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Hene E is ountably in�nite. (In Bell's proposal, x(r) is the number of fermions atsite r, but this is of no relevane here.)Next, Bell onsiders the Hilbert spae H and the Hamiltonian H of a lattie quan-tum �eld theory. This means that H is a self-adjoint operator on H determining thequantum state at time t via 	t = e�iHt=~	0 (1)for some initial state vetor 	0. These quantities are related to the on�guration spaeby a projetion-valued measure (PVM) P on E ating on H . That is, for every x 2 Ethere exists an assoiated projetion P (x) suh that Px2E P (x) = I, where I is theidentity operator, and P (x)P (y) = 0 when x 6= y. Spei�ally, P (x) is the projetionto the joint eigenspae of the (ommuting) fermion number operators N(r) assoiatedwith the eigenvalues x(r). In partiular, h	tjP (x)	ti is the quantum probability of aon�guration x at time t. Bell then introdues the transition rate�t(yjx) = [(2=~) Im h	tjP (y)HP (x)	ti℄+h	tjP (x)	ti (2)for a jump from x to y 2 E, where a+ = max(a; 0) denotes the positive part of a. Notethat �t(xjx) = 0 beause h	tjP (x)HP (x)	ti = hP (x)	tjHP (x)	ti is real. A formalalulation yields that this hoie of the jump rates is ompatible with the proess havingdistribution h	tjP ( � )	ti at eah time t. See [17℄ for an extensive disussion of this jumprate formula. In this paper we will hoose the time unit suh that ~ = 2.Probabilisti questions. One of the main features of the transition rates (2) is that theybeome singular at times t when x beomes a \node" of 	t , i.e., when the denominatorh	tjP (x)	ti in (2) vanishes. So, at suh times the proess would not know how toproeed. Fortunately, it turns out that the inrease of the rates lose to suh singularitieshas the positive e�et of foring the proess to jump away before the singularity time isreahed.A more serious problem is the possibility of explosion in �nite time; that is, thejump times Tn ould aumulate so that � = supn Tn < 1 with positive probability.The standard riteria for non-explosion of pure jump proesses are on�ned to transitionrates that are homogeneous in time, relying heavily on the fat that the holding timesare then exponentially distributed and independent; see, e.g., Setion 2.7 of [21℄ orProposition 10.21 of [19℄. This independene, however, fails to hold in the ase of time-dependent jump rates, and the singularities of Bell's transition rates do not allow anysimple bounds exluding explosion. The only thing one knows is that the proess isdesigned to have the presribed quantum distribution at �xed (deterministi) times,and it is this fat we will exploit.Our proof will not make any use of the partiular onstrution or meaning of E andP . We will merely assume that E is a ountable set and P a PVM on E ating onH . Atually we only need that P is a positive-operator-valued measure; see Setion 2below. Steps towards an existene proof for Bell's proess have already been made byBaiagaluppi [1, 2℄; his approah is, however, very di�erent from ours.2



