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uss a re
ently proposed extension of Bohmian me
hani
s to quantum �eld theory. Formore or less any regularized quantum �eld theory there is a 
orresponding theory of parti
le motion,whi
h in parti
ular as
ribes traje
tories to the ele
trons or whatever sort of parti
les the quantum�eld theory is about. Corresponding to the non
onservation of the parti
le number operator in thequantum �eld theory, the theory des
ribes expli
it 
reation and annihilation events: the world linesfor the parti
les 
an begin and end.PACS numbers: 03.65.Ta, 03.70.+k, 11.10.-zDespite the un
ertainty prin
iple, the predi
tions ofnonrelativisti
 quantum me
hani
s permit parti
les tohave pre
ise positions at all times. The simplest the-ory demonstrating that this is so is Bohmian me
han-i
s [1{3℄; in this theory the position of a parti
le 
an-not be known to ma
ros
opi
 observers more a

uratelythan the j j2 distribution would allow. A frequent 
om-plaint about Bohmian me
hani
s is that, in the words ofSteven Weinberg [4℄, \it does not seem possible to ex-tend Bohm's version of quantum me
hani
s to theoriesin whi
h parti
les 
an be 
reated and destroyed, whi
hin
ludes all known relativisti
 quantum theories."To remove the grounds of the 
on
ern that su
h an ex-tension may be impossible, we show how, with (moreor less) any regularized quantum �eld theory (QFT),one 
an asso
iate a parti
le theory|des
ribing movingparti
les|that is empiri
ally equivalent to that QFT. Inparti
ular, there is a parti
le theory that re
overs all pre-di
tions of regularized QED [5℄.However, we will not attempt to a
hieve full Lorentzinvarian
e; that would lead to quite a di�erent set ofquestions, orthogonal to those with whi
h we shall be
on
erned here. But we note that though the theories wepresent here require a preferred referen
e frame, there
an be no experiment that would allow an observer todetermine whi
h frame is the preferred one, provided the
orresponding QFTs are su
h that their empiri
al pre-di
tions are Lorentz invariant.The theories we present are based on the work of Bell[7℄ and our own re
ent results [8{10℄; in [8℄ we studya simple model QFT, and in [9, 10℄ we give a detaileda

ount of the mathemati
s needed for treating otherQFTs. While Bell repla
ed physi
al 3-spa
e by a latti
e,we des
ribe dire
tly what presumably is the 
ontinuumlimit of Bell's model [9{12℄. Sin
e Bell's proposal wasthe �rst in this dire
tion, we 
all these models \Bell-typeQFTs". The traje
tories we use as the world lines 
onsistof pie
es of Bohmian traje
tories, or similar ones. A novelelement is that the world lines 
an begin and end. This

is essential for des
ribing pro
esses involving parti
le 
re-ation or annihilation, su
h as, e.g., positron{ele
tron pair
reation. Our des
ription of su
h events is the most naiveand natural one: the world line of the parti
le begins atsome spa
e-time point, its 
reation event, and ends atanother (see �gure 1). The models thus involve \parti
le
reation" in the literal sense.

FIG. 1: Two patterns of world lines as they may arise fromsome Bell-type QFT. (a) The world line of a photon (dashed
urve) starts at an emission event (at time t1) on the worldline of an ele
tron (bold 
urve), and ends at an absorptionevent (at time t2) on the world line of another ele
tron. (b) Anele
tron{positron pair (bold 
urves) is 
reated at the endpoint of a photon world line.The patterns of world lines are reminis
ent of Feyn-man diagrams, and the possible Feynman diagrams 
orre-spond to the possible types of world-line patterns. Note,however, that the role of Feynman diagrams is to aidwith 
omputing the evolution of the state ve
tor 	, whilethe world lines here are supposed to exist in addition to	. Unlike Feynman diagrams, whi
h are 
omputationaltools not to be 
onfused with a
tual parti
le paths, theworld-line patterns of our models are to be regarded as



