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Hen
e E is 
ountably in�nite. (In Bell's proposal, x(r) is the number of fermions atsite r, but this is of no relevan
e here.)Next, Bell 
onsiders the Hilbert spa
e H and the Hamiltonian H of a latti
e quan-tum �eld theory. This means that H is a self-adjoint operator on H determining thequantum state at time t via 	t = e�iHt=~	0 (1)for some initial state ve
tor 	0. These quantities are related to the 
on�guration spa
eby a proje
tion-valued measure (PVM) P on E a
ting on H . That is, for every x 2 Ethere exists an asso
iated proje
tion P (x) su
h that Px2E P (x) = I, where I is theidentity operator, and P (x)P (y) = 0 when x 6= y. Spe
i�
ally, P (x) is the proje
tionto the joint eigenspa
e of the (
ommuting) fermion number operators N(r) asso
iatedwith the eigenvalues x(r). In parti
ular, h	tjP (x)	ti is the quantum probability of a
on�guration x at time t. Bell then introdu
es the transition rate�t(yjx) = [(2=~) Im h	tjP (y)HP (x)	ti℄+h	tjP (x)	ti (2)for a jump from x to y 2 E, where a+ = max(a; 0) denotes the positive part of a. Notethat �t(xjx) = 0 be
ause h	tjP (x)HP (x)	ti = hP (x)	tjHP (x)	ti is real. A formal
al
ulation yields that this 
hoi
e of the jump rates is 
ompatible with the pro
ess havingdistribution h	tjP ( � )	ti at ea
h time t. See [17℄ for an extensive dis
ussion of this jumprate formula. In this paper we will 
hoose the time unit su
h that ~ = 2.Probabilisti
 questions. One of the main features of the transition rates (2) is that theybe
ome singular at times t when x be
omes a \node" of 	t , i.e., when the denominatorh	tjP (x)	ti in (2) vanishes. So, at su
h times the pro
ess would not know how topro
eed. Fortunately, it turns out that the in
rease of the rates 
lose to su
h singularitieshas the positive e�e
t of for
ing the pro
ess to jump away before the singularity time isrea
hed.A more serious problem is the possibility of explosion in �nite time; that is, thejump times Tn 
ould a

umulate so that � = supn Tn < 1 with positive probability.The standard 
riteria for non-explosion of pure jump pro
esses are 
on�ned to transitionrates that are homogeneous in time, relying heavily on the fa
t that the holding timesare then exponentially distributed and independent; see, e.g., Se
tion 2.7 of [21℄ orProposition 10.21 of [19℄. This independen
e, however, fails to hold in the 
ase of time-dependent jump rates, and the singularities of Bell's transition rates do not allow anysimple bounds ex
luding explosion. The only thing one knows is that the pro
ess isdesigned to have the pres
ribed quantum distribution at �xed (deterministi
) times,and it is this fa
t we will exploit.Our proof will not make any use of the parti
ular 
onstru
tion or meaning of E andP . We will merely assume that E is a 
ountable set and P a PVM on E a
ting onH . A
tually we only need that P is a positive-operator-valued measure; see Se
tion 2below. Steps towards an existen
e proof for Bell's pro
ess have already been made byBa