Physial Perspetive. Bell's observer-independent formulation of lattie quantum �eldtheories has attrated inreasing attention reently [11, 13, 14, 15, 16, 17℄. Apart fromits relevane to the foundations of quantum theory, it has proven useful for numerialsimulations [13℄, and has been found distinguished among all j	j2 distributed proessesas the minimal one [17, 24℄, involving the least amount of stohastiity.There are lose onnetions between Bell's model and two well-known j	j2 dis-tributed proesses assoiated with nonrelativisti quantum mehanis in R3 : E. Nelson'sstohasti mehanis [20, 18, 8, 9℄ and Bohmian mehanis [7, 3, 5, 6℄. These proessesare similar in spirit to Bell's proess, and an be ombined with Bell's stohasti jumpsto inlude partile reation and annihilation [15, 16, 17℄. Bell's proess has also beenutilized for modal interpretations of quantum theory [2℄. Bohmian mehanis arises asthe ontinuum limit of Bell's proess for a suitable hoie of H and E [26, 27℄, and ingeneral the ontinuum limit presumably resembles the ombined Bell{Bohm model of[16℄. A generalization of Bell's jump rate (2) to ontinuum spaes E is given in [17℄.The global existene problem of stohasti mehanis has been solved in [8℄ (see also[9, 20℄) and the one of Bohmian mehanis in [6℄, whereas for ombined models withjumps, suh as the ones onsidered in [16, 17℄, it is still open. The existene problemsof stohasti mehanis and Bohmian mehanis have two aspets in ommon with thatof Bell's proess: First, sine the law of motion (as de�ned by the drift in stohastimehanis, the veloity in Bohmian mehanis, and the jump rate in Bell's model) isill-de�ned at the nodes of the wave funtion, one needs to show that the proess neverreahes a node. Seond, while in stohasti mehanis and Bohmian mehanis there areno jumps that ould aumulate, one needs to exlude (and has exluded) the analogouspossibility that the proess ould esape to in�nity in �nite time.2 The ResultThe basi ingredients of the model are:{ a omplex Hilbert spaeH with inner produt h � j � i, the spae of quantum states,{ a self-adjoint operator H ating on H , the Hamiltonian,{ an initial state vetor 	0 2H with k	0k = 1,{ a ountable set E, physially thought of as on�guration spae and serving as statespae of the jump proess to be onstruted, and{ a positive-operator-valued measure (POVM) P ( � ) on E ating on H .Here, a POVM is a family (P (x))x2E of positive bounded self-adjoint operators on Hsuh that, for eah F � E, the sum P (F ) :=Px2F P (x) exists in the sense of the weakoperator topology, and P (E) = I. In fat, the ountable additivity then also holds inthe strong topology [12℄. In partiular,8� 2H : Xx2E P (x)� onverges in the L2 sense to �: (3)3



Every PVM is a POVM but not vie versa. As has already been pointed out in [17℄, thejump rate formula (2) still makes sense if P ( � ) is a POVM rather than a PVM.In quantum �eld theory, the \on�guration observable" P ( � ) is often a POVM; atypial situation is that H is a subspae (e.g., the positive spetral subspae of thefree Hamiltonian) of a larger Hilbert spae H0 ontaining also unphysial states, andP ( � ) = P 0P0( � )I 0 where P 0 is the projetion H0 !H , I 0 is the embedding H ,!H0,and P0( � ) is a PVM (the on�guration observable) ating on H0.To establish the existene of a Markovian jump proess with rates (2) we need thefollowing joint assumption on H, P , and the initial state vetor 	0.Assumption A The Hamiltonian H, the POVM P and the state vetor 	0 2 Hsatisfy the onditions(A1) For all t 2 R and x 2 E, 	t and P (x)	t belong to the domain of H.