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1 Introdu
tionThe aim of this paper is to present methods for 
onstru
ting Bell-type QFTs. These havein 
ommon a good deal of mathemati
al stru
ture, whi
h we will elu
idate. The primaryvariables of Bell-type QFTs are the positions of the parti
les. Bell suggested a dynami
allaw, governing the motion of the parti
les, in whi
h the Hamiltonian H and the stateve
tor 	 determine 
ertain jump rates [3℄. Sin
e these rates are in a sense the smallest
hoi
e possible, we 
all them the minimal jump rates. By 
onstru
tion, they preserve thej	j2 distribution. We assume a well-de�ned Hamiltonian as given; to a
hieve this, it isoften ne
essary to introdu
e 
ut-o�s. We shall assume this has been done where needed.In 
ases in whi
h one has to 
hoose between several possible position observables, forexample be
ause of issues related to the Newton{Wigner operator [27, 23℄, we shall alsoassume that a 
hoi
e has been made.Bell-type QFTs 
an also be regarded as extensions of Bohmian me
hani
s. Whenone tries to in
orporate parti
le 
reation and annihilation into Bohmian me
hani
s, oneis naturally lead to models like the one we presented in [14℄. The quantum equilibriumdistribution, playing a 
entral role in Bohmian me
hani
s, then more or less di
tatesthat 
reation of a parti
le o

urs in a sto
hasti
 manner|just as in Bell's model.The paper is organized as follows. In Se
tion 2 we introdu
e all the main ideasand reasonings; a super�
ial reading should fo
us on this se
tion. Some examples ofBell-type QFTs are presented in Se
tion 3. (Simple examples of minimal jump rates
an be found in [15℄.) In Se
tion 4 we des
ribe the 
onstru
tion of a pro
ess for thefree Hamiltonian based on \se
ond quantization." In Se
tion 5 we sket
h the 
on
eptof the \minimal pro
ess" asso
iated with a Hamiltonian H. Se
tion 6 
on
erns someproperties of Bell-type QFTs that derive from the 
onstru
tion methods developed inthis paper. In Se
tion 7 we 
on
lude.2 Ingredients of Bell-Type Quantum Field Theories2.1 Review of Bohmian Me
hani
s and Equivarian
eBohmian me
hani
s [6, 19, 21℄ is a non-relativisti
 theory aboutN point parti
les movingin 3-spa
e, a

ording to whi
h the 
on�guration Q = (Q1; : : : ;QN) evolves a

ording tothe de Broglie{Bohm law1 dQdt = v(Q) ; v = ~ Im 	�r		�	 : (1)	 = 	t(q) is the wave fun
tion, whi
h evolves a

ording to the S
hr�odinger equationi~�	�t = H	 ; (2)1The masses mk of the parti
les have been absorbed in the Riemann metri
 g�� on 
on�gurationspa
e R3N , gia;jb = mi Æij Æab, i; j = 1 : : :N; a; b = 1; 2; 3, and r is the gradient asso
iated with g�� ,i.e., r = (m�11 rq1 ; : : : ;m�1N rqN ). 3



with H = �~22 � + V (3)for spinless parti
les, with � = divr. For parti
les with spin, 	 takes values in theappropriate spin spa
e C k , V may be matrix valued, and numerator and denominatorof (1) have to be understood as involving inner produ
ts in spin spa
e. The key tothe su

ess of Bohmian me
hani
s in yielding the predi
tions of standard quantumme
hani
s is the fa
t that the 
on�guration Qt is j	tj2-distributed in 
on�gurationspa
e at all times t, provided that the initial 
on�guration Q0 (part of the Cau
hy dataof the theory) is so distributed. This property, 
alled equivarian
e in [19℄, suÆ
es forempiri
al agreement between any quantum theory (su
h as a QFT) and any versionthereof with additional (often 
alled \hidden") variables Q, provided the out
omes ofall experiments are registered or re
orded in these variables. That is why equivarian
ewill be our guide for obtaining the dynami
s of the parti
les.The equivarian
e of Bohmian me
hani
s follows immediately from 
omparing the
ontinuity equation for a probability distribution � asso
iated with (1),���t = � div (�v) ; (4)with the equation satis�ed by j	j2 whi
h follows from (2),�j	j2�t (q; t) = 2~ Im h	�(q; t) (H	)(q; t)i : (5)In fa
t, it follows from (3) that2~ Im h	�(q; t) (H	)(q; t)i = � div h~ Im	�(q; t)r	(q; t)i (6)so, re
alling (1), one obtains that�j	j2�t = � div (j	j2v) ; (7)and hen
e that if �t = j	tj2 at some time t then �t = j	tj2 for all times. Equivarian
eis an expression of the 
ompatibility between the S
hr�odinger evolution for the wavefun
tion and the law, su
h as (1), governing the motion of the a
tual 
on�guration. In[19℄, in whi
h we were 
on
erned only with the Bohmian dynami
s (1), we spoke of thedistribution j	j2 as being equivariant. Here we wish to �nd pro
esses for whi
h we haveequivarian
e, and we shall therefore speak of equivariant pro
esses and motions.2.2 Equivariant Markov Pro
essesThe study of example QFTs like that of [14℄ has lead us to the 
onsideration of Markovpro
esses as 
andidates for the equivariant motion of the 
on�guration Q for Hamilto-nians H more general than those of the form (3).4



Consider a Markov pro
ess Qt on 
on�guration spa
e. The transition probabilitiesare 
hara
terized by the ba
kward generator Lt, a (time-dependent) linear operatora
ting on fun
tions f on 
on�guration spa
e:Ltf(q) = ddsE (f(Qt+s)jQt = q) (8)where d=ds means the right derivative at s = 0 and E ( � j � ) denotes the 
onditionalexpe
tation. Equivalently, the transition probabilities are 
hara
terized by the forwardgenerator Lt (or, as we shall simply say, generator), whi
h is also a linear operator buta
ts on (signed) measures on the 
on�guration spa
e. Its de�ning property is that forevery pro
ess Qt with the given transition probabilities, the distribution �t of Qt evolvesa

ording to ��t�t = Lt�t : (9)Lt is the adjoint of Lt in the sense thatZ f(q)Lt�(dq) = Z Ltf(q) �(dq) : (10)We will use both Lt and Lt, whi
hever is more 
onvenient. We will en
ounter severalexamples of generators in the subsequent se
tions.We 
an easily extend the notion of equivarian
e from deterministi
 to Markov pro-
esses. Given the Markov transition probabilities, we say that the j	j2 distribution isequivariant if and only if for all times t and t0 with t < t0, a 
on�guration Qt with dis-tribution j	tj2 evolves, a

ording to the transition probabilities, into a 
on�guration Qt0with distribution j	t0j2. In this 
ase, we also simply say that the transition probabilitiesare equivariant, without expli
itly mentioning j	j2. Equivarian
e is equivalent toLtj	tj2 = �j	tj2�t (11)for all t. When (11) holds (for a �xed t) we also say that Lt is an equivariant generator(with respe
t to 	t and H). Note that this de�nition of equivarian
e agrees with theprevious meaning for deterministi
 pro
esses.We 
all a Markov pro
ess Q equivariant if and only if for every t the distribution �tof Qt equals j	tj2. For this to be the 
ase, equivariant transition probabilities are ne
-essary but not suÆ
ient. (While for a Markov pro
ess Q to have equivariant transitionprobabilities amounts to the property that if �t = j	tj2 for one time t, where �t denotesthe distribution of Qt, then �t0 = j	t0j2 for every t0 > t, a

ording to our de�nition ofan equivariant Markov pro
ess, in fa
t �t = j	tj2 for all t.) However, for equivarianttransition probabilities there exists a unique equivariant Markov pro
ess.Noting that (5) is 
ompletely general, the 
ru
ial idea for our 
onstru
tion of anequivariant Markov pro
ess is to �nd a generator Lt su
h that the right hand side of(5) 
an be read as the a
tion of L on � = j	j2,2~ Im	�H	 = L j	j2 : (12)5



We shall implement this idea beginning in Se
tion 2.6, after a review of jump pro
essesand some general 
onsiderations. But �rst we shall illustrate the idea with the familiar
ase of Bohmian me
hani
s.For H of the form (3), we have (6) and hen
e that2~ Im	�H	 = � div (~ Im	�r	) = � div �j	j2~ Im 	�r	j	j2 � : (13)Sin
e the generator of the (deterministi
) Markov pro
ess 
orresponding to the dynam-i
al system dQ=dt = v(Q) given by a velo
ity ve
tor �eld v isL � = � div (�v) ; (14)we may re
ognize the last term of (13) as L j	j2 with L the generator of the determin-isti
 pro
ess de�ned by (1). Thus, as is well known, Bohmian me
hani
s arises as thenatural equivariant pro
ess on 
on�guration spa
e asso
iated with H and 	.To be sure, Bohmian me
hani
s is not the only solution of (12) for H given by(3). Among the alternatives are Nelson's sto
hasti
 me
hani
s [26℄ and other velo
ityformulas [12℄. However, Bohmian me
hani
s is the most natural 
hoi
e, the one mostlikely to be relevant to physi
s. It is, in fa
t, the 
anoni
al 
hoi
e, in the sense of minimalpro
ess whi
h we shall explain in Se
tion 5.3.2.3 Equivariant Jump Pro
essesLet Q denote the 
on�guration spa
e of the pro
ess, whatever sort of spa
e that maybe (ve
tor spa
e, latti
e, manifold, et
.); mathemati
ally speaking, we need that Q be ameasurable spa
e. A (pure) jump pro
ess is a Markov pro
ess on Q for whi
h the onlymotion that o

urs is via jumps. Given that Qt = q, the probability for a jump to q0,i.e., into the in�nitesimal volume dq0 about q0, by time t + dt is �t(dq0jq) dt, where � is
alled the jump rate. In this notation, � is a �nite measure in the �rst variable; �(Bjq)is the rate (the probability per unit time) of jumping to somewhere in the set B � Q,given that the present lo
ation is q. The overall jump rate is �(Qjq).It is often the 
ase that Q is equipped with a distinguished measure, whi
h we shalldenote by dq or dq0, slightly abusing notation. For example, if Q = Rd , dq may be theLebesgue measure, or if Q is a Riemannian manifold, dq may be the Riemannian volumeelement. When �( � jq) is absolutely 
ontinuous relative to the distinguished measure,we also write �(q0jq) dq0 instead of �(dq0jq). Similarly, we sometimes use the letter � fordenoting a measure and sometimes the density of a measure, �(dq) = �(q) dq.A jump �rst o

urs when a random waiting time T has elapsed, after the time t0 atwhi
h the pro
ess was started or at whi
h the most re
ent previous jump has o

urred.For purposes of simulating or 
onstru
ting the pro
ess, the destination q0 
an be 
hosenat the time of jumping, t0 + T , with probability distribution �t0+T (Qjq)�1 �t0+T ( � jq).In 
ase the overall jump rate is time-independent, T is exponentially distributed withmean �(Qjq)�1. When the rates are time-dependent|as they will typi
ally be in what6



follows|the waiting time remains su
h thatZ t0+Tt0 �t(Qjq) dtis exponentially distributed with mean 1, i.e., T be
omes exponential after a suitable(time-dependent) res
aling of time. For more details about jump pro
esses, see [8℄.The generator of a pure jump pro
ess 
an be expressed in terms of the rates:L��(dq) = Zq02Q ��(dqjq0)�(dq0)� �(dq0jq)�(dq)� ; (15)a \balan
e" or \master" equation expressing ��=�t as the gain due to jumps into dqminus the loss due to jumps away from q.We shall say that jump rates � are equivariant if L� is an equivariant generator. Itis one of our goals in this paper to des
ribe a general s
heme for obtaining equivariantjump rates. In Se
tions 2.6 and 2.7 we will explain how this leads us to the minimaljump rates, formula (29).2.4 Pro
ess AdditivityThe Hamiltonian of a QFT usually 
omes as a sum, su
h asH = H0 +HI (16)with H0 the free Hamiltonian and HI the intera
tion Hamiltonian. If several parti
lespe
ies are involved, H0 is itself a sum 
ontaining one free Hamiltonian for ea
h spe
ies.The left hand side of (12), whi
h should govern our 
hoi
e of the generator, is then alsoa sum, 2~ Im	�H0	+ 2~ Im	�HI	 = L j	j2 : (17)This opens the possibility of �nding a generator L by setting L = L0 +LI , providedwe have generators L0 and LI 
orresponding to H0 and HI in the sense that2~ Im	�H0	 = L0j	j2 (18a)2~ Im	�HI	 = LI j	j2 : (18b)This feature of (12) we 
all pro
ess additivity ; it is based on the fa
t that the left handside of (12) is linear in H. Note that the ba
kward generator of the pro
ess with forwardgenerator L0 +LI is L0 + LI ; thus forward and ba
kward generators lead to the samenotion of pro
ess additivity, and to the same pro
ess 
orresponding to H0 + HI . Inmany 
ases, as will be elaborated in Se
tion 2.8, H0 is based on an operator known fromquantum me
hani
s (e.g., the Dira
 operator), in su
h a way that L0 
an be obtained7