2des
ribing the possibilities for what might a
tually hap-pen (in a universe governed by that model).Whatever the pattern of world lines may look like,it 
an be des
ribed by a time-dependent 
on�gurationQt = Q(t) moving in the 
on�guration spa
e Q of pos-sible positions for a variable number of parti
les. In the
ase of a single parti
le spe
ies, this is the disjoint unionof the n-parti
le 
on�guration spa
es,Q = 1[n=0Q[n℄ : (1)Sin
e the parti
les are identi
al, the se
torQ[n℄ is best de-�ned as R3n modulo permutations, R3n=Sn. For simpli
-ity, we will hen
eforth pretend that Q[n℄ is simply R3n ;we dis
uss R3n=Sn in [10℄. For several parti
le spe
ies,one forms the Cartesian produ
t of several 
opies of thespa
e (1), one for ea
h spe
ies. One obtains in this way a
on�guration spa
e whi
h is, like (1), a union of se
torsQ[n℄ where, however, now n = (n1; : : : ; n`) is an `-tupleof parti
le numbers for the ` spe
ies of parti
les. ForQED, for example, Q is the produ
t of three 
opies ofthe spa
e (1), 
orresponding to ele
trons, positrons, andphotons; thus, a 
on�guration spe
i�es the number andpositions of all ele
trons, positrons, and photons [13℄.Let us explore what Q(t) looks like for a typi
al worldline pattern (see �gure 2).
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FIG. 2: S
hemati
 representation of the 
on�guration spa
eof a variable number of parti
les. (a){(d) show the se
torsQ[0℄ through Q[3℄. A 
on�gurational history Q(t) jumps tothe next higher se
tor at ea
h 
reation event, and to the nextlower se
tor at ea
h annihilation event. The history shown
orresponds to a world-line pattern like that of �gure 1(a).Q(t) will typi
ally have dis
ontinuities, even if there isnothing dis
ontinuous in the world line pattern (�gure 1),be
ause it jumps to a di�erent se
tor at every 
reationor annihilation event. Between su
h events, Q(t) movessmoothly within one se
tor.

It is helpful to note that the bosoni
 Fo
k spa
e 
anbe understood as a spa
e of L2 (i.e., square-integrable)fun
tions on Sn R3n=Sn. The fermioni
 Fo
k spa
e 
on-sists of L2 fun
tions on Sn R3n whi
h are anti-symmetri
under permutations.A Bell-type QFT spe
i�es su
h world-line patterns, orhistories in 
on�guration spa
e, by spe
ifying three sortsof \laws of motion": when to jump, where to jump, andhow to move between the jumps. Before we say more onwhat pre
isely the laws are, we elu
idate one 
onsequen
eof the laws: if at t = 0, the 
on�gurationQ(0) is 
hosen atrandom with probability distribution j	0j2, then at anylater time t, Q(t) has distribution j	tj2. This propertywe 
all equivarian
e. The main 
onsequen
e is that thesetheories are empiri
ally equivalent to their 
orrespond-ing QFTs. This 
onlusion has been explained in detail in[14℄ for Bohmian me
hani
s and the predi
tions of non-relativisti
 quantum me
hani
s, and the same reasoningapplies here. It involves a law of large numbers govern-ing the empiri
al frequen
ies in a typi
al universe, andinvolves the re
ognition that the variables that re
ordthe out
ome of an experiment are ultimately parti
le po-sitions (orientations of meter pointers, ink marks on pa-per, et
.).In a Bell-type QFT, the state of a system is des
ribedby the pair (	t; Qt), where 	t is an (arbitrary) ve
tor inthe appropriate Fo
k spa
e and may well involve a su-perposition of states of di�erent parti
le numbers. As re-marked before, 	t 
an thus be viewed as a fun
tion 	t(q)on the 
on�guration spa
e Q of a variable number of par-ti
les. (For photons, whose position observable is repre-sented by a positive-operator-valued measure (POVM),	t 
an be represented by a wavefun
tion 	t(q) satisfy-ing a 
onstraint.) 	t evolves a