(A2) For all t0; t1 2 R with t0 < t1,Z t1t0 dt Xx;y2E��h	tjP (y)HP (x)	ti�� <1 :For given H and P , Assumption A an also be understood as an assumption on 	0,thus de�ning a set D � DH;P � H of \good" state vetors for whih the proess iswell-de�ned. This D is invariant under the time evolution but not neessarily a subspaeof H beause assumption (A2) is not linear in 	t. The following proposition providesonditions on H under whih Assumption A holds for all 	0 2 H , so that D = H .(For general H we do not know how large D is, and whether it is dense, as would bephysially desirable. We will not presuppose this but instead onstrut the proess solelyfor initial state vetors 	0 2 D .)Proposition 1 Assumption A holds for all 	0 2H when either(a) H is bounded and E is �nite, or(b) H is a Hilbert{Shmidt operator, i.e., trH2 <1.The proof is postponed until Setion 5. Assumption (A1) implies that P (y)HP (x)	texists, and thus that�t(yjx) is well de�ned whenever h	tjP (x)	ti 6= 0:When h	tjP (x)	ti = 0, we set �t(yjx) :=1 for all y; thus, �t(yjx) is always de�ned asa [0;1℄-valued funtion. (When suitably reinterpreted, the numerator of (2) still existsif P (x)	t and P (y)	t merely lie in the form domain, rather than the domain, of H. Wewill not pursue here this kind of greater generality.)4



As was pointed out in the introdution, the rates �t(yjx) are onstruted in suh away that the orresponding Markov proess Xt should have the quantum distribution�t(x) := h	tjP (x)	ti ; x 2 E; (4)at any time t 2 R. In other words, the family (�t)t2R should be equivariant, or anentrane law, for the proess. Here is our main result stating that suh a proess doesexist.Theorem 1 Suppose Assumption A holds. Then there exists a right-ontinuous (time-inhomogenous) Markovian pure jump proess (Xt)t2R in E with transition rates (2) andsuh that, for eah t, Xt has distribution �t. The proess is unique in distribution.3 The onstrutionWe �x some starting time t0 2 R and onstrut the proess �rst on the time interval[t0;1[. We also introdue an auxiliary \emetery" on�guration M in order to deal withthe possibility that the proess explodes or runs into a node. In the next setion we willshow that this does in fat not our. We writeN := f(t; x) 2 R � E : �t(x) = 0g (5)for the node-set of all exeptional times and positions for whih the transition rates (2)are in�nite. Likewise, Et := fx 2 E : �t(x) > 0g (6)is the set of all admissible positions at time t 2 R. Finally, for (t; x) =2 N we let�t;x := inffs > t : (s; x) 2 Ng (7)be the �rst time instant after t at whih x beomes a node; here we set inf ; :=1. Letus start with a tehnial lemma; its proof follows later in this setion. Formula (8) relieson our onvention ~ = 2.Lemma 1 For every x 2 E, the mapping t 7! �t(x) is di�erentiable with loally inte-grable derivative _�t(x) = Im h	tjP (x)H	ti: (8)In partiular, the funtion ��(x) is loally absolutely ontinuous. Also, the jump rates�t(yjx) depend measurably on t with values in [0;1℄, and the total jump ratex(t) :=Xy2E �t(yjx) (9)is �nite whenever (t; x) =2 N . 5