iagaluppi [1, 2℄; his approa
h is, however, very di�erent from ours.2



Physi
al Perspe
tive. Bell's observer-independent formulation of latti
e quantum �eldtheories has attra
ted in
reasing attention re
ently [11, 13, 14, 15, 16, 17℄. Apart fromits relevan
e to the foundations of quantum theory, it has proven useful for numeri
alsimulations [13℄, and has been found distinguished among all j	j2 distributed pro
essesas the minimal one [17, 24℄, involving the least amount of sto
hasti
ity.There are 
lose 
onne
tions between Bell's model and two well-known j	j2 dis-tributed pro
esses asso
iated with nonrelativisti
 quantum me
hani
s in R3 : E. Nelson'ssto
hasti
 me
hani
s [20, 18, 8, 9℄ and Bohmian me
hani
s [7, 3, 5, 6℄. These pro
essesare similar in spirit to Bell's pro
ess, and 
an be 
ombined with Bell's sto
hasti
 jumpsto in
lude parti
le 
reation and annihilation [15, 16, 17℄. Bell's pro
ess has also beenutilized for modal interpretations of quantum theory [2℄. Bohmian me
hani
s arises asthe 
ontinuum limit of Bell's pro
ess for a suitable 
hoi
e of H and E [26, 27℄, and ingeneral the 
ontinuum limit presumably resembles the 
ombined Bell{Bohm model of[16℄. A generalization of Bell's jump rate (2) to 
ontinuum spa
es E is given in [17℄.The global existen
e problem of sto
hasti
 me
hani
s has been solved in [8℄ (see also[9, 20℄) and the one of Bohmian me
hani
s in [6℄, whereas for 
ombined models withjumps, su
h as the ones 
onsidered in [16, 17℄, it is still open. The existen
e problemsof sto
hasti
 me
hani
s and Bohmian me
hani
s have two aspe
ts in 
ommon with thatof Bell's pro
ess: First, sin
e the law of motion (as de�ned by the drift in sto
hasti
me
hani
s, the velo
ity in Bohmian me
hani
s, and the jump rate in Bell's model) isill-de�ned at the nodes of the wave fun
tion, one needs to show that the pro
ess neverrea
hes a node. Se
ond, while in sto
hasti
 me
hani
s and Bohmian me
hani
s there areno jumps that 
ould a

umulate, one needs to ex
lude (and has ex
luded) the analogouspossibility that the pro
ess 
ould es
ape to in�nity in �nite time.2 The ResultThe basi
 ingredients of the model are:{ a 
omplex Hilbert spa
eH with inner produ
t h � j � i, the spa
e of quantum states,{ a self-adjoint operator H a
ting on H , the Hamiltonian,{ an initial state ve
tor 	0 2H with k	0k = 1,{ a 
ountable set E, physi
ally thought of as 
on�guration spa
e and serving as statespa
e of the jump pro
ess to be 
onstru
ted, and{ a positive-operator-valued measure (POVM) P ( � ) on E a
ting on H .Here, a POVM is a family (P (x))x2E of positive bounded self-adjoint operators on Hsu
h that, for ea
h F � E, the sum P (F ) :=Px2F P (x) exists in the sense of the weakoperator topology, and P (E) = I. In fa
t, the 
ountable additivity then also holds inthe strong topology [12℄. In parti
ular,8� 2H : Xx2E P (x)� 
onverges in the L2 sense to �: (3)3



Every PVM is a POVM but not vi
e versa. As has already been pointed out in [17℄, thejump rate formula (2) still makes sense if P ( � ) is a POVM rather than a PVM.In quantum �eld theory, the \
on�guration observable" P ( � ) is often a POVM; atypi
al situation is that H is a subspa
e (e.g., the positive spe
tral subspa
e of thefree Hamiltonian) of a larger Hilbert spa
e H0 
ontaining also unphysi
al states, andP ( � ) = P 0P0( � )I 0 where P 0 is the proje
tion H0 !H , I 0 is the embedding H ,!H0,and P0( � ) is a PVM (the 
on�guration observable) a
ting on H0.To establish the existen
e of a Markovian jump pro
ess with rates (2) we need thefollowing joint assumption on H, P , and the initial state ve
tor 	0.Assumption A The Hamiltonian H, the POVM P and the state ve
tor 	0 2 Hsatisfy the 
onditions(A1) For all t 2 R and x 2 E, 	t and P (x)	t belong to the domain of H.(A2) For all t0; t1 2 R with t0 < t1,Z t1t0 dt Xx;y2E��h	tjP (y)HP (x)	ti�� <1 :For given H and P , Assumption A 
an also be understood as an assumption on 	0,thus de�ning a set D � DH;P � H of \good" state ve
tors for whi
h the pro
ess iswell-de�ned. This D is invariant under the time evolution but not ne
essarily a subspa
eof H be
ause assumption (A2) is not linear in 	t. The following proposition provides
onditions on H under whi
h Assumption A holds for all 	0 2 H , so that D = H .(For general H we do not know how large D is, and whether it is dense, as would bephysi
ally desirable. We will not presuppose this but instead 
onstru
t the pro
ess solelyfor initial state ve
tors 	0 2 D .)Proposition 1 Assumption A holds for all 	0 2H when either(a) H is bounded and E is �nite, or(b) H is a Hilbert{S
hmidt operator, i.e., trH2 <1.The proof is postponed until Se
tion 5. Assumption (A1) implies that P (y)HP (x)	texists, and thus that�t(yjx) is well de�ned whenever h	tjP (x)	ti 6= 0:When h	tjP (x)	ti = 0, we set �t(yjx) :=1 for all y; thus, �t(yjx) is always de�ned asa [0;1℄-valued fun
tion. (When suitably reinterpreted, the numerator of (2) still existsif P (x)	t and P (y)	t merely lie in the form domain, rather than the domain, of H. Wewill not pursue here this kind of greater generality.)4