from the appropriate Bohmian law of motion. In Se
tion 2.6 we will explain how LI
an usually be taken as the generator of a jump pro
ess.Our proposal is to take seriously the pro
ess generated by L = L0+LI and regardit as the pro
ess naturally asso
iated with H. The bottom line is that pro
ess additivityprovides a method of 
onstru
ting a Bell-type theory.Obviously, the mathemati
al observation of pro
ess additivity (that sums of gener-ators de�ne an equivariant pro
ess asso
iated with sums of Hamiltonians) applies notonly to the splitting of H into a free and an intera
tion 
ontribution, but to every 
asewhere H is a sum. And it seems that pro
ess additivity provides a physi
ally very rea-sonable pro
ess in every 
ase where H is naturally a sum, in fa
t the most reasonablepro
ess: the one that should be 
onsidered the Bell-type pro
ess, de�ning the Bell-typetheory.2.5 What Added Pro
esses May Look LikeTo get some feeling for what addition of generators, L = L1 +L2, means for the 
or-responding pro
esses, we 
onsider some examples. First 
onsider two deterministi
 pro-
esses (on the same 
on�guration spa
e), having generators of the formL � = � div (�v).To add the generators obviously means to add the velo
ity ve
tor �elds, v = v1 + v2, sothe resulting velo
ity is a superposition of two 
ontributions.Next 
onsider a pure jump pro
ess. Sin
e, a

ording to (15), the generator L islinear in �, adding generators means adding rates, � = �1 + �2. This is equivalent tosaying there are two kinds of jumps: if the present lo
ation is q 2 Q, with probability�1(Qjq) dt the pro
ess performs a jump of the �rst type within the next dt time units, andwith probability �2(Qjq) dt a jump of the se
ond type. That does not mean, however,that one 
an de
ide from a given realization of the pro
ess whi
h jump was of whi
htype.Next suppose we add the generators of a deterministi
 and a jump pro
ess,L �(q) = � div (�v)(q) + Zq02Q ��(qjq0) �(q0)� �(q0jq) �(q)�dq0 : (19)This pro
ess moves with velo
ity v(q) until it jumps to q0, where it 
ontinues moving,with velo
ity v(q0). The jump rate may vary with time in two ways: �rst be
ause �may be time-dependent, se
ond be
ause � may be position-dependent and Qt moveswith velo
ity v. One 
an easily understand (19) in terms of gain or loss of probabilitydensity due to motion and jumps. So this pro
ess is pie
ewise deterministi
: althoughthe temporal length of the pie
es (the intervals between two subsequent jumps) and thestarting points (the jump destinations) are random, given this data the traje
tory isdetermined.The generator of the Wiener pro
ess in Rd is the Lapla
ian, and to add to it thegenerator of a deterministi
 pro
ess means to introdu
e a drift. Note that this is di�erentfrom adding, in Rd , a Wiener pro
ess to a solution of the deterministi
 pro
ess. In spa
eslike Rd , where it so happens that one is allowed to add lo
ations, there is a danger of8




onfusing addition of generators with addition of realizations. Whenever we speak ofadding pro
esses, it means we add generators.To add generators of a di�usion and a pure jump pro
ess yields what is often 
alled ajump di�usion pro
ess, one making jumps with time- and position-dependent rates andfollowing a di�usion path in between. Di�usion pro
esses, however, will play almost norole in this paper.2.6 Integral Operators Correspond to Jump Pro
essesWe now address the intera
tion part HI of the Hamiltonian (16). In QFTs with 
uto�sit is usually the 
ase that HI is an integral operator. For that reason, we shall in thiswork fo
us on integral operators for HI . We now point out why the naturally asso
iatedpro
ess is a pure jump pro
ess. For short, we will write H rather than HI in this andthe subsequent se
tion. For the time being, think of Q as Rd and of wave fun
tions as
omplex valued.What 
hara
terizes jump pro
esses versus 
ontinuous pro
esses is that some amountof probability that vanishes at q 2 Q 
an reappear in an entirely di�erent region of
on�guration spa
e, say at q0 2 Q. This is manifest in the equation for ��=�t, (15):the �rst term in the integrand is the probability in
rease due to arriving jumps, these
ond the de
rease due to departing jumps, and the integration over q0 re
e
ts that q0
an be anywhere in Q. This suggests that Hamiltonians for whi
h the expression (5)for �j	j2=�t is naturally an integral over dq0 
orrespond to pure jump pro
esses. Sowhen is the left hand side of (12) an integral over dq0? When H is an integral operator,i.e., when hqjHjq0i is not merely a formal symbol, but represents an integral kernel thatexists as a fun
tion or a measure and satis�es(H	)(q) = Z dq0 hqjHjq0i	(q0) : (20)In this 
ase, we should 
hoose the jump rates in su
h a way that, when � = j	j2,�(qjq0) �(q0)� �(q0jq) �(q) = 2~ Im	�(q) hqjHjq0i	(q0) ; (21)and this suggests, sin
e jump rates must be nonnegative (and the right hand side of (21)is anti-symmetri
), that�(qjq0) �(q0) = h2~ Im	�(q) hqjHjq0i	(q0)i+(where x+ denotes the positive part of x 2 R, that is, x+ is equal to x for x > 0 and iszero otherwise), or �(qjq0) = �(2=~) Im	�(q) hqjHjq0i	(q0)�+	�(q0)	(q0) : (22)These rates are an instan
e of what we 
all the minimal jump rates asso
iated with H(and 	). The name 
omes from the fa
t that they are a
tually the minimal possible9



values given (21), as is expressed by the inequality (114) and will be explained in detailin Se
tion 5.2. Minimality entails that at any time t, one of the transitions q1 ! q2 orq2 ! q1 is forbidden. We will 
all the pro
ess de�ned by the minimal jump rates theminimal jump pro
ess (asso
iated with H).In 
ontrast to jump pro
esses, 
ontinuous motion, as in Bohmian me
hani
s, 
or-responds to su
h Hamiltonians that the formal matrix elements hqjHjq0i are nonzeroonly in�nitesimally 
lose to the diagonal, and in parti
ular to di�erential opera-tors like the S
hr�odinger Hamiltonian (3), whi
h has matrix elements of the typeÆ00(q � q0) + V (q) Æ(q � q0). We 
an summarize the situation, as a rule of thumb, bythe following table:A 
ontribution to H that is a . . . 
orresponds to . . .integral operator jumpsdi�erential operator deterministi
 
ontinuous motionmultipli
ation operator no motion (L = 0)The minimal jump rates as given by (22) have some ni
e features. The possiblejumps for this pro
ess 
orrespond to the nonvanishing matrix elements of H (though,depending on the state 	, even some of the jump rates 
orresponding to nonvanishingmatrix elements of H might happen to vanish). Moreover, in their dependen
e on thestate 	, the jump rates � depend only \lo
ally" upon 	: the jump rate for a given jumpq0 ! q depends only on the values 	(q0) and 	(q) 
orresponding to the 
on�gurationslinked by that jump. Dis
retizing R3 to a latti
e "Z3, one 
an obtain Bohmian me
hani
sas a limit "! 0 of minimal jump pro
esses [33, 34℄, whereas greater-than-minimal jumprates lead to Nelson's sto
hasti
 me
hani
s [26℄ and similar di�usions, su
h as (117);see [34, 22℄. If the S
hr�odinger operator (3) is approximated in other ways by operators
orresponding to jump pro
esses, e.g., by H" = e�"HHe�"H, the minimal jump pro
essespresumably also 
onverge to Bohmian me
hani
s.We have reason to believe that there are lots of self-adjoint operators whi
h do not
orrespond to any sto
hasti
 pro
ess that 
an be regarded as de�ned, in any reasonablesense, by (22).2 But su
h operators seem never to o

ur in QFT. (The Klein{Gordonoperator pm2
4 � ~2
2� does seem to have a pro
ess, but it requires a more detaileddis
ussion whi
h will be provided in a forth
oming work [18℄.)2.7 Minimal Jump RatesThe reasoning of the previous se
tion applies to a far more general setting than just 
on-sidered: to arbitrary 
on�guration spa
es Q and \generalized observables"|POVMs|de�ning, for our purposes, what the \position representation" is. We now present thismore general reasoning, whi
h leads to one of the main formulas of this paper, (29).2Consider, for example, H = p 
os p where p is the one-dimensional momentum operator �i~�=�q.Its formal kernel hqjH jq0i is the distribution � i2Æ0(q� q0� 1)� i2Æ0(q� q0+1), for whi
h (22) would nothave a meaning. From a sequen
e of smooth fun
tions 
onverging to this distribution, one 
an obtaina sequen
e of jump pro
esses with rates (22): the jumps o

ur very frequently, and are by amounts ofapproximately �1. A limiting pro
ess, however, does not exist.10



The pro
ess we 
onstru
t relies on the following ingredients from QFT:1. A Hilbert spa
e H with s
alar produ
t h	j�i.2. A unitary one-parameter group Ut in H with Hamiltonian H,Ut = e� i~ tH ;so that in the S
hr�odinger pi
ture the state 	 evolves a

ording toi~d	tdt = H	t : (23)Ut 
ould be part of a representation of the Poin
ar�e group.3. A positive-operator-valued measure (POVM) P (dq) on Q a
ting on H , so thatthe probability that the system in the state 	 is lo
alized in dq at time t isPt(dq) = h	tjP (dq)j	ti : (24)Mathemati
ally, a POVM P on Q is a 
ountably additive set fun
tion (\measure"),de�ned on measurable subsets of Q, with values in the positive (bounded self-adjoint)operators on (a Hilbert spa
e) H , su
h that P (Q) is the identity operator.3 Physi
ally,for our purposes, P ( � ) represents the (generalized) position observable, with values inQ. The notion of POVM generalizes the more familiar situation of observables givenby a set of 
ommuting self-adjoint operators, 
orresponding, by means of the spe
traltheorem, to a proje
tion-valued measure (PVM): the 
ase where the positive operatorsare proje
tion operators. A typi
al example is the single Dira
 parti
le: the positionoperators on L2(R3 ; C 4) indu
e there a natural PVM P0( � ): for any Borel set B �R3 , P0(B) is the proje
tion to the subspa
e of fun
tions that vanish outside B, or,equivalently, P0(B)	(q) = 1B(q)	(q) with 1B the indi
ator fun
tion of the set B.Thus, h	jP0(dq)j	i = j	(q)j2dq. When one 
onsiders as Hilbert spa
e H only thesubspa
e of positive energy states, however, the lo
alization probability is given byP ( � ) = P+P0( � )I with P+ : L2(R3 ; C 4) ! H the proje
tion and I : H ! L2(R3 ; C 4)the in
lusion mapping. Sin
e P+ does not 
ommute with most of the operators P0(B),P ( � ) is no longer a PVM but a genuine POVM4 and 
onsequently does not 
orrespond toany position operator|although it remains true (for 	 in the positive energy subspa
e)that h	jP (dq)j	i = j	(q)j2dq. That is why in QFT, the position observable is indeedmore often a POVM than a PVM. POVMs are also relevant to photons [1, 25℄. In oneapproa
h, the photon wave fun
tion 	 : R3 ! C 3 is subje
t to the 
onstraint 
onditionr � 	 = �1	1 + �2	2 + �3	3 = 0. Thus, the physi
al Hilbert spa
e H is the (
losure3The 
ountable additivity is to be understood as in the sense of the weak operator topology. Thisin fa
t implies that 
ountable additivity also holds in the strong topology.4This situation is indeed more general than it may seem. By a theorem of Naimark [11, p. 142℄,every POVM P ( � ) a
ting onH is of the form P ( � ) = P+P0( � )I where P0 is a PVM on a larger Hilbertspa
e, P+ the proje
tion to H , and I the in
lusion mapping.11



of the) subspa
e of L2(R3 ; C 3) de�ned by this 
onstraint, and the natural PVM onL2(R3 ; C 3) gives rise, by proje
tion, to a POVM on H . So mu
h for POVMs. Let usget ba
k to the 
onstru
tion of a jump pro
ess.The goal is to spe
ify equivariant jump rates � = �	;H;P , i.e., su
h rates thatL�P = dPdt : (25)To this end, one may take the following steps:1. Note that dPt(dq)dt = 2~ Im h	tjP (dq)Hj	ti : (26)2. Insert the resolution of the identity I = Rq02Q P (dq0) and obtaindPt(dq)dt = Zq02Q Jt(dq; dq0) ; (27)where Jt(dq; dq0) = 2~ Im h	tjP (dq)HP (dq0)j	ti : (28)3. Observe that J is anti-symmetri
, J(dq0; dq) = �J(dq; dq0). Thus, sin
e x = x+ �(�x)+,J(dq; dq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+ � [(2=~) Im h	jP (dq0)HP (dq)j	i℄+ :4. Multiply and divide both terms by P( � ), obtaining thatZq02Q J(dq; dq0) = Zq02Q � [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i P(dq0)�� [(2=~) Im h	jP (dq0)HP (dq)j	i℄+h	jP (dq)j	i P(dq)� :5. By 
omparison with (15), re
ognize the right hand side of the above equation asL�P, with L� the generator of a Markov jump pro
ess with jump rates�(dqjq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i ; (29)whi
h we 
all the minimal jump rates.
12