The proess (Xt)t�t0 will be onstruted on the enlarged position spae E [ fMg bymeans of a suitable sequene of random jump times Tn and jump destinations Zn. Toahieve this we need two key quantities: the distribution �t;x of the holding time inx 2 E (i.e., the random waiting time before the next jump) after a given time t, andthe distribution pt;x of the the jump destination at the jump time. Our assumption thatthe proess (Xt)t�t0 should have the transition rates (2) simply means that �t;x shouldbe the distribution with \failure rate funtion" (or \hazard rate funtion") x; f. e.g.[23, pp. 276 �., 577℄. That is, for any (t; x) =2 N we let �t;x be the unique probabilitymeasure on ℄t;1℄ with \survival probabilities"�t;x([u;1℄) = e��t;x(u) for all u > t, (10)where �t;x(u) = Z ut x(s) ds ; (11)in (10) and below we set e�1 = 0. (Note that �t;x is left-ontinuous by the monotoneonvergene theorem, so that there exists indeed a unique probability measure �t;xhaving e��t;x as right-sided distribution funtion.) In partiular, �t;x(f1g) > 0 if andonly if �t;x(1) <1; thus, in this ase there is a non-zero probability for the proess tobe frozen in x. If t = 1 or x =M we let �t;x = Æ1 be the Dira measure at +1. Thefollowing lemma ollets the essential properties of �t;x.Lemma 2 Suppose (t; x) =2 N . Then the following statements hold:(a) On ℄t; �t;x[ , �t;x has the density funtion x e��t;x.(b) If �t;x <1 then �t;x([�t;x;1℄) = 0.() �t;x(0 < x <1) = 1.(d) For any u 2 ℄t; �t;x[ , �t;x( ℄u;1℄) > 0 and �u;x = �t;x( � j ℄u;1℄).The proof will be given later in this setion. It follows readily from (a) that if wetake �t;x as the the distribution of the holding time at x then the jump rate is indeedx, as intended. Assertion (b) states that the proess annot run into a node by sittingon an x until it beomes a node: right before x beomes a node, the rate x grows sofast that the proess has probability 1 to jump away. In partiular, the unboundednessof the jump rates (even for bounded H, even for Hilbert{Shmidt H) favours the globalexistene rather than preventing it. Statement (d) expresses a loss-of-memory propertywhih is responsible for the Markov property of the proess.As for the distribution of the jump destinations, we obviously have to de�nept;x(y) = �t(yjx)=x(t) if 0 < x(t) <1 : (12)Otherwise we set pt;x = ÆM, the Dira measure at M. The next lemma states that pt;x issupported on the set Et of non-nodes de�ned in (6).6



Lemma 3 pt;x(Et) = 1 whenever 0 < x(t) <1.With these ingredients we are now ready to onstrut the proess (Xt)t�t0 on E[fMg.Let (Tn; Zn)n�0 be a sequene of random variables with the following properties. LetT0 := t0 and Z0 2 Et0 be a random variable with distribution �t0 . Then, for any n � 0,let (Tn+1; Zn+1) have the onditional distributionP�Tn+1 2 dt; Zn+1 = y jT0; Z0; : : : ; Tn; Zn� = �Tn;Zn(dt) pt;Zn(y) : (13)The existene of suh a sequene (Tn; Zn)n�0 on a suitable probability spae (
t0 ;Ft0;Pt0)follows from the Ionesu{Tulea theorem [19, Theorem 5.17℄. Moreover, Lemmas 2 and 3imply that Tn+1 < �Tn;Zn and Zn 2 ETn almost surely for all n. We also have Tn < Tn+1as long as Tn <1. So we de�neXt = Zn when Tn � t < Tn+1; and Xt =M for t � � = supn Tn : (14)It is then lear that (Xt)t�t0 is right-ontinuous, and (t; Xt) =2 N for all t 2 [t0; �[ withprobability 1. In the next setion we will show that in fat � =1 almost surely.We now turn to the proofs of the lemmas above. Reall our onvention that ~ = 2.Proof of Lemma 1: Sine 	t belongs to the domain of H by Assumption (A1), the H -valued mapping t 7! 	