As was pointed out in the introdu
tion, the rates �t(yjx) are 
onstru
ted in su
h away that the 
orresponding Markov pro
ess Xt should have the quantum distribution�t(x) := h	tjP (x)	ti ; x 2 E; (4)at any time t 2 R. In other words, the family (�t)t2R should be equivariant, or anentran
e law, for the pro
ess. Here is our main result stating that su
h a pro
ess doesexist.Theorem 1 Suppose Assumption A holds. Then there exists a right-
ontinuous (time-inhomogenous) Markovian pure jump pro
ess (Xt)t2R in E with transition rates (2) andsu
h that, for ea
h t, Xt has distribution �t. The pro
ess is unique in distribution.3 The 
onstru
tionWe �x some starting time t0 2 R and 
onstru
t the pro
ess �rst on the time interval[t0;1[. We also introdu
e an auxiliary \
emetery" 
on�guration M in order to deal withthe possibility that the pro
ess explodes or runs into a node. In the next se
tion we willshow that this does in fa
t not o

ur. We writeN := f(t; x) 2 R � E : �t(x) = 0g (5)for the node-set of all ex
eptional times and positions for whi
h the transition rates (2)are in�nite. Likewise, Et := fx 2 E : �t(x) > 0g (6)is the set of all admissible positions at time t 2 R. Finally, for (t; x) =2 N we let�t;x := inffs > t : (s; x) 2 Ng (7)be the �rst time instant after t at whi
h x be
omes a node; here we set inf ; :=1. Letus start with a te
hni
al lemma; its proof follows later in this se
tion. Formula (8) relieson our 
onvention ~ = 2.Lemma 1 For every x 2 E, the mapping t 7! �t(x) is di�erentiable with lo
ally inte-grable derivative _�t(x) = Im h	tjP (x)H	ti: (8)In parti
ular, the fun
tion ��(x) is lo
ally absolutely 
ontinuous. Also, the jump rates�t(yjx) depend measurably on t with values in [0;1℄, and the total jump rate
x(t) :=Xy2E �t(yjx) (9)is �nite whenever (t; x) =2 N . 5



The pro
ess (Xt)t�t0 will be 
onstru
ted on the enlarged position spa
e E [ fMg bymeans of a suitable sequen
e of random jump times Tn and jump destinations Zn. Toa
hieve this we need two key quantities: the distribution �t;x of the holding time inx 2 E (i.e., the random waiting time before the next jump) after a given time t, andthe distribution pt;x of the the jump destination at the jump time. Our assumption thatthe pro
ess (Xt)t�t0 should have the transition rates (2) simply means that �t;x shouldbe the distribution with \failure rate fun
tion" (or \hazard rate fun
tion") 
x; 
f. e.g.[23, pp. 276 �., 577℄. That is, for any (t; x) =2 N we let �t;x be the unique probabilitymeasure on ℄t;1℄ with \survival probabilities"�t;x([u;1℄) = e��t;x(u) for all u > t, (10)where �t;x(u) = Z ut 
x(s) ds ; (11)in (10) and below we set e�1 = 0. (Note that �t;x is left-
ontinuous by the monotone
onvergen
e theorem, so that there exists indeed a unique probability measure �t;xhaving e��t;x as right-sided distribution fun
tion.) In parti
ular, �t;x(f1g) > 0 if andonly if �t;x(1) <1; thus, in this 
ase there is a non-zero probability for the pro
ess tobe frozen in x. If t = 1 or x =M we let �t;x = Æ1 be the Dira
 measure at +1. Thefollowing lemma 
olle
ts the essential properties of �t;x.Lemma 2 Suppose (t; x) =2 N . Then the following statements hold:(a) On ℄t; �t;x[ , �t;x has the density fun
tion 
x e��t;x.(b) If �t;x <1 then �t;x([�t;x;1℄) = 0.(
) �t;x(0 < 
x <1) = 1.(d) For any u 2 ℄t; �t;x[ , �t;x( ℄u;1℄) > 0 and �u;x = �t;x( � j ℄u;1℄).The proof will be given later in this se
tion. It follows readily from (a) that if wetake �t;x as the the distribution of the holding time at x then the jump rate is indeed
x, as intended. Assertion (b) states that the pro
ess 
annot run into a node by sittingon an x until it be
omes a node: right before x be
omes a node, the rate 
x grows sofast that the pro
ess has probability 1 to jump away. In parti
ular, the unboundednessof the jump rates (even for bounded H, even for Hilbert{S
hmidt H) favours the globalexisten
e rather than preventing it. Statement (d) expresses a loss-of-memory propertywhi
h is responsible for the Markov property of the pro
ess.As for the distribution of the jump destinations, we obviously have to de�nept;x(y) = �t(yjx)=
x(t) if 0 < 
x(t) <1 : (12)Otherwise we set pt;x = ÆM, the Dira
 measure at M. The next lemma states that pt;x issupported on the set Et of non-nodes de�ned in (6).6