ording to the appropriateS
hr�odinger equationi~d	tdt = H	t : (2)Typi
ally H = H0 + HI is the sum of a free Hamil-tonian H0 and an intera
tion Hamiltonian HI . It isimportant to appre
iate that although there is an a
-tual parti
le number, de�ned by N(t) = #Q(t) :=[number of entries in Q(t)℄ or Q(t) 2 Q[N(t)℄, 	 need notbe a number eigenstate (i.e., 
on
entrated on one se
tor).This is similar to the situation in the usual double-slitexperiment, in whi
h the parti
le passes through onlyone slit although the wavefun
tion passes through both.And as with the double-slit experiment, the part of thewavefun
tion that passes through another se
tor of Q (oranother slit) may well in
uen
e the behavior of Q(t) ata later time.The laws of motion for Qt depend on 	t (and on H).The 
ontinuous part of the motion is governed by a �rst-order ordinary di�erential equationdQtdt = v	t(Qt) = Re 	�t (Qt) � _̂q	t�(Qt)	�t (Qt)	t(Qt) (3)



3where _̂q = dd� eiH0�=~ q̂ e�iH0�=~����=0 = i~ �H0; q̂� (4)is the time derivative of the Q-valued Heisenberg positionoperator q̂, evolved withH0 alone. Sin
e in the absen
e ofglobal 
oordinates on Q, the notion of a \Q-valued oper-ator" may be somewhat obs
ure, one should understand(3) as saying this: for any smooth fun
tion f : Q ! R,df(Qt)dt = Re 	�t (Qt)� i~ [H0; f̂ ℄	t)(Qt)	�t (Qt)	t(Qt) (5)where f̂ is the multipli
ation operator 
orresponding tof . This expression is of the form v	 � rf(Qt), as it mustbe for de�ning a dynami
s for Qt, if the free Hamiltonianis a di�erential operator of up to se
ond order [10℄. TheKlein{Gordon operator is not 
overed by (3) or (5); itstreatment will be dis
ussed in future work [15℄. The nu-merator and denominator of (3) resp. (5) involve, whenappropriate, s
alar produ
ts in spin spa
e. One may viewv as a ve
tor �eld on Q, and thus as 
onsisting of one ve
-tor �eld v[n℄ on every manifold Q[n℄; it is then v[N(t)℄ thatgoverns the motion of Q(t) in (3).If H0 were the S
hr�odinger operator �Pni=1 ~22mi�i +V of quantum me
hani
s, formula (3) would yield thevelo
ity proposed by Bohm in [1℄,v	i = ~mi Im 	�ri		�	 ; i = 1; : : : ; n: (6)When H0 is the \se
ond quantization" of a one-parti
leS
hr�odinger operator, (3) amounts to (6), with equalmasses, in every se
tor Q[n℄. Similarly, in 
ase H0 isthe se
ond quantization of the Dira
 operator �i
~� �r + �m
2, (3) says a 
on�guration Q(t) (with N parti-
les) moves a

ording to (the N -parti
le version of) theknown variant of Bohm's velo
ity formula for Dira
 wave-fun
tions [16℄, v	 = 	��		�	 
 : (7)The jumps are sto
hasti
 in nature, i.e., they o

urat random times and lead to random destinations. InBell-type QFTs, God does play di
e. There are no hid-den variables whi
h would fully pre-determine the timeand destination of a jump. (Note also that a determinis-ti
 jump law that pres
ribes the time and destination ofthe jump as a (smooth) fun
tion of the initial 
on�gura-tion would la
k suÆ
ient randomness to be 
ompatiblewith equivarian
e, sin
e after a jump from a se
tor withdimension d0 to a se
tor with dimension d > d0 the 
on-�guration would have to belong, at any spe
i�
 time, toa d0-dimensional submanifold.)The probability of jumping, within the next dt se
onds,to the volume dq in Q, is �	(dqjQt) dt with�	(dqjq0) = 2~ [Im	�(q) hqjHI jq0i	(q0)℄+	�(q0)	(q0) dq ; (8)