t is di�erentiable with derivative d	t=dt = � i2H	t [22, p. 265℄.Hene��t+s(x)� �t(x)�=s = h	t+sjP (x)(	t+s � 	t)=si+ h(	t+s � 	t)=sjP (x)	tionverges, as s! 0, to_�t(x) := � i2 h	tjP (x)H	ti+ i2 hH	tjP (x)	ti = Im h	tjP (x)H	ti :As a limit of the ontinuous di�erene ratios, t 7! _�t(x) is measurable. Moreover, using(3) we an write�� _�t(x)�� � ��h	tjP (x)H	ti�� = ��hHP (x)	tj	ti��= ���Xy2EhHP (x)	tjP (y)	ti��� �Xy2E��h	tjP (x)HP (y)	ti�� :Together with Assumption (A2), it follows that _�t(x) is loally integrable. In partiular,t 7! �t(x) is loally absolutely ontinuous and an integral funtion of t 7! _�t(x); see [10,Theorem 6.3.10℄ or [25, Theorems 8.21 and 8.17℄.Conerning the measurability of the jump rates �t(yjx), it is suÆient to show thath	tjP (y)HP (x)	ti depends measurably on t. (This is beause ��(x) is ontinuous andthe ratio of nonnegative measurable funtions is measurable.) To this end, we introduethe uto� funtion fn(a) := (a ^ n) _ (�n) and observe that, for every t,h	tjP (y)fn(H)P (x)	ti ! h	tjP (y)HP (x)	ti7



as n ! 1. Hene t 7! h	tjP (y)HP (x)	ti is a pointwise limit of ontinuous funtionsand thereby measurable. In partiular, the total jump rate x is measurable. For(t; x) =2 N we have x(t) �Xy2E��h	tjP (y)HP (x)	ti��Æ�t(x) :The last sum is �nite beause, due to (3), the series Pyh	tjP (y)HP (x)	ti onvergesto h	tjHP (x)	ti in every ordering, and is therefore absolutely onvergent. �Before proving Lemma 2 we establish the following result, a key fat for showingthat the proess never runs into a node. Reall the de�nitions (7) and (11).Lemma 4 Suppose (t; x) =2 N . Then �t;x(u) < 1 if t < u < �t;x, while �t;x(�t;x) = 1if �t;x <1.Proof: Consider �rst the ase t < u < �t;x. Sine ��(x) is ontinuous and positive on[t; u℄, it stays bounded away from zero on this interval. On the other hand, we haveZ ut dsXy2E�Im h	sjP (y)HP (x)	si�+ � Z ut dsXy2E��h	sjP (y)HP (x)	si�� ;and the last integral is �nite due to Assumption (A2). This proves the �rst assertion.Consider now the ase �t;x <1. SinePi a+i � �Pi ai�+ in general, we have for allt < s < �t;x x(s) � �ImXy h	sjP (y)HP (x)	si�+Æ�s(x) :In view of (3) and Lemma 1, the last expression is equal to�Im h	sjHP (x)	si�+Æ�s(x) = �� _�s(x)�+Æ�s(x) :Sine always a+ � a, we arrive at the key inequalityx(s) � � dds log�s(x) :The last derivative is integrable over any interval [t; u℄ with t < u < �t;x beause�s(x) is bounded away from zero on suh an interval and _�s(x) is loally integrableby Lemma 1. By the general fundamental theorem of alulus as in [10, Theorem6.3.10℄ or [25, Theorem 8.21℄, it follows thatZ ut x(s) ds � � Z ut dds log�s(x) ds = log �t(x)� log�u(x):Letting u " �t;x and using the ontinuity of �u(x) we arrive at the seond statement ofthe lemma. �We are now ready for the proof of Lemma 2.8



Proof of Lemma 2: (a) Let t < u < �t;x. Instead of using the fundamental theoremof alulus (whih would be possible), we prefer to give here a diret argument whihis based on Fubini's theorem. In view of Lemma 4, �t;x is �nite on [t; u℄. Thus we anwrite, omitting the indies t; x,Z ut (s) e��(s)ds = Z ut ds (s) Z 10 dr e�r 1f�(s)�rg= Z 10 dr e�r Z ut ds (s) 1f�(s)�rg = Z 10 dr e�r (r ^ �(u)) :The last equality uses the fat that � is ontinuous and inreasing. Sine r ^ �(u) =r � [r � �(u)℄+, the last integral oinides with 1 � e��(u) = �t;x(℄t; u℄), thus provingassertion (a).(b) This is immediate from (10) and Lemma 4.() This omes from statements (a) and (b) together with Lemma 1.