Lemma 3 pt;x(Et) = 1 whenever 0 < 
x(t) <1.With these ingredients we are now ready to 
onstru
t the pro
ess (Xt)t�t0 on E[fMg.Let (Tn; Zn)n�0 be a sequen
e of random variables with the following properties. LetT0 := t0 and Z0 2 Et0 be a random variable with distribution �t0 . Then, for any n � 0,let (Tn+1; Zn+1) have the 
onditional distributionP�Tn+1 2 dt; Zn+1 = y jT0; Z0; : : : ; Tn; Zn� = �Tn;Zn(dt) pt;Zn(y) : (13)The existen
e of su
h a sequen
e (Tn; Zn)n�0 on a suitable probability spa
e (
t0 ;Ft0;Pt0)follows from the Iones
u{Tul
ea theorem [19, Theorem 5.17℄. Moreover, Lemmas 2 and 3imply that Tn+1 < �Tn;Zn and Zn 2 ETn almost surely for all n. We also have Tn < Tn+1as long as Tn <1. So we de�neXt = Zn when Tn � t < Tn+1; and Xt =M for t � � = supn Tn : (14)It is then 
lear that (Xt)t�t0 is right-
ontinuous, and (t; Xt) =2 N for all t 2 [t0; �[ withprobability 1. In the next se
tion we will show that in fa
t � =1 almost surely.We now turn to the proofs of the lemmas above. Re
all our 
onvention that ~ = 2.Proof of Lemma 1: Sin
e 	t belongs to the domain of H by Assumption (A1), the H -valued mapping t 7! 	t is di�erentiable with derivative d	t=dt = � i2H	t [22, p. 265℄.Hen
e��t+s(x)� �t(x)�=s = h	t+sjP (x)(	t+s � 	t)=si+ h(	t+s � 	t)=sjP (x)	ti
onverges, as s! 0, to_�t(x) := � i2 h	tjP (x)H	ti+ i2 hH	tjP (x)	ti = Im h	tjP (x)H	ti :As a limit of the 
ontinuous di�eren
e ratios, t 7! _�t(x) is measurable. Moreover, using(3) we 
an write�� _�t(x)�� � ��h	tjP (x)H	ti�� = ��hHP (x)	tj	ti��= ���Xy2EhHP (x)	tjP (y)	ti��� �Xy2E��h	tjP (x)HP (y)	ti�� :Together with Assumption (A2), it follows that _�t(x) is lo
ally integrable. In parti
ular,t 7! �t(x) is lo
ally absolutely 
ontinuous and an integral fun
tion of t 7! _�t(x); see [10,Theorem 6.3.10℄ or [25, Theorems 8.21 and 8.17℄.Con
erning the measurability of the jump rates �t(yjx), it is suÆ
ient to show thath	tjP (y)HP (x)	ti depends measurably on t. (This is be
ause ��(x) is 
ontinuous andthe ratio of nonnegative measurable fun
tions is measurable.) To this end, we introdu
ethe 
uto� fun
tion fn(a) := (a ^ n) _ (�n) and observe that, for every t,h	tjP (y)fn(H)P (x)	ti ! h	tjP (y)HP (x)	ti7