where x+ = max(x; 0) means the positive part of x 2 R.Thus the jump rate �	 depends on the present 
on�gu-ration Qt, on the state ve
tor 	t, whi
h has a \guiding"role similar to that in Bohm's velo
ity law (6), and of
ourse on the overall setup of the QFT as en
oded inthe intera
tion Hamiltonian HI . In [8℄, we spelled out indetail a simple example of a Bell-type QFT.Together, (3) and (8) de�ne a Markov pro
ess on Q.The \free" part of this pro
ess, de�ned by (3), 
an alsobe regarded as arising as follows: if H0 is as usual the\se
ond quantization" of a 1-parti
le Hamiltonian h, one
an 
onstru
t the dynami
s 
orresponding to H0 froma given 1-parti
le dynami
s 
orresponding to h (be itdeterministi
 or sto
hasti
) by an algorithm that one may
all the \se
ond quantization" of a Markov pro
ess [10℄.Moreover, this algorithm 
an still be used when formula(3) fails to de�ne a dynami
s (in parti
ular when H0 isthe se
ond quantized Klein{Gordon operator).We now dis
uss the role of �eld operators (operator-valued �elds on spa
e-time) in a theory of parti
les. Al-most by de�nition, it would seem that QFT 
on
erns�elds, and not parti
les. But there is less to this thanmight be expe
ted. The �eld operators do not fun
tionas observables in QFT. It is far from 
lear how to a
tually\observe" them, and even if this 
ould somehow, in somesense, be done, it is important to bear in mind that thestandard predi
tions of QFT are grounded in the parti-
le representation, not the �eld representation: Experi-ments in high energy physi
s are s
attering experiments,in whi
h what is observed is the asymptoti
 motion of theoutgoing parti
les. Moreover, for Fermi �elds|the mat-ter �elds|the �eld as a whole (at a given time) 
ould notpossibly be observable, sin
e Fermi �elds anti-
ommute,rather than 
ommute, at spa
e-like separation. We note,though, that a theory in whi
h 	t guides an a
tual �eld
an be devised, at least formally [1℄.The role of the �eld operators is to provide a 
onne
-tion, the only 
onne
tion in fa
t, between spa
e-time andthe abstra
t Hilbert spa
e 
ontaining the quantum statesj	i, whi
h are usually regarded not as fun
tions but asabstra
t ve
tors. For our purpose, what is 
ru
ial are thefollowing fa
ts that we shall explain presently: (i) the�eld operators naturally 
orrespond to the spatial stru
-ture provided by a proje
tion-valued (PV) measure on
on�guration spa
e Q, and (ii) the pro
ess we have de-�ned in this paper 
an be eÆ
iently expressed in termsof a PV measure.Consider a PV measure P on Q a
ting on H: ForB � Q, P (B) means the proje
tion to the spa
e of stateslo
alized in B. All our formulas above 
an be formulatedin terms of P and j	i: (5) be
omesdf(Qt)dt = Re h	jP (dq) i~ [H0; f̂ ℄j	ih	jP (dq)j	i ���q=Qt (9)



4with f̂ = Zq2Q f(q)P (dq) ; (10)for any smooth fun
tion f : Q ! R, and (8) be
omes�	(dqjq0) = 2~ [Im h	jP (dq)HIP (dq0)j	i℄+h	jP (dq0)j	i : (11)Note that h	jP (dq)j	i is the probability distributionanalogous to j	(q)j2dq.We now turn to (i): how we obtain the PV measureP from the �eld operators. For the 
on�guration spa
eQ = Sn R3n=Sn of a variable number of identi
al parti-
les, a 
on�guration 
an be spe
i�ed by giving the num-ber of parti
les n(R) in every region R � R3 . A PVmeasure P on Q is mathemati
ally equivalent to a fam-ily of number operators: an additive operator-valued setfun
tion N(R), R � R3 , su
h that the N(R) 
ommutepairwise and have spe
tra in the nonnegative integers. In-deed, P is the joint spe
tral de
omposition of the N(R)[10℄. And the easiest way to obtain su
h a family of num-ber operators is by settingN(R) = ZR ��(x)�(x) d3x ;exploiting the 
anoni
al 
ommutation or anti-
ommutation relations for the �eld operators �(x).These observations suggest that �eld operators are justwhat the do
tor ordered for the eÆ
ient 
onstru
tion of atheory des
ribing the 
reation, motion, and annihilationof parti
les.(It is only the positive-energy one-parti
le states thatare used for 
onstru
ting the Fo
k spa
e H, so that His really a subspa
e of a larger Hilbert spa
e H0 whi
h
ontains also unphysi
al states (with 
ontributions fromone-parti
le states of negative energy). Sin
e position op-erators may fail to map positive energy states into posi-tive energy states, the PV measure P is typi
ally de�nedon H0 but not on H, in whi
h 
ase (9) and (11) haveto be read as applying in H0. While H0 is de�ned onH0, HI is usually not and needs to be \�lled up with ze-roes", i.e. repla
ed by P 0HIP 0 where P 0 is the proje
tionH0 ! H.)To sum up, we have shown how the realist view whi
hBohmian me
hani
s provides for the realm of nonrela-tivisti
 quantum me
hani
s 
an be extended to QFT, in-
luding 
reation and annihilation of parti
les. Those who�nd the all too widespread positivisti
 attitude in quan-tum theory unsatisfa
tory may �nd these ideas helpful.But even those who think that Copenhagen quantum the-ory is just �ne may �nd it interesting to see how the parti-
le pi
ture, ubiquitous in the pi
torial lingo and heuristi