(d) Let t < u < �t;x. Sine �t;x(u) < 1 by Lemma 4, Equation (10) shows that�t;x( ℄u;1℄) > 0. Moreover, for v > u we have�t;x� ℄v;1℄ �� ℄u;1℄� = e��t;x(v)+�t;x(u) = e��u;x(v) = �u;x� ℄v;1℄ �by Equation (11). This proves the �nal statement. �We onlude this setion with the proof of Lemma 3.Proof of Lemma 3: We only have to to show that �t(yjx) = 0 whenever �t(y) = 0.But sine kP (y)1=2	tk2 = �t(y), we then have P (y)1=2	t = 0. Hene P (y)	t = 0 andtherefore h	tjP (y)HP (x)	ti = hP (y)	tjHP (x)	ti = 0, whih gives the result. �4 Non-explosionIn the last setion we have onstruted a proess (Xt)t�t0 that stays in the on�gurationspae E until some possibly �nite explosion time � = supn Tn, at whih it jumps intothe emetery M. We will now show that � is in fat almost surely in�nite. To this endwe onsider the random numberS(t) := #fn � 1 : t0 < Tn � tg 2 Z+ [ f1g (15)of jumps during the time interval ℄t0; t℄ for any t > t0. We want to show that S(t) has�nite expetation. To this end we start from the following formula.Lemma 5 For all t > t0,E t0 S(t) = Z tt0 ds Xx;y2E Pt0(Xs = x) �s(yjx) :9



To estimate the last expression we will show:Lemma 6 Pt0(Xt = x) � �t(x) for all x 2 E and t > t0.In other words, though the rates are onstruted in suh a way that the proessshould follow the equivariant distribution �t, we annot exlude a priori that somemass is lost at the emetery M. Combining these two lemmas we obtainE t0 S(t) � Z tt0 ds Xx;y2E �s(x) �s(yjx)= Z tt0 ds Xx;y2E�Im h	sjP (y)HP (x)	si�+� Z tt0 ds Xx;y2E��h	sjP (y)HP (x)	si�� ;and the last expression is �nite by Assumption (A2). Hene S(t) < 1 almost surely,and thereby � > t almost surely. As t was arbitrary, we onlude that � = 1 almostsurely, as we wanted to show. We now turn to the proofs of the two lemmas above.Proof of Lemma 5: Using Equation (13) and Lemma 2 we an writeE t0 S(t) =Xn�0 Pt0(t0 � Tn+1 � t) =Xn�0 E�Pt0�t0 � Tn+1 � t jTk; Zk : k � n��=Xn�0 E Z tt0 ds 1fTn<s<�Tn;Zng Zn(s) e��Tn;Zn(s)=Xn�0 Z tt0 ds E�1fTn<sg Zn(s)Pt0�Tn+1 > s jTk; Zk : k � n��= Z tt0 dsXx2E x(s) E�Xn�0 1fTn<t<Tn+1; Zn=xg�= Z tt0 dsXx2E x(s)Pt0(Xs = x) :Together with (9) the lemma follows. �For the proof of Lemma 6 we onsider the integral equation�t(x) = �t0(x) e��t0;x(t) +Xy2E Z tt0 ds �s(y) �s(xjy) e��s;x(t) ; (16)t � t0; x 2 E, for a time-dependent subprobability measure �t on E. Lemma 6 followsdiretly from the next two results. 10



Lemma 7 The mapping (t; x) 7! Pt0 (Xt = x) is the minimal solution of (16).Lemma 8 The mapping (t; x) 7! �t(x) is a solution of (16) for arbitrary t0.Proof of Lemma 7: For any x 2 E and t > t0 we an writePt0(Xt = x) =Xn�0 An(t; x) with An(t; x) := Pt0�Tn � t < Tn+1; Zn = x�:It follows from (10) that A0(t; x) = �t0(x) e��t0;x(t) (17)and, for n � 1,An(t; x) = Xx0;:::;xn�12E Z � � �Zt0<t1<���<tn�t� Pt0�T1 2 dt1; : : : ; Tn 2 dtn; Tn+1 > t; Z0 = x0; : : : ; Zn = xn�= Xx0;:::;xn�12E Z � � �Zt0<t1<���<tn�t dt1 � � �dtn� �t0(x0)� nYi=1 e��ti�1;xi�1(ti)�ti(xijxi�1)� e��tn;x(t) ;where xn := x. In partiular, separating the summation over xn�1 and the integrationover tn we �nd thatAn(t; x) =Xy2E Z tt0 ds An�1(s; y) �s(xjy) e��s;x(t) : (18)This shows that Pt0(Xt = x) satis�es (16).Now let �t(x) be an arbitrary (nonnegative) solution of (16). An (N�1)-fold iterationof (16) then leads to the equation�t(x) = N�1Xn=0 An(t; x) +RN(t; x);with An(t; x) de�ned by (17) and (18), and the remainder termRN(t; x) = Xx0;:::;xN�12E Z � � �Zt0<t1<���<tN�t dt1 � � �dtN� �t1(x0)�N�1Yi=1 �ti(xijxi�1) e��ti;xi(ti+1)� �tN (xjxN�1) e��tN ;x(t) :11