as n ! 1. Hen
e t 7! h	tjP (y)HP (x)	ti is a pointwise limit of 
ontinuous fun
tionsand thereby measurable. In parti
ular, the total jump rate 
x is measurable. For(t; x) =2 N we have 
x(t) �Xy2E��h	tjP (y)HP (x)	ti��Æ�t(x) :The last sum is �nite be
ause, due to (3), the series Pyh	tjP (y)HP (x)	ti 
onvergesto h	tjHP (x)	ti in every ordering, and is therefore absolutely 
onvergent. �Before proving Lemma 2 we establish the following result, a key fa
t for showingthat the pro
ess never runs into a node. Re
all the de�nitions (7) and (11).Lemma 4 Suppose (t; x) =2 N . Then �t;x(u) < 1 if t < u < �t;x, while �t;x(�t;x) = 1if �t;x <1.Proof: Consider �rst the 
ase t < u < �t;x. Sin
e ��(x) is 
ontinuous and positive on[t; u℄, it stays bounded away from zero on this interval. On the other hand, we haveZ ut dsXy2E�Im h	sjP (y)HP (x)	si�+ � Z ut dsXy2E��h	sjP (y)HP (x)	si�� ;and the last integral is �nite due to Assumption (A2). This proves the �rst assertion.Consider now the 
ase �t;x <1. Sin
ePi a+i � �Pi ai�+ in general, we have for allt < s < �t;x 
x(s) � �ImXy h	sjP (y)HP (x)	si�+Æ�s(x) :In view of (3) and Lemma 1, the last expression is equal to�Im h	sjHP (x)	si�+Æ�s(x) = �� _�s(x)�+Æ�s(x) :Sin
e always a+ � a, we arrive at the key inequality
x(s) � � dds log�s(x) :The last derivative is integrable over any interval [t; u℄ with t < u < �t;x be
ause�s(x) is bounded away from zero on su
h an interval and _�s(x) is lo
ally integrableby Lemma 1. By the general fundamental theorem of 
al
ulus as in [10, Theorem6.3.10℄ or [25, Theorem 8.21℄, it follows thatZ ut 
x(s) ds � � Z ut dds log�s(x) ds = log �t(x)� log�u(x):Letting u " �t;x and using the 
ontinuity of �u(x) we arrive at the se
ond statement ofthe lemma. �We are now ready for the proof of Lemma 2.8



Proof of Lemma 2: (a) Let t < u < �t;x. Instead of using the fundamental theoremof 
al
ulus (whi
h would be possible), we prefer to give here a dire
t argument whi
his based on Fubini's theorem. In view of Lemma 4, �t;x is �nite on [t; u℄. Thus we 
anwrite, omitting the indi
es t; x,Z ut 
(s) e��(s)ds = Z ut ds 
(s) Z 10 dr e�r 1f�(s)�rg= Z 10 dr e�r Z ut ds 
(s) 1f�(s)�rg = Z 10 dr e�r (r ^ �(u)) :The last equality uses the fa
t that � is 
ontinuous and in
reasing. Sin
e r ^ �(u) =r � [r � �(u)℄+, the last integral 
oin
ides with 1 � e��(u) = �t;x(℄t; u℄), thus provingassertion (a).(b) This is immediate from (10) and Lemma 4.(
) This 
omes from statements (a) and (b) together with Lemma 1.(d) Let t < u < �t;x. Sin
e �t;x(u) < 1 by Lemma 4, Equation (10) shows that�t;x( ℄u;1℄) > 0. Moreover, for v > u we have�t;x� ℄v;1℄ �� ℄u;1℄� = e��t;x(v)+�t;x(u) = e��u;x(v) = �u;x� ℄v;1℄ �by Equation (11). This proves the �nal statement. �We 
on
lude this se
tion with the proof of Lemma 3.Proof of Lemma 3: We only have to to show that �t(yjx) = 0 whenever �t(y) = 0.But sin
e kP (y)1=2	tk2 = �t(y), we then have P (y)1=2	t = 0. Hen
e P (y)	t = 0 andtherefore h	tjP (y)HP (x)	ti = hP (y)	tjHP (x)	ti = 0, whi
h gives the result. �4 Non-explosionIn the last se
tion we have 
onstru
ted a pro
ess (Xt)t�t0 that stays in the 
on�gurationspa
e E until some possibly �nite explosion time � = supn Tn, at whi
h it jumps intothe 
emetery M. We will now show that � is in fa
t almost surely in�nite. To this endwe 
onsider the random numberS(t) := #fn � 1 : t0 < Tn � tg 2 Z+ [ f1g (15)of jumps during the time interval ℄t0; t℄ for any t > t0. We want to show that S(t) has�nite expe
tation. To this end we start from the following formula.Lemma 5 For all t > t0,E t0 S(t) = Z tt0 ds Xx;y2E Pt0(Xs = x) �s(yjx) :9