intuition of QFT, 
an be made 
onsistent, internally andwith the observable fa
ts of QFT, by introdu
ing suitablelaws of motion.� Ele
troni
 address: duerr�mathematik.uni-muen
hen.dey Ele
troni
 address: oldstein�math.rutgers.eduz Ele
troni
 address: tumulka�mathematik.uni-muen
hen.dex Ele
troni
 address: zanghi�ge.infn.it[1℄ D. Bohm, Phys. Rev. 85, 166-179 (1952). D. Bohm, Phys.Rev. 85, 180-193 (1952).[2℄ D. D�urr, in J. Bri
mont et al. (eds.): Chan
e in Physi
s:Foundations and Perspe
tives (Berlin: Springer-Verlag2001).[3℄ S. Goldstein, \Bohmian Me
hani
s" (2001), in Stan-ford En
y
lopedia of Philosophy (Winter 2002 Edition),E.N. Zalta (ed.), http://plato.stanford.edu/ar
hives/win2002/entries/qm-bohm/.[4℄ S. Weinberg (private 
ommuni
ation).[5℄ One may worry that su
h a parti
le theory, in whi
hparti
les always have a
tual positions but have no ad-ditional a
tual dis
rete degrees of freedom 
orrespondingfor example to spin, 
annot do justi
e to QFT, for whi
hspin and other dis
rete degrees of freedom are often re-garded as playing a 
ru
ial role. However, additional a
-tual dis
rete degrees of freedom are entirely unne
essary:as Bell has shown in [6℄, the straightforward extensionof Bohmian me
hani
s to spinor-valued wavefun
tions,whi
h we use here, a

ounts for all phenomena involvingspin.[6℄ J. S. Bell, Rev. Mod. Phys. 38, 447{452 (1966).[7℄ J. S. Bell, Phys. Rep. 137, 49-54 (1986).[8℄ D. D�urr, S. Goldstein, R. Tumulka, and N. Zangh��, J.Phys. A: Math. Gen. 36, 4143-4149 (2003).[9℄ D. D�urr, S. Goldstein, R. Tumulka, and N. Zangh��,quant-ph/0303056 [Commun. Math. Phys. (to be pub-lished)℄.[10℄ D. D�urr, S. Goldstein, R. Tumulka, and N. Zangh��,quant-ph/0407116.[11℄ A. Sudbery, J. Phys. A: Math. Gen. 20, 1743-1750(1987).[12℄ J. C. Vink, Phys. Rev. A 48, 1808-1818 (1993).[13℄ The 
hoi
e of Q for a given QFT, su
h as QED, is how-ever not unique. For instan
e, it is possible to devise aversion of the theory in whi
h the 
on�guration variableQ represents only the 
on�guration of the fermions [7℄.We have argued in [8℄ that it is more natural to in
ludephotons among the parti
les, represented in Q.[14℄ D. D�urr, S. Goldstein, and N. Zangh��, J. Statist. Phys.67, 843-907 (1992).[15℄ D. D�urr, S. Goldstein, R. Tumulka, and N. Zangh��, \Tra-je
tories From Klein{Gordon Fun
tions", in preparation.[16℄ D. Bohm and B. J. Hiley, The Undivided Universe: AnOntologi
al Interpretation of Quantum Theory (London:Routledge, Chapman and Hall 1993), p. 274.