(Compared with AN(t; x), RN (t; x) involves �t1 rather than �t0 = �t0 , and the �'s ande��'s run in a di�erent order.) Sine RN (t; x) � 0, we see that �t(x) exeeds eah partialsum of the in�nite series onstituting Pt0 (Xt = x). This proves Lemma 7. �Proof of Lemma 8: We start from the observation that, by (8), (3), (2) and the self-adjointness of H and P (x),_�t(x) = Im hHP (x)	tj	ti =Xy2E Im hHP (x)	tjP (y)	ti=Xy2E��t(y) �t(xjy)� �t(x) �t(yjx)�=Xy2E �t(y) �t(xjy)� �t(x) x(t)This means that the integral equation (16) for �t(x) takes the form�t(x)� �t0(x) e��t0;x(t) = Z tt0 ds � _�s(x) + �s(x) x(s)�e��s;x(t): (19)To establish this equation we write for brevity f(s) = �s(x) and g(s) = e��s;x(t) anddistinguish two ases.Case 1: f > 0 on [t0; t℄; that is, x is never a node on this interval. Then, byLemma 4, x is integrable over [t0; t℄, whene s 7! �s;x(t) is absolutely ontinuous withderivative �x. Sine the exponential funtion is Lipshitz on ℄�1; 0℄, it follows that gis absolutely ontinuous with derivative _g = x g Lebesgue-almost-everywhere; see [10,Corollary 6.3.7℄ or [25, Theorem 8.17℄. Equation (19) is thus equivalent to the partialintegration formulaf(t)g(t)� f(t0)g(t0) = Z tt0 � _f(s)g(s) + f(s) _g(s)�dswhih holds aording to Corollary 6.3.8 of [10℄.Case 2: f(s) = 0 for some s 2 [t0; t℄; that is, x is a node at some time s. By theontinuity of f , there exists then a largest suh s in [t0; t℄, say �. Suppose �rst that� = t0. We an then apply Case 1 to eah subinterval [t�; t℄ of [t0; t℄, whih yields (19)with t� in plae of t0. Let I(t�) be the orresponding integral on the right-hand side.Sine the integrand is nonnegative, we an use the monotone onvergene theorem toonlude that I(t�) " I(t0) as t� # t0. On the other hand, f(t�)g(t�)! 0 = f(t0)g(t0) ast� # t0 beause f is ontinuous and 0 � g � 1. This proves (19) in the ase � = t0.If � > t0, we observe that �s;x(t) =1 for all s < �. Indeed, we even have �s;x(�) =1. This is evident when ℄s; �[ onsists only of node-times beause then x is in�nite onthis interval; otherwise it follows from the seond statement of Lemma 4 applied to thesegment from a non-node-time between t and � to the next node-time. Consequently,the left-hand side of (19) is equal to f(t), while the integrand on the right-hand side12



vanishes on [t0; �[. This means that we have to establish (19) with t0 replaed by �. Butthis is trivial when � = t beause then both sides vanish, and otherwise follows from theprevious paragraph. �It is now easy to omplete the proof of the theorem.Proof of Theorem 1: As we have shown above, for any t0 2 R there exists a right-ontinuous pure jump proess (Xt)t�t0 on a suitable probability spae (
t0 ;Ft0 ;Pt0).Sine � = 1 almost surely, this proess avoids the emetery M and thus takes valuesin E. Hene Px2E Pt0(Xt = x) = 1 for all t � t0. Lemma 6 therefore implies thatPt0(Xt = x) = �t(x) for all x 2 E and t > t0. In partiular, if Et is given by (6) thenXt 2 Et for all t � t0 with probability 1.We also note that (Xt)t�t0 is Markovian; its transition matrix from time s to time tgiven by Ps;t(x; �) = Ps(Xt = � jXs = x)when x 2 Es, and arbitrary otherwise. This follows diretly from the onstrution to-gether with Lemma 2(d). In partiular, the distribution Pt0 of (Xt)t�t0 on the Skorohodspae D([t0;1[; E) of all �adl�ag1 paths from [t0;1[ to E is uniquely determined, andthe