To estimate the last expression we will show:Lemma 6 Pt0(Xt = x) � �t(x) for all x 2 E and t > t0.In other words, though the rates are 
onstru
ted in su
h a way that the pro
essshould follow the equivariant distribution �t, we 
annot ex
lude a priori that somemass is lost at the 
emetery M. Combining these two lemmas we obtainE t0 S(t) � Z tt0 ds Xx;y2E �s(x) �s(yjx)= Z tt0 ds Xx;y2E�Im h	sjP (y)HP (x)	si�+� Z tt0 ds Xx;y2E��h	sjP (y)HP (x)	si�� ;and the last expression is �nite by Assumption (A2). Hen
e S(t) < 1 almost surely,and thereby � > t almost surely. As t was arbitrary, we 
on
lude that � = 1 almostsurely, as we wanted to show. We now turn to the proofs of the two lemmas above.Proof of Lemma 5: Using Equation (13) and Lemma 2 we 
an writeE t0 S(t) =Xn�0 Pt0(t0 � Tn+1 � t) =Xn�0 E�Pt0�t0 � Tn+1 � t jTk; Zk : k � n��=Xn�0 E Z tt0 ds 1fTn<s<�Tn;Zng 
Zn(s) e��Tn;Zn(s)=Xn�0 Z tt0 ds E�1fTn<sg 
Zn(s)Pt0�Tn+1 > s jTk; Zk : k � n��= Z tt0 dsXx2E 
x(s) E�Xn�0 1fTn<t<Tn+1; Zn=xg�= Z tt0 dsXx2E 
x(s)Pt0(Xs = x) :Together with (9) the lemma follows. �For the proof of Lemma 6 we 
onsider the integral equation�t(x) = �t0(x) e��t0;x(t) +Xy2E Z tt0 ds �s(y) �s(xjy) e��s;x(t) ; (16)t � t0; x 2 E, for a time-dependent subprobability measure �t on E. Lemma 6 followsdire
tly from the next two results. 10



Lemma 7 The mapping (t; x) 7! Pt0 (Xt = x) is the minimal solution of (16).Lemma 8 The mapping (t; x) 7! �t(x) is a solution of (16) for arbitrary t0.Proof of Lemma 7: For any x 2 E and t > t0 we 
an writePt0(Xt = x) =Xn�0 An(t; x) with An(t; x) := Pt0�Tn � t < Tn+1; Zn = x�:It follows from (10) that A0(t; x) = �t0(x) e��t0;x(t) (17)and, for n � 1,An(t; x) = Xx0;:::;xn�12E Z � � �Zt0<t1<���<tn�t� Pt0�T1 2 dt1; : : : ; Tn 2 dtn; Tn+1 > t; Z0 = x0; : : : ; Zn = xn�= Xx0;:::;xn�12E Z � � �Zt0<t1<���<tn�t dt1 � � �dtn� �t0(x0)� nYi=1 e��ti�1;xi�1(ti)�ti(xijxi�1)� e��tn;x(t) ;where xn := x. In parti
ular, separating the summation over xn�1 and the integrationover tn we �nd thatAn(t; x) =Xy2E Z tt0 ds An�1(s; y) �s(xjy) e��s;x(t) : (18)This shows that Pt0(Xt = x) satis�es (16).Now let �t(x) be an arbitrary (nonnegative) solution of (16). An (N�1)-fold iterationof (16) then leads to the equation�t(x) = N�1Xn=0 An(t; x) +RN(t; x);with An(t; x) de�ned by (17) and (18), and the remainder termRN(t; x) = Xx0;:::;xN�12E Z � � �Zt0<t1<���<tN�t dt1 � � �dtN� �t1(x0)�N�1Yi=1 �ti(xijxi�1) e��ti;xi(ti+1)� �tN (xjxN�1) e��tN ;x(t) :11