Mathemati
ally, the right hand side of this formula as a fun
tion of q0 must be understoodas a density (Radon{Nikod�ym derivative) of one measure relative to another.5 The plussymbol denotes the positive part of a signed measure; it 
an also be understood asapplying the plus fun
tion, x+ = max(x; 0), to the density, if it exists, of the numerator.To sum up, we have argued that with H and 	 is naturally asso
iated a Markovjump pro
ess Qt whose marginal distributions 
oin
ide at all times by 
onstru
tion withthe quantum probability measure, �t( � ) = Pt( � ), so that Qt is an equivariant Markovpro
ess.In Se
tion 4 of [15℄, we establish pre
ise 
onditions on H;P , and 	 under whi
h thejump rates (29) are well-de�ned and �nite P-almost everywhere, and prove that in this
ase the rates are equivariant, as suggested by the steps 1-5 above. It is perhaps worthremarking at this point that any H 
an be approximated by Hamiltonians Hn (namelyHilbert{S
hmidt operators) for whi
h the rates (29) are always (for all 	) well-de�nedand equivariant [15℄. Con
erning this, see also the end of Se
tion 5.3.2.8 Pro
ess Asso
iated with the Free HamiltonianWe now address the free Hamiltonian H0 of a QFT. We des
ribe the pro
ess naturallyasso
iated with H0, when this is the se
ond quantized S
hr�odinger or Dira
 operator.We will treat more general free Hamiltonians in the next se
tion. We shall 
onsider here5Quite aside from the previous dis
ussion, it is perhaps worth noting that there are not so manyexpressions in H;P , and 	 that would meet the formal 
riteria for being a 
andidate for the jumprate. Sin
e the only 
onne
tion between abstra
t Hilbert spa
e and 
on�guration spa
e is by P , whi
hleads to measures on Q, the only way to obtain a fun
tion on Q is to form a Radon{Nikod�ym quotientof two measures, �(q0) = A(dq0)=B(dq0). Sin
e � must be a measure-valued fun
tion, the numeratorshould be a bi-measure (a measure in ea
h of two variables). The simplest measure one 
an form fromH;P , and 	 is h	jP (dq)j	i; the simplest bi-measures are h	jHn1P (dq)Hn2P (dq0)Hn3 j	i. Jump ratesmust have dimension 1/time, and the only obje
t at hand having this dimension is H=~. Thus, H 
anappear only on
e in the numerator. The expressions h	jHP (dq)P (dq0)j	i and h	jP (dq)P (dq0)H j	iare no good be
ause for PVMs P they are 
on
entrated on the diagonal of Q � Q and hen
e do notlead to nontrivial jumps. Let us write � for the measure-valued fun
tion we have arrived at:�(dq; q0) = 1~ h	jP (dq)HP (dq0)j	ih	jP (dq0)j	i :This provides 
omplex measures, whereas �( � jq0) must be a positive real measure. There are not manyways of forming a positive real measure from a 
omplex one, the essential ones beingj�j; jRe�j; jIm�j; (Re�)+; (Re�)�; (Im�)+; (Im�)�times a numeri
al 
onstant � > 0. One 
ould of 
ourse form additional expressions at the pri
e ofhigher 
omplexity.This has gotten us already pretty 
lose to the minimal rates (29), whi
h 
orrespond to � = 2(Im�)+.To pro
eed further, we might demand the absen
e of unne
essary jumps; that means that at any time,either the jump q1 ! q2 or q2 ! q1 is forbidden; this leaves only �(Im�)�. Moreover, 2(Im�)+ isthe only expression in the list that has Bohmian me
hani
s as a limiting 
ase or implies equivarian
e.Furthermore it 
orresponds to the natural guess (118) for a ba
kward generator, dis
ussed in Se
tion5.3. 13



only Hamiltonians for one type of parti
le.We �rst de�ne the 
on�guration spa
e Q. Let us write Q(1) (\one-parti
le 
on�gu-ration spa
e") for physi
al spa
e; this is typi
ally, but not ne
essarily, R3 . The spa
eQ in whi
h the \free pro
ess" takes pla
e is the 
on�guration spa
e for a variable num-ber of identi
al parti
les; we 
all it �Q(1). It 
an be de�ned as the spa
e of all �nitesubsets-with-multipli
ities of Q(1). A set-with-multipli
ities 
onsists of a set and, forea
h element x of the set, a positive integer, 
alled the multipli
ity of x. The numberof parti
les in a 
on�guration q is the sum of its multipli
ities, #q. Su
h 
on�gura-tions des
ribe several identi
al parti
les, some of whi
h may be lo
ated at the sameposition in spa
e. Equivalently, one 
ould say that �Q(1) is the set of all mappingsn : Q(1) ! N [ f0g (meaning the number of parti
les at a given lo
ation) su
h thatXq2Q(1) n(q) <1 :(Here the sum sign is to be taken literally also when Q(1) is un
ountable: the above
ondition implies that there are only �nitely many lo
ations where n is nonzero.) An-other equivalent de�nition is the set of all �nite nonnegative measures n( � ) on Q(1) thatassume only integer values; the meaning of n(R) is the number of parti
les in the regionR of physi
al spa
e. Finally, one 
an de�ne�Q(1) = 1[n=0Q(n) where Q(n) = (Q(1))n=permutations:A related spa
e, for whi
h we write �6=Q(1), is the spa
e of all �nite subsets of Q(1);it is 
ontained in �Q(1), after obvious identi�
ations. In fa
t, �6=Q(1) = �Q(1) n�, where� is the set of 
oin
iden
e 
on�gurations, i.e., those having two or more parti
les at thesame position. �6=Q(1) is the union of the spa
es Q(n)6= for n = 0; 1; 2; : : :, where Q(n)6= isthe spa
e of subsets of Q(1) with n elements.For Q(1) = Rd , the n-parti
le se
tor Q(n)6= is a manifold of dimension nd (see [13℄ fora dis
ussion of Bohmian me
hani
s on this manifold). If d � 2, the set � of 
oin
iden
e
on�gurations has 
odimension � 2 and thus 
an usually be ignored. We 
an thenrepla
e �Rd by the somewhat simpler spa
e �6=Rd .The position POVM P (1) on Q(1) (a
ting on the one-parti
le Hilbert spa
e) naturallyleads to a POVM we 
all �P (1) on Q = �Q(1), a
ting on Fo
k spa
e (see Se
tion 4.2.3for the de�nition).6 Sin
e a 
on�guration from �R3 de�nes the number of parti
les andtheir positions, the name \position observable" for P = �P (1) stret
hes the meaning of\position" somewhat: it now also en
ompasses the number of parti
les.We now give a des
ription of the free pro
ess asso
iated with the se
ond-quantizedS
hr�odinger operator; it arises from Bohmian me
hani
s. Fo
k spa
eH = F is a dire
tsum F = 1Mn=0F (n); (30)6The 
oin
iden
e 
on�gurations form a null set, �P (1)(�) = 0, when Q(1) is a 
ontinuum, or, morepre
isely, when P (1) is nonatomi
 as a measure. 14



where F (n) is the n-parti
le Hilbert spa
e. F (n) is the subspa
e of symmetri
 (forbosons) or anti-symmetri
 (for fermions) fun
tions in L2(R3n ; (C 2s+1)
n) for spin-s par-ti
les. Thus, 	 2 F 
an be de
omposed into a sequen
e 	 = �	(0);	(1); : : : ;	(n); : : :�,the n-th member 	(n) being an n-parti
le wave fun
tion, the wave fun
tion representingthe n-parti
le se
tor of the quantum state ve
tor. The obvious way to obtain a pro
esson Q = �R3 is to let the 
on�guration Q(t), 
ontaining N = #Q(t) parti
les, movea

ording to the N -parti
le version of the de Broglie{Bohm law (1), guided by 	(N).7This is indeed an equivariant pro
ess sin
e H0 has a blo
k diagonal form with respe
tto the de
omposition (30), H0 = 1Mn=0 H(n)0 ;and H(n)0 is just a S
hr�odinger operator for n nonintera
ting parti
les, for whi
h, as wealready know, Bohmian me
hani
s is equivariant. We used a very similar pro
ess in [14℄(the only di�eren
e being that parti
les were numbered in [14℄).Similarly, if H0 is the se
ond quantized Dira
 operator, we let a 
on�guration Q withN parti
les move a

ording to the usual N -parti
le Bohm{Dira
 law [7, p. 274℄dQdt = 
	�(Q)�N 	(Q)	�(Q)	(Q) (31)where 
 denotes the speed of light and �N = (�(1); : : : ;�(N)) with �(k) a
ting on thespin index of the k-th parti
le.2.9 Other Approa
hes to the Free Pro
essWe will give below a general velo
ity formula, appli
able to a wider 
lass of free Hamil-tonians. Alternatively, we 
an provide a free pro
ess for any H0 if we are given anequivariant pro
ess for the one-parti
le Hamiltonian H(1). This is based on the par-ti
ular mathemati
al stru
ture of H0, whi
h 
an be expressed by saying it arises froma one-parti
le Hamiltonian H(1) by applying a \se
ond quantization fun
tor �" [29℄.That is, there is an algorithm (in a bosoni
 or fermioni
 version) for forming, froma one-parti
le Hilbert spa
e H (1) and a one-parti
le Hamiltonian H(1), a Fo
k spa
eF = �H (1) and free Hamiltonian H0 = �H(1). And parallel to this \se
ond quanti-zation" algorithm, there is an algorithm for the 
anoni
al 
onstru
tion, from a givenequivariant one-parti
le Markov pro
ess Q(1)t , of a pro
ess we 
all �Q(1)t that takes pla
ein Q = �Q(1) and is equivariant with respe
t to H0. This algorithm may be 
alled the\se
ond quantization" of a Markov pro
ess.The algorithm is des
ribed in Se
tion 4.2. What the algorithm does is essentially to
onstru
t an n-parti
le version of Q(1)t for every n, and �nally 
ombine these by means7As de�ned, 
on�gurations are unordered, whereas we have written the de Broglie{Bohm law (1)for ordered 
on�gurations. Thanks to the (anti-)symmetry of the wave fun
tion, however, all orderingswill lead to the same parti
le motion. For more about su
h 
onsiderations, see our forth
oming work[13℄. 15



of a random parti
le number N = N(t) = #Q(t) whi
h is 
onstant under the freepro
ess, parallel to the fa
t that the parti
le number operator is 
onserved by H0. Wenote further that the pro
ess �Q(1)t is deterministi
 if Q(1)t is. If we take the one-parti
lepro
ess to be Bohmian me
hani
s or the Bohm{Dira
 motion, the algorithm reprodu
esthe pro
esses des
ribed in the previous se
tion.The algorithm leaves us with the task of �nding a suitable one-parti
le law, whi
hwe do not address in this paper. For some Hamiltonians, su
h as the Dira
 operator,this is immediate, for others it is rather nontrivial, or even unsolved. The Klein{Gordonoperator pm2
4 � ~2
2� will be dis
ussed in forth
oming work [18℄, and for a study ofphotons see [28℄.When H0 is made of di�erential operators of up to se
ond order (whi
h in
ludes of
ourse the S
hr�odinger and Dira
 operators), there is another way to 
hara
terize thepro
ess asso
iated with H0, a way whi
h allows a parti
ularly su

in
t des
ription of thepro
ess and a parti
ularly dire
t derivation and 
onstru
tion. In fa
t, we give a formulafor its ba
kward generator L0, or alternatively the velo
ity (or the forward generatorL0), in terms of H0; P , and 	.We begin by de�ning, for any H;P , and 	, an operator L a
ting on fun
tionsf : Q ! R, whi
h may or may not be the ba
kward generator of a pro
ess, byLf(q) = Reh	jP (dq)L̂f̂ j	ih	jP (dq)j	i = Reh	jP (dq) i~[H; f̂ ℄j	ih	jP (dq)j	i : (32)where [ ; ℄ means the 
ommutator,̂f = Zq2Q f(q)P (dq) ; (33)and L̂ is the \generator" of the (Heisenberg) time evolution of the operator f̂ ,L̂f̂ = dd� eiH�=~ f̂ e�iH�=~����=0 = i~ [H; f̂ ℄ : (34)(If P is a PVM, then f̂ = f(q̂), where q̂ is the 
on�guration operator.) (32) 
ould beguessed in the following way: sin
e Lf is in a 
ertain sense, see (8), the time derivativeof f , it might be expe
ted to be related to L̂f̂ , whi
h is in a 
ertain sense, see (34), thetime derivative of f̂ . As a way of turning the operator L̂f̂ into a fun
tion Lf(q), themiddle term in (32) is an obvious possibility. Note that this way of arriving at (32) doesnot make use of equivarian
e; for another way that does, see Se
tion 5.1.The formula for the forward generator equivalent to (32) readsL �(dq) = Re h	j bd�dP i~ [H;P (dq)℄j	i; (35)as follows from (10).Whenever L is indeed a ba
kward generator, we 
all it the minimal free (ba
kward)generator asso
iated with 	; H, and P . (The name is based on the 
on
ept of minimal16



