viewed as a funtion 	t(q)on the on�guration spae Q of a variable number of par-tiles. (For photons, whose position observable is repre-sented by a positive-operator-valued measure (POVM),	t an be represented by a wavefuntion 	t(q) satisfy-ing a onstraint.) 	t evolves aording to the appropriateShr�odinger equationi~d	tdt = H	t : (2)Typially H = H0 + HI is the sum of a free Hamil-tonian H0 and an interation Hamiltonian HI . It isimportant to appreiate that although there is an a-tual partile number, de�ned by N(t) = #Q(t) :=[number of entries in Q(t)℄ or Q(t) 2 Q[N(t)℄, 	 need notbe a number eigenstate (i.e., onentrated on one setor).This is similar to the situation in the usual double-slitexperiment, in whih the partile passes through onlyone slit although the wavefuntion passes through both.And as with the double-slit experiment, the part of thewavefuntion that passes through another setor of Q (oranother slit) may well inuene the behavior of Q(t) ata later time.The laws of motion for Qt depend on 	t (and on H).The ontinuous part of the motion is governed by a �rst-order ordinary di�erential equationdQtdt = v	t(Qt) = Re 	�t (Qt) � _̂q	t�(Qt)	�t (Qt)	t(Qt) (3)



3where _̂q = dd� eiH0�=~ q̂ e�iH0�=~����=0 = i~ �H0; q̂� (4)is the time derivative of the Q-valued Heisenberg positionoperator q̂, evolved withH0 alone. Sine in the absene ofglobal oordinates on Q, the notion of a \Q-valued oper-ator" may be somewhat obsure, one should understand(3) as saying this: for any smooth funtion f : Q ! R,df(Qt)dt = Re 	�t (Qt)� i~ [H0; f̂ ℄	t)(Qt)	�t (Qt)	t(Qt) (5)where f̂ is the multipliation operator orresponding tof . This expression is of the form v	 � rf(Qt), as it mustbe for de�ning a dynamis for Qt, if the free Hamiltonianis a di�erential operator of up to seond order [10℄. TheKlein{Gordon operator is not overed by (3) or (5); itstreatment will be disussed in future work [15℄. The nu-merator and denominator of (3) resp. (5) involve, whenappropriate, salar produts in spin spae. One may viewv as a vetor �eld on Q, and thus as onsisting of one ve-tor �eld v[n℄ on every manifold Q[n℄; it is then v[N(t)℄ thatgoverns the motion of Q(t) in (3).If H0 were the Shr�odinger operator �Pni=1 ~22mi�i +V of quantum mehanis, formula (3) would yield theveloity proposed by Bohm in [1℄,v	i = ~mi Im 	�ri		�	 ; i = 1; : : : ; n: (6)When H0 is the \seond quantization" of a one-partileShr�odinger operator, (3) amounts to (6), with equalmasses, in every setor Q[n℄. Similarly, in ase H0 isthe seond quantization of the Dira operator �i~� �r + �m2, (3) says a on�guration Q(t) (with N parti-les) moves aording to (the N -partile version of) theknown variant of Bohm's veloity formula for Dira wave-funtions [16℄, v	 = 	��		�	  : (7)The jumps are stohasti in nature, i.e., they ourat random times and lead to random destinations. InBell-type QFTs, God does play die. There are no hid-den variables whih would fully pre-determine the timeand destination of a jump. (Note also that a determinis-ti jump law that presribes the time and destination ofthe jump as a (smooth) funtion of the initial on�gura-tion would lak suÆient randomness to be ompatiblewith equivariane, sine after a jump from a setor withdimension d0 to a setor with dimension d > d0 the on-�guration would have to belong, at any spei� time, toa d0-dimensional submanifold.)The probability of jumping, within the next dt seonds,to the volume dq in Q, is �	(dqjQt) dt with�	(dqjq0) = 2~ [Im	�(q) hqjHI jq0i	(q0)℄+	�(q0)	(q0) dq ; (8)