family (Pt0)t02R is onsistent. Kolmogorov's extension theorem [19, Theorem 5.16℄therefore provides us with a probability measure P on ER whih extends all distributionsPt0 and is therefore onentrated on D(R; E), the spae of all �adl�ag paths on R. UnderP, the anonial oordinate proess onstitutes the global Markov jump proess withthe desired properties. �5 Proof of Proposition 1First we onsider ase (a). Sine H is bounded, assumption (A1) holds trivially. Theboundedness of H also implies that the expression h	tjP (x)HP (y)	ti is (well de�nedand) a ontinuous funtion of t for every x and y. As E is �nite, the integrand inAssumption (A2) is ontinuous and therefore loally integrable.Turning to ase (b), we observe �rst that assumption (A1) is again trivially satis�edbeause Hilbert{Shmidt operators are bounded. Assumption (A2) will follow from theinequality Xx;y2E��h	jP (x)HP (y)	i�� � k	k2ptrH2 8	 2H (20)whih we prove now.We start with a general remark. Let I be a ountable index set and Ai and Bi,i 2 I , any Hilbert{Shmidt operators with (possibly di�erent) adjoints A�i resp. B�i ;i.e., we have trA�iAi < 1 and similarly for Bi. The Cauhy{Shwarz inequality thenasserts that Xi2I jtrA�iBij � �Xi2I trA�iAi�1=2 �Xi2I trB�iBi�1=2 (21)1ontinues �a droite ave des limites �a gauhe = right-ontinuous with left limits.13



whenever both terms on the right hand side are �nite. (Note that we an put the modulussign inside of the sum beause we an replae Ai by ziAi with zi = (trA�iBi)=jtrA�iBijwhenever trA�iBi 6= 0.)To obtain (20) from (21), we set I = E � E, Ax;y = P (x)1=2P	P (y)1=2 withP	 = j	ih	j the projetion to C	, and Bx;y = P (x)1=2HP (y)1=2. Then trA�x;yBx;y =h	jP (x)HP (y)	i: To see that Ax;y is a Hilbert{Shmidt operator, we note thattrA�x;yAx;y = tr�P (y)1=2P	P (x)P	P (y)1=2� = h	jP (x)	ih	jP (y)	i <1:It follows further from (3) thatXx;y trA�x;yAx;y =Xx;y h	jP (x)	ih	jP (y)	i = k	k4:Next we show that Bx;y is a Hilbert{Shmidt operator. Note that 0 � P (x) � Isine I � P (x) = P (E n fxg) � 0. This implies that 0 � h�jP (x)�i � h�j�i for all� 2 H . Setting � := C�n for any Hilbert{Shmidt operator C and an orthonormalbasis f�n : n 2 Ng of H we �ndXn2Nh�njC�P (x)C�ni �Xn2Nh�njC�C�niand thus trC�P (x)C � trC�C: (22)That is, if C is a Hilbert{Shmidt operator then so is P (x)1=2C; and so is CP (x)1=2 =(P (x)1=2C�)�. As a onsequene, Bx;y is a Hilbert{Shmidt operator.Finally, we need to show thatXx;y2E trB�x;yBx;y � trH2:For every �nite subset F � E we have, using the linearity of the trae and its invarianeunder yli permutations,Xx;y2F trB�x;yBx;y = Xx;y2F trHP (x)HP (y) = trHP (F )HP (F )= tr�P (F )1=2HP (F )1=2���P (F )1=2HP (F )1=2� � trH2 :The last inequality omes from the fat that, aording to (22), the Hilbert{Shmidtnorm kCkHS = ptrC�C of an operator C an only derease when C is multiplied, fromthe left or from the right, by P 1=2 where 0 � P � I. Taking the supremum over all�nite subsets F and ombining all inequalities above we arrive at (20).Aknowledgements. We thank Guido Baiagaluppi of the University of California,Berkeley, for his friendly orrespondene and Sheldon Goldstein of Rutgers Universityfor helpful disussions. R.T. gratefully aknowledges support by the German NationalSiene Foundation (DFG), and hospitality at the Mathematis Department of RutgersUniversity. 14
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