pro
ess as explained in Se
tion 5.3.) Then the 
orresponding pro
ess is equivariant (seeSe
tion 5.1). This is the 
ase if (and, there is reason to expe
t, only if ) P is a PVMand H is a di�erential operator of up to se
ond order in the position representation,in whi
h P is diagonal. In that 
ase, the pro
ess is deterministi
, and the ba
kwardgenerator has the form L = v � r where v is the velo
ity ve
tor �eld; thus, (32) dire
tlyspe
i�es the velo
ity, in the form of a �rst-order di�erential operator v � r. In 
ase His the N -parti
le S
hr�odinger operator with or without spin, (32) yields the Bohmianvelo
ity (1), and if H is the Dira
 operator, the Bohm{Dira
 velo
ity (31). To sum up,in some 
ases de�nition (32) leads to just the right ba
kward generator.To return to our starting point: if the one-parti
le generator L (1) arises from theone-parti
le Hamiltonian H(1) by (35), then (35) also holds between the free generatorL0 = �L (1) and the free Hamiltonian H0 = �H(1). (See Se
tion 5.1 for details.) Inother words, (32) is 
ompatible with the \se
ond quantization" algorithm. Thus, inrelevant 
ases (32) allows a dire
t de�nition of the free pro
ess in terms of H0, just as(29) dire
tly de�nes, in terms of HI , the jump rates.A relevant point is that the \se
ond quantization" of a di�erential operator is againa di�erential operator, in a suitable sense, and has the same order. Note also that (32),when applied to the se
ond quantized S
hr�odinger or Dira
 Hamiltonian, de�nes thesame ve
tor �eld on �R3 as des
ribed in the previous se
tion.2.10 Bell-Type QFTWe brie
y summarize what we have obtained. A Bell-type QFT is about parti
lesmoving in physi
al 3-spa
e; their number and positions are represented by a point Qt in
on�guration spa
e Q. Provided physi
al spa
e is R3 , Q is usually �R3 or a Cartesianprodu
t of several su
h spa
es, ea
h fa
tor representing a di�erent parti
le spe
ies. Qtfollows a Markov pro
ess in Q, whi
h is governed by a state ve
tor 	 in a suitableHilbert spa
e H . H is related to Q by means of a PVM or POVM P . 	 undergoes aunitary evolution with Hamiltonian H. The pro
ess Qt usually 
onsists of deterministi

ontinuous traje
tories interrupted by sto
hasti
 jumps; more generally, it arises bypro
ess additivity (i.e., by adding generators) from a free pro
ess asso
iated with H0 anda jump pro
ess asso
iated with HI . The jump rates are given by (29) for H = HI . Thefree pro
ess arises from Bohmian me
hani
s, or a suitable analogue, by a 
onstru
tionthat 
an be formalized as the \se
ond quantization" of a one-parti
le Markov pro
ess;when appropriate, it is de�ned dire
tly by (32). The pro
ess Qt is equivariant, i.e.,h	tjP (dq)j	ti distributed.Examples of Bell-type QFTs 
an be found in [3, 14℄ and in Se
tion 3. It is our
ontention that, essentially, there is a unique Bell-type version of every regularizedQFT. We have to postpone, however, the dis
ussion of operators of the Klein{Gordontype. We also have to assume that the QFT provides us with the POVM P ( � ); thisis related to an ongoing dis
ussion in the literature [27, 25, 23℄ 
on
erning the rightposition operator. 17



2.11 More on Identi
al Parti
lesThe n-parti
le se
tor of the 
on�guration spa
e (without 
oin
iden
e 
on�gurations) ofidenti
al parti
les �6=R3 is the manifold of n-point subsets of R3 ; let Q be this manifold.The most 
ommon way of des
ribing the quantum state of n fermions is by an anti-symmetri
 (square-integrable) wave fun
tion 	 on Q̂ := R3n ; let H be the spa
e ofsu
h fun
tions. Whereas for bosons 	 
ould be viewed as a fun
tion on Q, for fermions	 is not a fun
tion on Q.Nonetheless, the 
on�guration observable still 
orresponds to a PVM P on Q: forB � Q, we set P (B)	(q1; : : : ; qn) = 	(q1; : : : ; qn) if fq1; : : : ; qng 2 B and zero oth-erwise. In other words, P (B) is multipli
ation by the indi
ator fun
tion of ��1(B)where � is the obvious proje
tion mapping Q̂ n� ! Q, with � the set of 
oin
iden
e
on�gurations.To obtain other useful expressions for this PVM, we introdu
e the formal kets jq̂ifor q̂ 2 Q̂ (to be treated like elements of L2(Q̂)), the anti-symmetrization operator S(i.e., the proje
tion L2(Q̂) ! H ), the normalized anti-symmetrizer8 s = pn!S, andthe formal kets jsq̂i := sjq̂i (to be treated like elements of H ). The jq̂i and jsq̂i arenormalized in the sense thathq̂jq̂0i = Æ(q̂ � q̂0) and hsq̂jsq̂0i = (�1)%(q̂;q̂0) Æ(q � q0);where q = �(q̂), q0 = �(q̂0), %(q̂; q̂0) is the permutation that 
arries q̂ into q̂0 given thatq = q0, and (�1)% is the sign of the permutation %. Now we 
an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq; (36)where the sum is over the n! ways of numbering the n points in q; the last two termsa
tually do not depend on the 
hoi
e of q̂ 2 ��1(q), the numbering of q.The probability distribution arising from this PVM isP(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n! j	(q̂)j2 dq = jhsq̂j	ij2 dq (37)with arbitrary q̂ 2 ��1(q).There is a way of viewing fermion wave fun
tions as being de�ned on Q, rather thanR3n , by regarding them as 
ross-se
tions of a parti
ular 1-dimensional ve
tor bundleover Q. To this end, de�ne an n!-dimensional ve
tor bundle E byEq := Mq̂2��1(q) C : (38)8The name means this: sin
e S is a proje
tion, S	 is usually not a unit ve
tor when 	 is. Whenever	 2 L2(Q̂) is supported by a fundamental domain of the permutation group, i.e., by a set 
 � Q̂ onwhi
h (the restri
tion of) � is a bije
tion to Q, the norm of S	 is 1=pn!, so that s	 is again a unitve
tor. 18



Every fun
tion 	 : R3n ! C naturally gives rise to a 
ross-se
tion � of E, de�ned by�(q) := Mq̂2��1(q)	(q̂) : (39)The anti-symmetri
 fun
tions form a 1-dimensional subbundle of E (see also [13℄ for adis
ussion of this bundle).3 Appli
ation to Simple ModelsIn this se
tion, we point out how the jump rates of the model in [14℄ are 
ontained in(29) and present a full-
edged Bell-type QFT for the se
ond-quantized Dira
 equationin an external 
lassi
al ele
tromagneti
 �eld.Further 
ut-o� QFTs that may provide interesting examples of Bell-type QFTs,worth a detailed dis
ussion in a future work [17℄, are the s
alar self-intera
ting �eld(e.g., �4), QED, and other gauge �eld theories. We have to postpone the treatmentof these theories be
ause they require dis
ussions lying outside the s
ope of this paper,in parti
ular a dis
ussion of the position representation of photon wave fun
tions inQED, and, 
on
erning �4, of the appropriate probability 
urrent for the Klein{Gordonequation.3.1 A Simple QFTWe presented a simple example of a Bell-type QFT in [14℄, and we will now brie
y pointto the aspe
ts of this model that are relevant here. The model is based on one of thesimplest possible QFTs [32, p. 339℄.The relevant 
on�guration spa
e Q for a QFT (with a single parti
le spe
ies) is the
on�guration spa
e of a variable number of identi
al parti
les in R3 , whi
h is the set�R3 , or, ignoring the 
oin
iden
e 
on�gurations (as they are ex
eptions), the set �6=R3 ofall �nite subsets of R3 . The n-parti
le se
tor of this is a manifold of dimension 3n; this
on�guration spa
e is thus a union of (disjoint) manifolds of di�erent dimensions. Therelevant 
on�guration spa
e for a theory with several parti
le spe
ies is the Cartesianprodu
t of several 
opies of �6=R3 . In the model of [14℄, there are two parti
le spe
ies, afermion and a boson, and thus the 
on�guration spa
e isQ = �6=R3 � �6=R3 : (40)We will denote 
on�gurations by q = (x; y) with x the 
on�guration of the fermions andy the 
on�guration of the bosons.For simpli
ity, we repla
ed in [14℄ the se
tors of �6=R3 � �6=R3 , whi
h are manifolds,by ve
tor spa
es of the same dimension (by arti�
ially numbering the parti
les), andobtained the union Q̂ = 1[n=0(R3)n � 1[m=0(R3)m ; (41)19



with n the number of fermions and m the number of bosons. Here, however, we willuse (40) as the 
on�guration spa
e, sin
e we have already dis
ussed the spa
e �6=R3 . In
omparison with (41), this amounts to (merely) ignoring the numbering of the parti
les.H is the tensor produ
t of a fermion Fo
k spa
e and a boson Fo
k spa
e, and thus thesubspa
e of wave fun
tions in L2(Q̂) that are anti-symmetri
 in the fermion 
oordinatesand symmetri
 in the boson 
oordinates. Let S denote the appropriate symmetrizationoperator, i.e., the proje
tion operator L2(Q̂)!H , and s the normalized symmetrizers	(x1; : : : ;xn;y1; : : : ;ym) = pn!m!S	(x1; : : : ;xn;y1; : : : ;ym); (42)i.e., s = pN !M !S with N and M the fermion and boson number operators, whi
h
ommute with S and with ea
h other. As in Se
tion 2.11, we denote by � the proje
tionmapping Q̂ n � ! Q, �(x1; : : : ;xn;y1; : : : ;ym) = (fx1; : : : ;xng; fy1; : : : ;ymg). The
on�guration PVM P (B) on Q is multipli
ation by 1��1(B), whi
h 
an be understood asa
ting on H , though it is de�ned on L2(Q̂), sin
e it is permutation invariant and thusmaps H to itself. We utilize again the formal kets jq̂i where q̂ 2 Q̂ n� is a numbered
on�guration, for whi
h we also write q̂ = (x̂; ŷ) = (x1; : : : ;xn;y1; : : : ;ym). We also usethe symmetrized and normalized kets jsq̂i = sjq̂i. As in (36), we 
an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!m!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq (43)with arbitrary q̂ 2 ��1(q). For the probability distribution, we thus have, as in (37),P(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n!m! j	(q̂)j2 dq = jhsq̂j	ij2 dq (44)with arbitrary q̂ 2 ��1(q).The free Hamiltonian is the se
ond quantized S
hr�odinger operator (with zero poten-tial), asso
iated with the free pro
ess des
ribed in Se
tion 2.8. The intera
tion Hamil-tonian is de�ned by HI = Z d3x y(x) (ay'(x) + a'(x)) (x) (45)with  y(x) the 
reation operators (in position representation), a
ting on the fermionFo
k spa
e, and ay'(x) the 
reation operators (in position representation), a
ting on theboson Fo
k spa
e, regularized through 
onvolution with an L2 fun
tion ' : R3 ! R. HIhas a kernel; we will now obtain a formula for it, see (51) below. The jsq̂i are 
onne
tedto the 
reation operators a

ording tojsq̂i =  y(xn) � � � y(x1)ay(ym) � � �ay(y1)j0i ; (46)where j0i 2H denotes the va
uum state. A relevant fa
t is that the 
reation and annihi-lation operators  y;  ; ay and a possess kernels. Using the 
anoni
al (anti-)
ommutation20