(Compared with AN(t; x), RN (t; x) involves �t1 rather than �t0 = �t0 , and the �'s ande��'s run in a di�erent order.) Sin
e RN (t; x) � 0, we see that �t(x) ex
eeds ea
h partialsum of the in�nite series 
onstituting Pt0 (Xt = x). This proves Lemma 7. �Proof of Lemma 8: We start from the observation that, by (8), (3), (2) and the self-adjointness of H and P (x),_�t(x) = Im hHP (x)	tj	ti =Xy2E Im hHP (x)	tjP (y)	ti=Xy2E��t(y) �t(xjy)� �t(x) �t(yjx)�=Xy2E �t(y) �t(xjy)� �t(x) 
x(t)This means that the integral equation (16) for �t(x) takes the form�t(x)� �t0(x) e��t0;x(t) = Z tt0 ds � _�s(x) + �s(x) 
x(s)�e��s;x(t): (19)To establish this equation we write for brevity f(s) = �s(x) and g(s) = e��s;x(t) anddistinguish two 
ases.Case 1: f > 0 on [t0; t℄; that is, x is never a node on this interval. Then, byLemma 4, 
x is integrable over [t0; t℄, when
e s 7! �s;x(t) is absolutely 
ontinuous withderivative �
x. Sin
e the exponential fun
tion is Lips
hitz on ℄�1; 0℄, it follows that gis absolutely 
ontinuous with derivative _g = 
x g Lebesgue-almost-everywhere; see [10,Corollary 6.3.7℄ or [25, Theorem 8.17℄. Equation (19) is thus equivalent to the partialintegration formulaf(t)g(t)� f(t0)g(t0) = Z tt0 � _f(s)g(s) + f(s) _g(s)�dswhi
h holds a

ording to Corollary 6.3.8 of [10℄.Case 2: f(s) = 0 for some s 2 [t0; t℄; that is, x is a node at some time s. By the
ontinuity of f , there exists then a largest su
h s in [t0; t℄, say �. Suppose �rst that� = t0. We 
an then apply Case 1 to ea
h subinterval [t�; t℄ of [t0; t℄, whi
h yields (19)with t� in pla
e of t0. Let I(t�) be the 
orresponding integral on the right-hand side.Sin
e the integrand is nonnegative, we 
an use the monotone 
onvergen
e theorem to
on
lude that I(t�) " I(t0) as t� # t0. On the other hand, f(t�)g(t�)! 0 = f(t0)g(t0) ast� # t0 be
ause f is 
ontinuous and 0 � g � 1. This proves (19) in the 
ase � = t0.If � > t0, we observe that �s;x(t) =1 for all s < �. Indeed, we even have �s;x(�) =1. This is evident when ℄s; �[ 
onsists only of node-times be
ause then 
x is in�nite onthis interval; otherwise it follows from the se
ond statement of Lemma 4 applied to thesegment from a non-node-time between t and � to the next node-time. Consequently,the left-hand side of (19) is equal to f(t), while the integrand on the right-hand side12