where x+ = max(x; 0) means the positive part of x 2 R.Thus the jump rate �	 depends on the present on�gu-ration Qt, on the state vetor 	t, whih has a \guiding"role similar to that in Bohm's veloity law (6), and ofourse on the overall setup of the QFT as enoded inthe interation Hamiltonian HI . In [8℄, we spelled out indetail a simple example of a Bell-type QFT.Together, (3) and (8) de�ne a Markov proess on Q.The \free" part of this proess, de�ned by (3), an alsobe regarded as arising as follows: if H0 is as usual the\seond quantization" of a 1-partile Hamiltonian h, onean onstrut the dynamis orresponding to H0 froma given 1-partile dynamis orresponding to h (be itdeterministi or stohasti) by an algorithm that one mayall the \seond quantization" of a Markov proess [10℄.Moreover, this algorithm an still be used when formula(3) fails to de�ne a dynamis (in partiular when H0 isthe seond quantized Klein{Gordon operator).We now disuss the role of �eld operators (operator-valued �elds on spae-time) in a theory of partiles. Al-most by de�nition, it would seem that QFT onerns�elds, and not partiles. But there is less to this thanmight be expeted. The �eld operators do not funtionas observables in QFT. It is far from lear how to atually\observe" them, and even if this ould somehow, in somesense, be done, it is important to bear in mind that thestandard preditions of QFT are grounded in the parti-le representation, not the �eld representation: Experi-ments in high energy physis are sattering experiments,in whih what is observed is the asymptoti motion of theoutgoing partiles. Moreover, for Fermi �elds|the mat-ter �elds|the �eld as a whole (at a given time) ould notpossibly be observable, sine Fermi �elds anti-ommute,rather than ommute, at spae-like separation. We note,though, that a theory in whih 	t guides an atual �eldan be devised, at least formally [1℄.The role of the �eld operators is to provide a onne-tion, the only onnetion in fat, between spae-time andthe abstrat Hilbert spae ontaining the quantum statesj	i, whih are usually regarded not as funtions but asabstrat vetors. For our purpose, what is ruial are thefollowing fats that we shall explain presently: (i) the�eld operators naturally orrespond to the spatial stru-ture provided by a projetion-valued (PV) measure onon�guration spae Q, and (ii) the proess we have de-�ned in this paper an be eÆiently expressed in termsof a PV measure.Consider a PV measure P on Q ating on H: ForB � Q, P (B) means the projetion to the spae of statesloalized in B. All our formulas above an be formulatedin terms of P and j	i: (5) beomesdf(Qt)dt = Re h	jP (dq) i~ [H0; f̂ ℄j	ih	jP (dq)j	i ���q=Qt (9)



4with f̂ = Zq2Q f(q)P (dq) ; (10)for any smooth funtion f : Q ! R, and (8) beomes�	(dqjq0) = 2~ [Im h	jP (dq)HIP (dq0)j	i℄+h	jP (dq0)j	i : (11)Note that h	jP (dq)j	i is the probability distributionanalogous to j	(q)j2dq.We now turn to (i): how we obtain the PV measureP from the �eld operators. For the on�guration spaeQ = Sn R3n=Sn of a variable number of idential parti-les, a on�guration an be spei�ed by giving the num-ber of partiles n(R) in every region R � R3 . A PVmeasure P on Q is mathematially equivalent to a fam-ily of number operators: an additive operator-valued setfuntion N(R), R � R3 , suh that the N(R) ommutepairwise and have spetra in the nonnegative integers. In-deed, P is the joint spetral deomposition of the N(R)[10℄. And the easiest way to obtain suh a family of num-ber operators is by settingN(R) = ZR ��(x)�(x) d3x ;exploiting the anonial ommutation or anti-ommutation relations for the �eld operators �(x).These observations suggest that �eld operators are justwhat the dotor ordered for the eÆient onstrution of atheory desribing the reation, motion, and annihilationof partiles.(It is only the positive-energy one-partile states thatare used for onstruting the Fok spae H, so that His really a subspae of a larger Hilbert spae H0 whihontains also unphysial states (with ontributions fromone-partile states of negative energy). Sine position op-erators may fail to map positive energy states into posi-tive energy states, the PV measure P is typially de�nedon H0 but not on H, in whih ase (9) and (11) haveto be read as applying in H0. While H0 is de�ned onH0, HI is usually not and needs to be \�lled up with ze-roes", i.e. replaed by P 0HIP 0 where P 0 is the projetionH0 ! H.)To sum up, we have shown how the realist view whihBohmian mehanis provides for the realm of nonrela-tivisti quantum mehanis an be extended to QFT, in-luding reation and annihilation of partiles. Those who�nd the all too widespread positivisti attitude in quan-tum theory unsatisfatory may �nd these ideas helpful.But even those who think that Copenhagen quantum the-ory is just �ne may �nd it interesting to see how the parti-le piture, ubiquitous in the pitorial lingo and heuristi
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