relations for  and a, one obtains from (46) the following formulas for the kernels of (r) and a(r), r 2 R3 :hsq̂j (r)jsq̂0i = Æn;n0�1 Æm;m0 Æ3n0(x [ r � x0) (�1)%((x̂;r);x̂0) Æ3m(y � y0) (47)hsq̂ja(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Æ3m0(y [ r � y0) (48)where (x; y) = q = �(q̂), and %(x̂; x̂0) denotes the permutation that 
arries x̂ to x̂0 giventhat x = x0. The 
orresponding formulas for  y and ay 
an be obtained by ex
hangingq̂ and q̂0 on the right hand sides of (47) and (48). For the smeared-out operator a'(r),we obtainhsq̂ja'(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)'(y0 � r) (49)We make use of the resolution of the identityI = ZQ dq jsq̂ihsq̂j : (50)Inserting (50) twi
e into (45) and exploiting (47) and (49), we �ndhsq̂jHI jsq̂0i = Æn;n0 Æm�1;m0 Æ3n(x� x0) (�1)%(x̂;x̂0)Xy2y Æ3m0(y n y � y0)Xx2x '(y � x)+ Æn;n0 Æm0�1;m Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)Xx2x '(y0 � x) :(51)By (43), the jump rates (29) are�(qjq0) = h 2~ Im h	jsq̂ihsq̂jHI jsq̂0ihsq̂0j	ii+h	jsq̂0ihsq̂0j	i : (52)More expli
itly, we obtain from (51) the rates�(qjq0) = Ænn0 Æm�1;m0 Æ3n(x� x0)Xy2y Æ3m0(y n y � y0) �
rea(q0 [ yjq0)+ Ænn0 Æm;m0�1 Æ3n(x� x0)Xy02y0 Æ3m(y � y0 n y0) �ann(q0 n y0jq0) (53)with �
rea(q0 [ yjq0) = 2pm0 + 1~ hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y � x0)	(q̂0)i+	�(q̂0)	(q̂0) (54a)�ann(q0 n y0jq0) = 2~pm0 hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y0 � x0)	(q̂0)i+	�(q̂0)	(q̂0) ; (54b)21



for arbitrary q̂0 2 ��1(q0) and q̂ 2 ��1(q) with q = (x0; y0[y) respe
tively q = (x0; y0ny0).(Note that a sum sign 
an be drawn out of the plus fun
tion if the terms have disjointsupports.)Equation (53) is worth looking at 
losely: One 
an read o� that the only possiblejumps are (x0; y0) ! (x0; y0 [ y), 
reation of a boson, and (x0; y0) ! (x0; y0 n y0), an-nihilation of a boson. In parti
ular, while one parti
le is 
reated or annihilated, theother parti
les do not move. The pro
ess that we 
onsidered in [14℄ 
onsists of pie
es ofBohmian traje
tories interrupted by jumps with rates (53); the pro
ess is thus an ex-ample of the jump rate formula (29), and an example of 
ombining jumps and Bohmianmotion by means of pro
ess additivity.The example shows how, for other QFTs, the jump rates (29) 
an be applied torelevant intera
tion Hamiltonians: If HI is, in the position representation, a polynomialin the 
reation and annihilation operators, then it possesses a kernel on the relevant
on�guration spa
e. A 
ut-o� (implemented here by smearing out the 
reation andannihilation operators) needs to be introdu
ed to make HI a well-de�ned operator onL2. If, in some QFT, the parti
le number operator is not 
onserved, jumps between these
tors of 
on�guration spa
e are inevitable for an equivariant pro
ess. And, indeed,when HI does not 
ommute with the parti
le number operator (as is usually the 
ase),jumps 
an o

ur that 
hange the number of parti
les. Often, HI 
ontains only o�-diagonal terms with respe
t to the parti
le number; then every jump will 
hange theparti
le number. This is pre
isely what happens in the model of [14℄.3.2 EÆ
ient Cal
ulation of Rates in the Previous ExampleWe would like to give another, re�ned way of 
al
ulating the expli
it jump rates (53)from the de�nition (45) of HI . The 
al
ulation above is rather 
umbersome, partlybe
ause of all the Æ's. It is also striking that only very few transitions q0 ! q area
tually possible, whi
h suggests that it is unne
essary to write down a formula for thekernel hqjHIjq0i valid for all pairs q; q0. Rather than writing down all the Æ terms as in(53), it is easier to spe
ify the possible transitions q0 ! q and to write down the rates,su
h as (54a) and (54b), only for these transitions. Thus, for a more eÆ
ient 
al
ulationof the rates, it is advisable to �rst determine the possible transitions, and then we needkeep tra
k only of the 
orresponding kernel elements.3.2.1 A Diagram NotationTo formulate this more eÆ
ient strategy, it is helpful to regard 	 as a 
ross-se
tion of a�ber bundle E over the Riemannian manifold Q, or of a 
ountable union E = SiE(i) ofbundles E(i) over Riemannian manifoldsQ(i) with Q = SiQ(i). (In the present example,with Q given by (40), we take i to be the pair (n;m) of parti
le numbers, Q(n;m) to bethe (n;m)-parti
le se
tor, and E(i) to be de�ned by (38) (with � the natural proje
tionfrom Q̂ n�, with Q̂ given by (41), to Q). The q̂ 2 ��1(q) 
an be viewed as de�ning anorthonormal basis of Eq.) 22



A key element of the strategy is a spe
ial diagram notation for operators. Theoperators we have in mind are HI and its building blo
ks, the �eld operators. Thestrategy will start with the diagrams for the �eld operators, and obtain from them adiagram for HI . The diagram will spe
ify, for an operator O, what the kernel of O is,while leaving out parts of the kernel that are zero. So let us assume that O has kernelhqjOjq0i, i.e., (O	)(q) = R hqjOjq0i	(q0) dq0. The diagramq0 K(q0;�)����!O F (q0; �) (55)may be read as: \A

ording to O, the possible transitions from q0 are to F (q0; �), andare asso
iated with the amplitudes K(q0; �)." It means that the operator O has kernel
onstru
ted from F and K,hqjOjq0i = Z� d� Æ�q � F (q0; �)�K(q0; �); (56)where � varies in some parameter spa
e �, F : Q � � ! Q, and K is a fun
tion (ordistribution) of q0 and � su
h that K(q0; �) : Eq0 ! EF (q0;�) is a C -linear mapping.The role of � is to parametrize the possible transitions; e.g., for the boson 
reation(54a) in the previous se
tion, � would be the position y of the new boson, and � = R3 .The notation (55) does not expli
itly mention what � and the measure d� are; this willusually be 
lear from the 
ontext of the diagram. The measure d� will usually be auniform distribution over the parameter spa
e �, su
h as Lebesgue measure if � = Rdor the 
ounting measure if � is �nite or 
ountably in�nite. We may also allow having adi�erent �q0 for every q0.When O = H, a jump from q0 
an lead only to those q's for whi
h q = F (q0; �) forsome value of �, and the 
orresponding jump rate (29) is��F (q0; �)��q0� = [(2=~) Im	�(F (q0; �))K(q0; �)	(q0)℄+	�(q0)	(q0) ; (57)provided that for given q0, F (q0; � ) is an inje
tive mapping. Here, �(qjq0) is the densityof the measure �(dqjq0) with respe
t to the measure on Q�q0(dq) = Z� d� Æ�q � F (q0; �)� dq; (58)where Æ(q�q0) dq denotes the measure on Q with total weight 1 
on
entrated at q0. (58),the image of d� under the map F (q0; � ), is 
on
entrated on the set fF (q0; �) : � 2 �gof possible destinations and plays the role of the \uniform distribution" over this set.In other words, (57) is the rate of o

urren
e, with respe
t to d�, of the transition
orresponding to �. (For the boson 
reation rate (54a), �q0(dq) turns out the Lebesguemeasure in y on the subset fq0 [ y : y 2 R3 n q0g � Q.)Given O, the 
hoi
e of �; F , and K is not unique. One 
ould always 
hoose � = Q,F (q0; q) = q, and K(q0; q) = hqjOjq0i, whi
h of 
ourse would mean to miss the point23



of this notation. The 
ase that F and K do not depend on a parameter � is formally
ontained in the s
heme (56) by taking � to be a one-point set (and d� the 
ountingmeasure); in this 
ase (56) meanshqjOjq0i = Æ(q � F (q0))K(q0) : (59)Conversely, whenever #� = 1, the dependen
e of F and K on the parameter � isirrelevant.A basi
 advantage of the notation (55), 
ompared to writing down a formula forhqjOjq0i, is that many Æ fa
tors be
ome unne
essary. For example, if O is multipli
ationby V (q), then (� is a one-point set and) we have the diagramq0 V (q0)���!O q0:3.2.2 Operations With DiagramsFor the produ
t O2O1 of two operators given by diagrams, we have the diagramq0 K2(F1(q0;�1);�2)K1(q0;�1)���������������!O2O1 F2(F1(q0; �1); �2) (60)with parameter spa
e �1 � �2, for whi
h we also writeq0 K1(q0;�1)�����!O1 F1(q0; �1) K2(F1(q0;�1);�2)���������!O2 F2(F1(q0; �1); �2): (61)We thus de�ne the 
on
atenation of two diagrams by means of the 
omposition of thetransition mappings and the produ
t of the amplitudes, i.e., using obvious notation,q1 ��! q2 ��! q3 means q1 ���! q3: (62)Thus, multipli
ation of operators 
orresponds to 
on
atenation of diagrams.For the sum O1 + O2 of two operators given by diagrams with the same parameterspa
e �1 = �2 = � and the same transition mapping F1(q0; �) = F2(q0; �) = F (q0; �),we have the diagram q0 K1(q0;�)+K2(q0;�)����������!O1+O2 F (q0; �): (63)3.2.3 Diagrams of Creation and Annihilation OperatorsWe now write down diagrams for 
reation and annihilation operators. In the 
ase thatO = O(r) arises from formally evaluating an operator-valued distributionO(x) at x = r,the dependen
e of K(q0; �) on � is in the sense of distributions rather than fun
tions.More pre
isely, we have K(q0; �) = D(q0; �)K0(q0; �) (64)where D is a (real-valued) distribution on Q � �, and K0 a mapping-valued fun
tionsu
h that for every q0 and �, K0(q0; �) is a linear mapping Eq0 ! EF (q0;�).24



For  y(r) and  (r), r 2 R3 , we have (re
all that x0 is a �nite subset of R3)(x0; y0) �f���! y(r) (x0 [ r; y0) (#� = 1) (65a)(x0; y0) Æ(x0�r) "f������! (r) (x0 n x0; y0) (� = x0; � = x0) (65b)using linear mappings �f : Eq0 ! E(x0[r;y0) (\append a fermion") and "f : Eq0 ! E(x0nx0;y0)(\erase a fermion"), whi
h 
an be regarded as the natural mappings between these �berspa
es. They are de�ned through the following properties:�f	 is appropriately symmetrized (66a)��f	�((x̂0; r); ŷ0) = 1pn0 + 1 	(x̂0; ŷ0) (66b)�"f	�(x̂; ŷ0) = pn0	((x̂;x0); ŷ0) (66
)where 	 2 Eq0, and x̂ is an arbitrary ordering of the set x = x0 n x0. (Re
all that theset ��1(q0) of the possible orderings of q0 forms a basis of Eq0 , so that every ordering(x̂0; ŷ0) = q̂0 2 ��1(q0) 
orresponds to a parti
ular 
omponent of 	. Thus, ((x̂0; r); ŷ0) 2��1(x0 [ r; y0) 
orresponds to a parti
ular 
omponent in E(x0[r;y0).)For the smeared-out 
reation and annihilation operators ay'(r) and a'(r), we have(x0; y0) '(y�r)�b������!ay'(r) (x0; y0 [ y) (� = R3 ; � = y) (67a)(x0; y0) '(y0�r) "b������!a'(r) (x0; y0 n y0) (� = y0; � = y0) (67b)where �b (\append a boson") and "b (\erase a boson") are the analogous linear mappingsrelating di�erent spa
es, �b : Eq0 ! E(x0;y0[y) and "b : Eq0 ! E(x0;y0ny0), de�ned by thefollowing properties: �b	 is appropriately symmetrized (68a)��b	�(x̂0; (ŷ0;y)) = 1pm0 + 1 	(x̂0; ŷ0) (68b)�"b	�(x̂0; ŷ) = pm0	(x̂0; (ŷ;y0)); (68
)where ŷ is an arbitrary ordering of the set y = y0 n y0, x̂0 one of x0, ŷ0 one of y0, and	 2 Eq0 .3.2.4 Appli
ation of the Diagram MethodNow let us apply the strategy to the example (45) of the previous se
tion. For y(r) ay'(r) (r), we have the diagramq0 Æ(x0�r) "f������! (r) (x0 n x0; y0) '(y�r)�b������!ay'(r) (x0 n x0; y0 [ y) �f���! y(r) (x0 n x0 [ r; y0 [ y)25