vanishes on [t0; �[. This means that we have to establish (19) with t0 repla
ed by �. Butthis is trivial when � = t be
ause then both sides vanish, and otherwise follows from theprevious paragraph. �It is now easy to 
omplete the proof of the theorem.Proof of Theorem 1: As we have shown above, for any t0 2 R there exists a right-
ontinuous pure jump pro
ess (Xt)t�t0 on a suitable probability spa
e (
t0 ;Ft0 ;Pt0).Sin
e � = 1 almost surely, this pro
ess avoids the 
emetery M and thus takes valuesin E. Hen
e Px2E Pt0(Xt = x) = 1 for all t � t0. Lemma 6 therefore implies thatPt0(Xt = x) = �t(x) for all x 2 E and t > t0. In parti
ular, if Et is given by (6) thenXt 2 Et for all t � t0 with probability 1.We also note that (Xt)t�t0 is Markovian; its transition matrix from time s to time tgiven by Ps;t(x; �) = Ps(Xt = � jXs = x)when x 2 Es, and arbitrary otherwise. This follows dire
tly from the 
onstru
tion to-gether with Lemma 2(d). In parti
ular, the distribution Pt0 of (Xt)t�t0 on the Skorohodspa
e D([t0;1[; E) of all 
�adl�ag1 paths from [t0;1[ to E is uniquely determined, andthe family (Pt0)t02R is 
onsistent. Kolmogorov's extension theorem [19, Theorem 5.16℄therefore provides us with a probability measure P on ER whi
h extends all distributionsPt0 and is therefore 
on
entrated on D(R; E), the spa
e of all 
�adl�ag paths on R. UnderP, the 
anoni
al 
oordinate pro
ess 
onstitutes the global Markov jump pro
ess withthe desired properties. �5 Proof of Proposition 1First we 
onsider 
ase (a). Sin
e H is bounded, assumption (A1) holds trivially. Theboundedness of H also implies that the expression h	tjP (x)HP (y)	ti is (well de�nedand) a 
ontinuous fun
tion of t for every x and y. As E is �nite, the integrand inAssumption (A2) is 
ontinuous and therefore lo
ally integrable.Turning to 
ase (b), we observe �rst that assumption (A1) is again trivially satis�edbe
ause Hilbert{S
hmidt operators are bounded. Assumption (A2) will follow from theinequality Xx;y2E��h	jP (x)HP (y)	i�� � k	k2ptrH2 8	 2H (20)whi
h we prove now.We start with a general remark. Let I be a 
ountable index set and Ai and Bi,i 2 I , any Hilbert{S
hmidt operators with (possibly di�erent) adjoints A�i resp. B�i ;i.e., we have trA�iAi < 1 and similarly for Bi. The Cau
hy{S
hwarz inequality thenasserts that Xi2I jtrA�iBij � �Xi2I trA�iAi�1=2 �Xi2I trB�iBi�1=2 (21)1
ontinues �a droite ave
 des limites �a gau
he = right-
ontinuous with left limits.13



whenever both terms on the right hand side are �nite. (Note that we 
an put the modulussign inside of the sum be
ause we 
an repla
e Ai by ziAi with zi = (trA�iBi)=jtrA�iBijwhenever trA�iBi 6= 0.)To obtain (20) from (21), we set I = E � E, Ax;y = P (x)1=2P	P (y)1=2 withP	 = j	ih	j the proje
tion to C	, and Bx;y = P (x)1=2HP (y)1=2. Then trA�x;yBx;y =h	jP (x)HP (y)	i: To see that Ax;y is a Hilbert{S
hmidt operator, we note thattrA�x;yAx;y = tr�P (y)1=2P	P (x)P	P (y)1=2� = h	jP (x)	ih	jP (y)	i <1:It follows further from (3) thatXx;y trA�x;yAx;y =Xx;y h	jP (x)	ih	jP (y)	i = k	k4:Next we show that Bx;y is a Hilbert{S
hmidt operator. Note that 0 � P (x) � Isin
e I � P (x) = P (E n fxg) � 0. This implies that 0 � h�jP (x)�i � h�j�i for all� 2 H . Setting � := C�n for any Hilbert{S
hmidt operator C and an orthonormalbasis f�n : n 2 Ng of H we �ndXn2Nh�njC�P (x)C�ni �Xn2Nh�njC�C�niand thus trC�P (x)C � trC�C: (22)That is, if C is a Hilbert{S
hmidt operator then so is P (x)1=2C; and so is CP (x)1=2 =(P (x)1=2C�)�. As a 
onsequen
e, Bx;y is a Hilbert{S
hmidt operator.Finally, we need to show thatXx;y2E trB�x;yBx;y � trH2:For every �nite subset F � E we have, using the linearity of the tra
e and its invarian
eunder 
y
li
 permutations,Xx;y2F trB�x;yBx;y = Xx;y2F trHP (x)HP (y) = trHP (F )HP (F )= tr�P (F )1=2HP (F )1=2���P (F )1=2HP (F )1=2� � trH2 :The last inequality 
omes from the fa
t that, a

ording to (22), the Hilbert{S
hmidtnorm kCkHS = ptrC�C of an operator C 
an only de
rease when C is multiplied, fromthe left or from the right, by P 1=2 where 0 � P � I. Taking the supremum over all�nite subsets F and 
ombining all inequalities above we arrive at (20).A
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