with � = x0 � R3 . Using the 
on
atenation rule (62), we 
an write insteadq0 Æ(x0�r)'(y�r)�f�b"f�������������! y(r) ay'(r) (r) (x0 n x0 [ r; y0 [ y):Integrating over dr, we obtain, sin
e x0 n x0 [ r may be repla
ed by x0, whi
h is inde-pendent of x0, q0 Px02x0 '(y�x0)�f�b"f������������!R dr  y(r) ay'(r) (r) (x0; y0 [ y); (69)with � = R3 . We have now taken 
are of one of two terms in (45), involving ay ratherthan a. From (69) we read o�, without a big 
al
ulation, that this term 
orrespondsto jumps (x0; y0)! (x0; y0 [ y), or 
reation of a boson. The 
orresponding jump rate isgiven by (57), and reads here:�(x0; y0 [ yjq0) = 2~ hIm	�(x0; y0 [ y) Px02x0 '(y � x0)�f�b"f 	(q0)i+	�(q0)	(q0) : (70)This result agrees with (54a).9We treat the term R dr  y(r) a'(r) (r) in the same way: We begin with the diagramq0 Æ(x0�r) "f������! (r) (x0 n x0; y0) '(y0�r) "b������!a'(r) (x0 n x0; y0 n y0) �f���! y(r) (x0 n x0 [ r; y0 n y0)with � = x0 � y0. Then we integrate over dr and obtain the asso
iated jump rate�(x0; y0 n y0jq0) = 2~ hIm	�(x0; y0 n y0) Px02x0 '(y0 � x0)�f"b"f 	(q0)i+	�(q0)	(q0) ; (71)whi
h agrees with (54b). Finally, HI (the sum of both 
ontributions) 
orresponds a
-
ording to (29) to jumps whi
h, sin
e the two 
ontributions have no transitions q0 ! qin 
ommon (or, in other words, sin
e their kernels have disjoint supports in Q�Q), areeither q0 ! (x0; y0 [ y), with rate (70), or q0 ! (x0; y0 n y0), with rate (71).3.3 Pair Creation in an External FieldAs our se
ond example, we present the Bell-type version of a reasonable and often usedQFT of ele
trons and positrons, in whi
h the ele
tromagneti
 �eld is a ba
kground �eld[31℄. The Bell-type version exhibits pair 
reation and annihilation (in the literal sense)and employs various notions we have introdu
ed: pro
ess additivity, the 
on�gurationspa
e �6=R3 of a variable number of identi
al parti
les, the free pro
ess, POVMs whi
hare not PVMs, and sto
hasti
 jumps.9Here is why: First, 	�(q0)	(q0) = n0!m0! 	�(q̂0)	(q̂0) be
ause the inner produ
t in Eq0 involvessummation over all q̂0 2 ��1(q0). Similarly, the square bra
ket in the numerator of (70) involves theinner produ
t of E(x0;y0[y0), 
onsisting of n0! (m0 +1)! 
ontributions. The numberings q̂ and q̂0 in (54a)
an be so 
hosen that x̂ = x̂0, x0 gets the last pla
e of x̂0, and ŷ = ŷ0 [ y0; then %(x̂; x̂0) is trivial, and�f�b"f	(q̂) = (n0)�1=2(m0 + 1)�1=2(n0)1=2	(q̂0). Thus, the square bra
ket in (70) is n0!m0!pm0 + 1times the square bra
ket in (54a). 26



3.3.1 Fo
k Spa
e and HamiltonianWe 
onsider the se
ond quantized Dira
 �eld in an ele
tromagneti
 ba
kground �eldA�(x; t). In terms of �eld operators, the Hamiltonian readsH = Z d3x : ��(x)�� i
~� � r+ �m
2 + e(� �A+ A0)��(x) : ; (72)with 
olons denoting normal ordering. Note that H is time-dependent due to the time-dependen
e of A�(x; t); more pre
isely, HI is time-dependent while H0 is �xed. As a
onsequen
e, the relevant jump rate (29) is now time-dependent in three ways: throughHI, through 	, and through q0 = Qt.We qui
kly re
all what the Hilbert spa
e and the �eld operators are, and spe
ifywhat POVM we use. After that, we 
onstru
t the asso
iated pro
ess.The Hilbert spa
e L2(R3 ; C 4) of the Dira
 equation is split into the orthogonal sumH+ �H� of the positive and negative energy subspa
es of the free Dira
 operator,h0 = �i
~� � r+ �m
2 :The 1-ele
tron Hilbert spa
e He and the 1-positron Hilbert spa
e Hp are 
opies ofH+, and the Fo
k spa
e F = �H (1) arises then from the one-parti
le Hilbert spa
eH (1) =He �Hp in the usual manner: with the anti-symmetrization operator Anti ,F = 1MN=0Anti ((He �Hp)
N) ; (73)whi
h 
an be naturally identi�ed withH := Fe 
Fp = 1Mn=0 Anti (H 
ne )
 1Men=0 Anti (H 
enp ) : (74)Sin
e H+ � L2(R3 ; C 4), H 
an be understood as a subspa
e ofHext := 1Mn=0 Anti (L2(R3 ; C 4)
n)
 1Men=0 Anti (L2(R3 ; C 4)
en): (75)We 
hoose the POVM and 
on�guration spa
e in the way suggested by the form(74), rather than (73): Q = �6=R3 � �6=R3 ; (76)where the �rst fa
tor represents ele
trons and the se
ond positrons. (Re
all from Se
-tion 2.8 that �6=R3 denotes the spa
e of all �nite subsets of R3 . Another interestingpossibility, suggested by the representation (73), is to set Q = �6=R3 . This would meanthat, insofar as the 
on�guration is 
on
erned, ele
trons and positrons are not distin-guished. However, we will not pursue this possibility here.) The natural POVM P (see27



Se
tion 4.2.3 and Se
tion 2.11) 
an be expressed as an extension from re
tangular sets(the existen
e of su
h an extension is proved in Se
tion 4.4 of [15℄):P (Be �Bp) = �P (1)(Be)
 �P (1)(Bp)with P (1) the POVM on H+ that we 
onsidered before, arising by proje
tion from thenatural PVM on L2(R3 ; C 4). Alternatively, P 
an be viewed as arising, by proje
tionto H , and from Q̂ = S1n=0(R3)n � S1en=0(R3)en to Q, of the natural PVM on Q̂ a
tingon Hext. Note that P represents the usual j	j2 distribution in the sense that for a
on�guration q with ele
trons at x1; : : : ;xn and positrons at ex1; : : : ; exen, we haveP(dq) = h	jP (dq)j	i = n!en! j	(n;en)(x1; : : : ; exen)j2 dx1 � � �dexenwhere 	(n;en) is just the wave fun
tion (R3)n+en ! (C 4)
(n+en) we get when we de
omposethe state ve
tor in the manner suggested by (75). 	 is normalized so that1Xn;en=0 Z dx1 � � �dexen j	(n;en)(x1; : : : ; exen)j2 = 1:The �eld operator is de�ned by�(f) = b(P+f) + d�(CP�f) (77)where f is a test fun
tion from L2(R3 ; C 4), P� is the proje
tion to H� � L2(R3 ; C 4), Cis the 
harge 
onjugation operator whi
h maps H� to H+ and vi
e versa, and b is theele
tron annihilation and d� the positron 
reation operator. Letting ei be the standardorthonormal basis of C 4 , i = 1; 2; 3; 4, �(x) stands for �i(x) = �(ei Æ( � � x)), where igets 
ontra
ted with the � matri
es. Similarly, we de�ne, as usual,bi(x) = b�P+(ei Æ( � � x))� (78a)and di(x) = d�CP�(ei Æ( � � x))�: (78b)We thus have �i(x) = bi(x) + d�i (x).3.3.2 The Asso
iated Pro
essWe now des
ribe the asso
iated Markov pro
ess. The free part of (72),H0 = Z d3x : ��(x)�� i
~� � r+ �m
2��(x) : ;preserves parti
le numbers (it 
ommutes with the ele
tron and positron number opera-tors), evolving the (n; en)-parti
le se
tor of the Fo
k spa
e a

ording to the free (n; en)-parti
le Hamiltonian H(n;en)0 = nXk=1 h(k)0 + enXek=1 eh(ek)0 ;28



with h(k)0 = �i
~�(k) � rk + �(k)m
2eh(ek)0 = �i
~e�(ek) � erek + e�(ek)m
2 ;where �(k) and �(k) a
t on the k-th ele
tron index in the tensor produ
t representation(74) and e�(ek) and e�(ek) on the ek-th positron index. erek is the gradient with respe
t toexek.With H0 is asso
iated a deterministi
 motion of the 
on�guration in Q, the free pro-
ess introdu
ed in Se
tion 2.8. During this motion, the a
tual numbers N; eN of ele
tronsand positrons remain 
onstant, while the positions (X1; : : : ;XN ;fX1; : : : ;fX eN) =: Qmove a

ording to Bohm{Dira
 velo
ities (31), i.e._Xk = 
	�(Q)�(k)	(Q)	�(Q)	(Q) (79a)_fXek = 
	�(Q) e�(ek)	(Q)	�(Q)	(Q) (79b)where numerators and denominators are s
alar produ
ts in (C 4)
(N+ eN).We turn now to the intera
tion part. Setting A = � � eA+ eA0, we have thatHI = Z d3x : ��(x)A(x) �(x) : = (80a)= 4Xi;j=1Z d3x : (b�i (x) + di(x))Ai;j(x) (bj(x) + d�j(x)) : = (80b)= 4Xi;j=1Z d3x�b�i (x)Ai;j(x) bj(x) + di(x)Ai;j(x) bj(x) ++ b�i (x)Ai;j(x) d�j(x)� d�j(x)Ai;j(x) di(x)�: (80
)Sin
e HI is a polynomial in 
reation and annihilation operators, it possesses a kernel and
orresponds to sto
hasti
 jumps. To 
ompute the rates, we apply the strategy developedin Se
tion 3.2, using diagrams. To this end, we regard fermioni
 wave fun
tions againas 
ross-se
tions of a bundle E, de�ned here byEq = Mq̂2��1(q)(C 4)
n 
 (C 4)
en: (81)Fermioni
 symmetry of a 
ross-se
tion 	 of E means that	%(i1:::in);e%(~{1:::~{en)(%(x1 : : :xn); e%(ex1 : : : exen)) = (�1)% (�1)e%	 i1:::in;~{1:::~{en(x1 : : :xn; ex1 : : : exen) (82)29



for all permutations % 2 Sn and e% 2 Sen.The diagrams for b�i (x); bi(x); d�i (x), and di(x) are(x0; ex0) Pj S+ji (x0�x)�e(ej)������������!b�i (x) (x0 [ x0; ex0) (83a)(x0; ex0) Pj S+ji (x0�x) "e(ej)������������!bi(x) (x0 n x0; ex0) (83b)(x0; ex0) Pj S�ji (ex0�x)�p(ej)������������!d�i (x) (x0; ex0 [ ex0) (83
)(x0; ex0) Pj S�ji (ex0�x) "p(ej)������������!di(x) (x0; ex0 n ex0) (83d)where the matrix fun
tion S+ij(x) is de�ned as the j-
omponent of P+(ei Æ( � )), andS�ij(x) as the j-
omponent of CP�(ei Æ( � )). The linear mappings �e(ej) : Eq0 !E(x0[x0;ex0) (\append an ele
tron with spinor ej") and "e(ej) : Eq0 ! E(x0nx0;ex0) (\erasean ele
tron, 
ontra
ting with spinor ej") are de�ned through their properties that for	 2 Eq0 , �e	 is appropriately symmetrized (84a)��e(ej)	�((x̂0;x0); êx0) = 1pn0 + 1 	(x̂0; êx0)
 ej (84b)�"e(ej)	�(x̂; êx0) = pn0	j((x̂;x0); êx0); (84
)where x̂ is an arbitrary ordering of x = x0 n x0, x̂0 one of x0, and êx0 one of ex0. We referto the last ele
tron slot when writing the tensor produ
t or taking the j-
omponent.�p(ej) and "p(ej) are de�ned analogously.For the four terms in (80
), we thus get the four diagrams (omitting the multipli
ationby Ai;j(x))(x0; ex0) Pk S+kj (x0�x) "e(ek)������������!bj(x) (x0 n x0; ex0) P` S+ì(x00�x)�e(e`)������������!b�i (x) (x0 n x0 [ x00; ex0) (85a)(x0; ex0) Pk S+kj (x0�x) "e(ek)������������!bj(x) (x0 n x0; ex0) P` S� ì(ex0�x) "p(e`)������������!di(x) (x0 n x0; ex0 n ex0) (85b)(x0; ex0) Pk S�kj (ex0�x)�p(ek)�������������!d�j (x) (x0; ex0 [ ex0) P` S+ì(x0�x)�e(e`)������������!b�i (x) (x0 [ x0; ex0 [ ex0) (85
)(x0; ex0) Pk S�ki (ex0�x) "p(ek)������������!di(x) (x0; ex0 n ex0) P` S� j̀(ex00�x)�p(e`)������������!d�j (x) (x0; ex0 n ex0 [ ex00): (85d)We read o� that the �rst term 
orresponds to the jump of a single ele
tron from x0 tox00, while all other parti
les remain where they were, the se
ond to the annihilation ofan ele
tron{positron pair at lo
ations x0 and ex0, the third to the 
reation of an ele
tron{positron pair at lo
ations x0 and ex0, and the last to the jump of a positron from ex0 to30



ex00. The 
orresponding jump rates are�e(x0 n x0 [ x00; ex0jq0) = [(2=~) Im	�(q)Pk;` �k;`e (x0;x00)�e(e`)"e(ek)	(q0)℄+	�(q0)	(q0) (86a)�ann(x0 n x0; ex0 n ex0jq0) = [(2=~) Im	�(q)Pk;` �k;`ann(x0; ex0)"p(e`)"e(ek)	(q0)℄+	�(q0)	(q0) (86b)�
rea(x0 [ x0; ex0 [ ex0jq0) = [(2=~) Im	�(q)Pk;` �k;`
rea(x0; ex0)�e(e`)�p(ek)	(q0)℄+	�(q0)	(q0) (86
)�p(x0; ex0 n ex0 [ ex00jq0) = [(2=~) Im	�(q)Pk;` �k;`p (ex0; ex00)�p(e`)"p(ek)	(q0)℄+	�(q0)	(q0) ; (86d)where q denotes the respe
tive destination, and�k;`e (x0;x00) = Xi;j Z d3xS+ ì(x00 � x)Ai;j(x)S+kj (x0 � x) (87a)�k;`ann(x0; ex0) = Xi;j Z d3xS� ì(ex0 � x)Ai;j(x)S+kj (x0 � x) (87b)�k;`
rea(x0; ex0) = Xi;j Z d3xS+ ì(x0 � x)Ai;j(x)S�kj (ex0 � x) (87
)�k;`p (ex0; ex00) = �Xi;j Z d3xS�j̀(ex00 � x)Ai;j(x)S�ki (ex0 � x): (87d)The pro
ess for H0 +HI that we obtain through pro
ess additivity is the motion (79)interrupted by sto
hasti
 jumps with rates (86).Note that the jump of a single ele
tron has small probability to be a
ross a distan
emu
h larger than the width of the fun
tions S�, whi
h is of the order of the Comptonwavelength of the ele
tron. Similarly, the distan
e jx � exj of a newly 
reated pair, orof a pair at the moment of annihilation, has small probability to be mu
h larger thanthe width of S�. While the jump of a single ele
tron or positron leaves the number Nof ele
trons and the number eN of positrons un
hanged, pair 
reation and annihilation
an only either de
rease or in
rease both N and eN by 1. As a 
onsequen
e, the a
tualnet 
harge eN �N is 
onserved by the pro
ess.4 Se
ond Quantization of a Markov Pro
ess4.1 Preliminaries Con
erning the Conditional Density MatrixIn the next se
tion, we des
ribe the algorithm for the \se
ond quantization" of a pro
ess.But before that, we have to introdu
e, as a preparation, the notion of a 
onditionaldensity matrix. In [19℄, we have de�ned for Bohmian me
hani
s the 
onditional wavefun
tion of, say, subsystem 1 of a 
omposite system with 
on�guration spa
e Q =31



Q1�Q2 by 	
ond(q1) = 	(q1; Q2). From a 
omplex wave fun
tion 	 : Q ! C , togetherwith the a
tual 
on�guration Q2 of the environment of the subsystem in the 
omposite,we thus form a wave fun
tion 	
ond : Q1 ! C ; for Bohmian me
hani
s with spin, in
ontrast, we would not, in general, obtain a suitable wave fun
tion for subsystems inthis way, be
ause 	
ond as just de�ned would have more spin indi
es than appropriate.We 
an however still de�ne the 
onditional density matrix for subsystem 1,W
ond s1;s01(q1; q01) = 1
Xs2 	s1;s2(q1; Q2)	�s01;s2(q01; Q2) (88)where the s's are spin indi
es. In order that W , like any density matrix, have tra
e 1,the normalizing fa
tor 
 must be 
hosen as
 = Zq12Q1 Xs1;s2	�s1;s2(q1; Q2)	s1;s2(q1; Q2) dq1 :This W 
an play most of the roles of the 
onditional wave fun
tion in spinless Bohmianme
hani
s. The notion of a 
onditional density matrix easily generalizes from the sit-uation just des
ribed, 
orresponding to wave fun
tions in L2(Q; C k ) and the naturallo
alization PVM, to the situation of any produ
t lo
alization POVM on any tensorprodu
t Hilbert spa
e: for H =H1 
H2 and P (dq1 � dq2) = P1(dq1)
 P2(dq2), setW
ond = tr2�j	ih	jP (Q1 � dq2)�tr�j	ih	jP (Q1 � dq2)� ���q2=Q2 ; (89)where tr2 is the partial tra
e over H2. The quotient is to be understood as a Radon{Nikod�ym derivative in q2. Like 
onditional wave fun
tions, 
onditional density matri
es
annot be de�ned in orthodox quantum theory, for la
k of the 
on�guration Q2. Westress that 
onditional density matri
es have nothing, absolutely nothing, to do withstatisti
al ensembles of state ve
tors in H1. Like any density matrix, they do, however,de�ne a probability distribution on Q1,PW
ond1 ( � ) = tr�W
ond P1( � )� ; (90)whi
h 
oin
ides with the 
onditional distribution of Q1 given Q2,P(Q1 2 � jQ2) = h	jP1( � )
 P2(dq2)j	ih	j1
 P2(dq2)j	i ���q2=Q2 :The evolution of W
ond is not autonomous; it will typi
ally depend on (and alwaysbe determined by) 	t and Q2;t. For a given density matrix W of a system that isnot regarded as a subsystem, however, one 
an de�ne (as usual) the time evolutionby Wt = e�iHt=~W eiHt=~, whi
h gives rise to a time-dependent distribution PWt( � ) =tr(WtP ( � )). We 
all a Markov pro
ess that is PWt-distributed at every time t equivariant32



with respe
t to W and H. Given the right initial distribution, this is equivalent to thefollowing 
ondition on the generator:L PW ( � ) = 2~ Im tr(W P ( � )H) : (91)This is the version of (12) for density matri
es, and de�nes an equivariant generatorwith respe
t to W and H.Sin
e 
onditional density matri
es will play a 
ru
ial role in the 
onstru
tion of themany-parti
le pro
ess, we require that, as part of the input data of the algorithm, weare given an equivariant generator L (1)W for every density matrix from a dense subsetof the density matri
es in H (1)� 
H (1). This is not mu
h of a restri
tion, as all rele-vant examples of equivariant generators naturally extend to density matri
es: Bohmianme
hani
s with spin spa
e C k 
an be extended [4℄ tovW (q) = ~ Im rqtrCk W (q; q0)trCk W (q; q0) (q0 = q) ; (92)Bohm{Dira
 to vW (q) = trC4 (W (q; q)�)trC 4 (W (q; q)) ; (93)and minimal jump rates to�W (dqjq0) = [(2=~) Im tr(WP (dq)HP (dq0))℄+tr(WP (dq0)) : (94)Note also that (92) would not make any sense ifW represented a statisti
al ensemble [4℄,whereas it makes good sense for 
onditional density matri
es, expressing the true relationbetween the Bohmian velo
ity for a subsystem arising from (1) and the 
onditionaldensity matrix (88) of that subsystem. Mutatis mutandis, the same is true of (93).Similarly, in 
ase that P is a PVM, (94) expresses the jump rates for a de
oupledsubsystem arising from (29) for the 
omposite in terms of the 
onditional density matrixof that subsystem.4.2 AlgorithmThe input data of this algorithm are the one-parti
le Hilbert spa
e H (1), 
on�gurationspa
e Q(1), POVM P (1), and a family of generators L (1) = L (1)W labeled by the densitymatri
es W from a dense subset of the density matri
es in H (1)� 
H (1). The outputis a family of generators �L (1) = L0 = L0;	 labeled by the state ve
tors 	 in (a densesubspa
e of) Fo
k spa
e. If L (1)W is equivariant with respe
t to W and H(1), then L0;	is equivariant with respe
t to 	 and H0.The algorithm is based on two pro
edures for suitably 
ombining generators for dire
tsums or tensor produ
ts of Hilbert spa
es.33



4.2.1 Dire
t SumsGiven a �nite or 
ountable sequen
e of Hilbert spa
es H (n) with POVMs P (n) on 
on-�guration spa
es Q(n), and for ea
h n a family of generators L (n) labeled by the ve
torsin H (n), there is a 
anoni
ally 
onstru
ted family of generators L � = L �	 , labeledby the ve
tors in the dire
t sum LnH (n). The spa
e Q in whi
h the 
orrespondingpro
ess takes pla
e is the disjoint union of the Q(n). If every L (n)	n is equivariant withrespe
t to 	n 2H (n) and H(n), then L �	 is equivariant with respe
t to 	 2LnH (n)and LnH(n).Here are the details. The POVM P =Ln P (n) on Q that naturally arises from thedata is given by P (B) = Ln P (n)(B \ Q(n)) for B � Q. Let Pn denote the proje
tionH !H (n). The generator L � is given by�L �	 ����Q(n) = L (n)Pn	=kPn	k����Q(n)� : (95)It generates a (Markov) pro
ess Q�t su
h that when Q�0 2 Q(n), it is generated bythe state ve
tor Pn	=kPn	k, i.e., it is a Markov pro
ess Q(n)t in Q(n) generated byL (n)Pn	=kPn	k. The equivarian
e statement follows dire
tly, sin
e kPn	tk2 = Pt(Q(n)) isinvariant under the evolution generated by H0 =LnH(n).4.2.2 Tensor Produ
tsGiven a �nite sequen
e of Hilbert spa
es H [1℄; : : : ;H [n℄ with POVMs P [i℄ on 
on-�guration spa
es Q[i℄, and for ea
h i a family of generators L [i℄ = L [i℄Wi labeled bythe density matri
es on H [i℄, there is a 
anoni
ally 
onstru
ted family of generatorsL 
 = L 
W , labeled by the density matri
es on the tensor produ
t H [1℄ 
 � � � 
H [n℄.The 
orresponding pro
ess takes pla
e in the Cartesian produ
t Q = Q[1℄ � � � � � Q[n℄.If every L [i℄Wi is equivariant with respe
t to the density matrix Wi on H [i℄ and theHamiltonian H [i℄, then L �W is equivariant with respe
t to W on H [1℄ 
 � � � 
H [n℄ andH =Pi 1
 � � � 
H [i℄ 
 � � � 
 1 =Pi Hi.Here are the details. The POVM that naturally arises from the data is10P (dq1 � � � � � dqn) = P [1℄(dq1)
 � � � 
 P [n℄(dqn): (96)For any q 2 Q, let qi denote its i-th 
omponent and let bqi = (q1; : : : ; qi�1; qi+1; : : : ; qn).For every i and bqi, de�neWi(bqi) = tr6=i�WP (dq1 � � � � � Q[i℄ � � � � � dqn)�tr�WP (dq1 � � � � � Q[i℄ � � � � � dqn)� ;where tr 6=i is the partial tra
e over all fa
tors ex
ept H [i℄. This Wi is the 
onditionaldensity matrix, regarded as a fun
tion of the 
on�guration bqi of the other parti
les. Now10The existen
e of the tensor produ
t POVM is a 
onsequen
e of Corollary 7 in Se
tion 4.4 of [15℄.34




onsider the pro
ess on Q a

ording to whi
h the i-th parti
le moves as pres
ribed byL [i℄Wi while the other parti
les remain �xed. The generator of this pro
ess isLi � := hL [i℄Wi(bqi) �( � jbqi)i �6=i(dbqi) (97)where �6=i is the marginal distribution of bQi (i.e., � integrated over qi) and �( � jbqi) is the
onditional distribution of Qi given bQi = bqi; the square bra
ket is a fun
tion of bqi anda measure in dqi. Now de�ne L 
W� =Pi Li�.To see that L 
 is equivariant when the L [i℄ are, we have to 
he
k (91). Note �rstthat PW (dqijbqi) = tr�Wi(bqi)P [i℄(dqi)�. Due to the equivarian
e of L [i℄, for � = PW thesquare bra
ket in (97) equals (2=~) Im tr�Wi(bqi)P [i℄(dqi)H [i℄�, from whi
h we obtain(91) for Li and Hi and hen
e for L 
 and H.The de�nition of L 
 reprodu
es the many-parti
les Bohm law (1) with or withoutspin from the one-parti
le version (or, for distinguishable parti
les, from several di�erentone-parti
le versions having di�erent masses and spins). Similarly, it reprodu
es themany-parti
les Bohm{Dira
 law (31) from the one-parti
le version.4.2.3 Se
ond Quantization of the POVMLet Q(n) denote the spa
e of all subsets-with-multipli
ities of Q(1) having n elements(
ounting in the multipli
ities). P (1) naturally de�nes a POVM P (1)
n on (Q(1))n a
tingon H (1)
n by P (1)
n(dq1 � � � � � dqn) = P (1)(dq1) 
 � � � 
 P (1)(dqn), and a POVMP (n) on Q(n) a
ting on F (n) = P�H (1)
n (the n-parti
le se
tor of Fo
k spa
e, with P�the proje
tion to the subspa
e of (anti-)symmetri
 elements of H (1)
n, depending onwhether we deal with fermions or bosons) byP (n)(B) = P (1)
n�(q1; : : : ; qn) 2 (Q(1))n : fq1; : : : ; qng 2 B	for B � Q(n), where fq1; : : : ; qng should be understood as a set-with-multipli
ities.11Sin
e P (n)(B) is invariant under permutations, it maps symmetri
 to symmetri
 and anti-symmetri
 to anti-symmetri
 elements of H (1)
n and thus a
ts on F (n) for bosoni
 orfermioni
 Fo
k spa
e.12 The 
orresponding POVM on Q is then P = �P (1) =Ln P (n);more pre
isely, for B � Q, P (B) = 1Mn=0 P (n)(B \Q(n)) :11This agrees with the de�nition given in Se
tion 3.1 for the 
ase of a PVM and the 
oin
iden
e
on�gurations removed from 
on�guration spa
e.12In 
ase that P (1) is nonatomi
, P (n) 
an equivalently be de�ned in the following way: For the set �of 
oin
iden
e 
on�gurations we set P (n)(�) = 0, and for volumes dq1; : : : ; dqn in Q(1) that are pairwisedisjoint, we have a 
orresponding volume dq in Q(n), whi
h 
an be obtained from dq1 � � � � � dqn �(Q(1))n by forgetting the ordering, and we set P (n)(dq) = n!P� P (1)(dq1)
 � � � 
 P (1)(dqn)P�.35



4.2.4 Constru
tion of the Free Pro
essEquipped with the two pro
edures for dire
t sums and tensor produ
ts, we 
ompletethe 
onstru
tion of the free pro
ess.The \tensor produ
t" pro
edure above provides a pro
ess on (Q(1))n from n identi
al
opies of L (1). For a state ve
tor 	(n) 2 F (n) = P�H (1)
n from either the symmetri
or the anti-symmetri
 elements of the n-fold tensor produ
t spa
e, let W be the pro-je
tion to 	(n); the generator L 
W is permutation invariant be
ause the tensor-produ
t
onstru
tion of L 
W is permutation 
ovariant and a permutation 
an at most 
hange thestate ve
tor by a minus sign, whi
h does not a�e
t the density matrix. Consequently,the ordering of the 
on�guration is irrelevant and may be ignored. We thus obtain apro
ess onQ(n) whose generator we 
allL (n). We now apply the \dire
t sum" pro
edureto obtain a pro
ess on Q.5 Towards a Notion of Minimal Pro
essIn this se
tion, we investigate the 
ommon traits of the Markov pro
esses relevant toBell-type QFT, whi
h 
an be summarized in the notion of a minimal pro
ess asso
iatedwith 	; H, and P . We begin with a 
loser study of the minimal free generator (32), andthen explain why we 
all the minimal jump rates \minimal." Finally, in Se
tion 5.3, wegive an outlook on the notion of minimal pro
ess.5.1 Free Pro
ess From Di�erential OperatorsIn this se
tion, we dis
uss some of the details, 
on
erning the two equivalent formulas(32) and (35) for the ba
kward and forward version of the minimal free generator interms of H;P , and 	, that we omitted in Se
tion 2.9. To begin with, L as de�nedby (32) satis�es some ne
essary 
onditions for being a ba
kward generator: Lf(q) isreal, and L1 = 0 where 1 is the 
onstant 1 fun
tion (this 
orresponds to L �(Q) = 0,or 
onservation of total probability). In 
ase L is indeed a ba
kward generator, the
orresponding pro
ess is equivariant be
auseL P(dq) (35)= Re h	j1̂ i~ [H;P (dq)℄j	i = 2~ Im h	jP (dq)Hj	i (26)= _P(dq) :One way to arrive at formula (32) has been des
ribed in Se
tion 2.9. A dif-ferent way, leading to (35), is to start from the ansatz L � = A d�dP where A de-notes a (signed-measure-valued) linear operator a
ting on fun
tions. Equivarian
emeans A1(dq) = h	j i~ [H;P (dq)℄j	i. This suggests Af(dq) = h	jf̂ i~ [H;P (dq)℄j	i, orAf(dq) = h	j i~ [H;P (dq)℄ f̂ j	i, or a 
onvex 
ombination thereof. Sin
e Af(dq) must bereal, we are for
ed to 
hoose the 
ombination with 
oeÆ
ients 12 and 12 , or equivalentlyAf(dq) = Re h	jf̂ i~ [H;P (dq)℄j	i, whi
h is (35).That L generates a deterministi
 pro
ess (when it is a generator at all) is suggestedby the following 
onsideration|at least when H and P are time-reversal invariant:36



repla
ing 	 in (35) by T	 where T is the anti-linear time reversal operator (see Se
tion6.1) 
hanges the sign of L . The only generators L su
h that �L is also a generatorare, presumably, those 
orresponding to deterministi
 motion.This gives us an opportunity to 
he
k for whi
h H (32) does de�ne a pro
ess: fora deterministi
 pro
ess we must have L = v � r where v is the velo
ity ve
tor �eld.It is known that operators of this form, �rst-order di�erential operators, are pre
iselythose linear operators L on the spa
e of smooth fun
tions that satisfy the Leibniz ruleL(fg) = fLg + gLf . Sin
e (32) is linear in f , we have to 
he
k the Leibniz rule to seewhether L is indeed of the form v � r and thus the ba
kward generator of a pro
ess.We 
an see no reason why L should satisfy a Leibniz rule unless P is a PVM, whi
himplies that f̂ P (dq) = f(q)P (dq) ; (98)and H is su
h that for all (ni
e) fun
tions f and g,�[H; f̂ ℄; ĝ� = ĥ (99)for some fun
tion h, whi
h holds ifH is a di�erential operator of order � 2. (IfH = ��,then h = �2rf � rg; if H = �i� � r for whatever ve
tor of matri
es �, or if His a multipli
ation operator, then h = 0.) To 
he
k that the Leibniz rule is obeyedin this 
ase, note that we then have that [H;
fg℄ = [H; f̂ ĝ℄ = [H; f̂ ℄ĝ + f̂ [H; ĝ℄ =f̂ [H; ĝ℄ + ĝ[H; f̂ ℄ + �[H; f̂ ℄; ĝ�. Using this in (32), we �nd that, due to (98), the �rst twoterms give the Leibniz rule, whereas the last term, due to (99), does not 
ontribute tothe real part in (32).When H is an L2 spa
e over Q and P the natural PVM, i.e., when 	 is a fun
tion,(32) 
an be written in the formLf(q) = 1~ Im 	�(q) ([f̂ ; H℄	)(q)	�(q)	(q) (100)where f̂ is the multipli
ation operator 
orresponding to f . From this, one easily readso� the Bohm velo
ity (1) for the N -parti
le S
hr�odinger operator (3) with or withoutspin. Similarly, we get the Bohm{Dira
 theory when H is the Dira
 operator in H =AntiL2(R3 ; C 4)
N , Q the manifold of subsets of R3 with N elements, and P the obviousPVM. (100) also leads to the Bohm{Dira
 motion ifH = L2(R3 ; C 4)
N , Q = R3N , andP is the natural PVM, but not if H is the positive energy subspa
e be
ause then theappropriate POVM P is no longer a PVM.To see that the \se
ond quantization" algorithm maps minimal free generators tominimal free generators, or, in other words, preserves the relation (35) between Hamil-tonian and generator, observe �rst that (35) naturally extends to density matri
es, andthe extension, if a generator, is equivariant. Next 
he
k that the \dire
t sum" and\tensor produ
t" pro
edures of Se
tion 4.2 are 
ompatible with (35) when P is a PVM.Finally, observe that the (anti-)symmetrization operator 
ommutes with the n-parti
leHamiltonian, with P (B) for every permutation invariant set B � (Q(1))n, and with f̂for every permutation invariant fun
tion f : (Q(1))n ! R.37



5.2 MinimalityIn this se
tion we explain in what sense the minimal jump rates (29)|or (22)|areminimal. In so doing, we will also explain the signi�
an
e of the quantity J de�ned in(28), and 
larify the meaning of the steps taken in Se
tions 2.6 and 2.7 to arrive at thejump rate formulas.Given a Markov pro
ess Qt on Q, we de�ne the net probability 
urrent jt at time tbetween sets B and B0 byjt(B;B0) = lim�t&0 1�t hProb�Qt 2 B0; Qt+�t 2 B	� (101)�Prob�Qt 2 B;Qt+�t 2 B0	i :This is the amount of probability that 
ows, per unit time, from B0 to B minus theamount from B to B0. For a pure jump pro
ess, we have thatjt(B;B0) = Zq02B0 �t(Bjq0) �t(dq0)� Zq2B �t(B0jq) �t(dq) ; (102)so that jt(B;B0) = j�;�(B � B0) (103)where j�;� is the signed measure, on Q�Q, given by the integrand of (15),j�;�(dq � dq0) = �(dqjq0) �(dq0)� �(dq0jq) �(dq) : (104)For minimal jump rates �, de�ned by (29) or (22) (and with the probabilities � givenby (24), � = P), this agrees with (28), as was noted earlier,j�;� = J	;H;P ; (105)where we have made expli
it the fa
t that J is de�ned in terms of the quantum entities	; H, and P . Note that both J and the net 
urrent j are anti-symmetri
, Jtr = �J andjtr = �j, the latter by 
onstru
tion and the former be
ause H is Hermitian. (Here trindi
ates the a
tion on measures of the transposition (q; q0) 7! (q0; q) on Q � Q.) Theproperty (105) is stronger than the equivarian
e of the rates �, L�Pt = dPt=dt: Sin
e,by (15), (L��)(dq) = j�;�(dq �Q); (106)and, by (28), dPdt (dq) = J(dq�Q); (107)the equivarian
e of the jump rates � amounts to the 
ondition that the marginals ofboth sides of (105) agree, j�;�(dq �Q) = J(dq�Q) : (108)38



In other words, what is spe
ial about pro
esses with rates satisfying (105) is that notonly the single-time distribution but also the 
urrent is given by a standard quantumtheoreti
al expression in terms of H;	, and P . That is why we 
all (105) the standard-
urrent property|de�ning standard-
urrent rates and standard-
urrent pro
esses.Though the standard-
urrent property is stronger than equivarian
e, it alone doesnot determine the jump rates, as already remarked in [2, 30℄. This 
an perhaps be bestappre
iated as follows: Note that (104) expresses j�;� as twi
e the anti-symmetri
 partof the (nonnegative) measureC(dq � dq0) = �(dqjq0) �(dq0) (109)on Q� Q whose right marginal C(Q� dq0) is absolutely 
ontinuous with respe
t to �.Conversely, from any su
h measure C the jump rates � 
an be re
overed by forming theRadon{Nikod�ym derivative �(dqjq0) = C(dq � dq0)�(dq0) : (110)Thus, given �, spe
ifying � is equivalent to spe
ifying su
h a measure C.In terms of C, the standard-
urrent property be
omes (with � = P)2AntiC = J: (111)Sin
e (re
alling that J = J+� J� is anti-symmetri
)J = 2Anti J+; (112)an obvious solution to (111) is C = J+;
orresponding to the minimal jump rates. However, (105) �xes only the anti-symmetri
part of C. The general solution to (111) is of the formC = J+ + S (113)where S(dq � dq0) is symmetri
, sin
e any two solutions to (111) have the same anti-symmetri
 part, and S � 0, sin
e S = C ^ Ctr, be
ause J+ ^ (J+)tr = 0.In parti
ular, for any standard-
urrent rates, we have thatC � J+; or �(dqjq0) � J+(dq � dq0)P(dq0) : (114)Thus, among all jump rates 
onsistent with the standard-
urrent property, one 
hoi
e,distinguished by equality in (114), has the least frequent jumps, or the smallest amountof sto
hasti
ity: the minimal rates (29). 39



5.3 Minimal Pro
essesWe have 
onsidered in this paper minimal jump pro
esses, i.e., jump pro
esses with rates(29), asso
iated with integral operators H. There is a more general notion of minimalpro
ess, su
h that there is a minimal pro
ess asso
iated with every Hamiltonian froma mu
h wider 
lass than that of integral operators; a 
lass presumably 
ontaining allHamiltonians relevant to QFT. This will be dis
ussed in detail in a forth
oming work[16℄.Bohmian me
hani
s is, in this sense, the minimal pro
ess asso
iated with theS
hr�odinger Hamiltonian (3). The minimal pro
ess asso
iated with an integral oper-ator is the jump pro
ess with minimal rates. When the minimal free generator (32)exists, i.e., when (32) is a generator, it generates the minimal pro
ess asso
iated withH. The minimal pro
ess asso
iated with the Hamiltonian of a QFT is the one we haveobtained in this paper by means of pro
ess additivity. The 
on
ept of minimal pro
essdire
tly provides, perhaps always, the pro
ess relevant to a Bell-type QFT.To begin to 
onvey the notion of the minimal pro
ess, we generalize the standard-
urrent property (
f. Se
tion 5.2) from pure jump pro
esses to general Markov pro
esses:the net probability 
urrent j of a Markov pro
ess de�nes a bilinear formjt(f; g) = lim�t&0 1�t E�f(Qt+�t)g(Qt)� f(Qt)g(Qt+�t)� = (g; Ltf)� (f; Ltg) (115)where Lt is its ba
kward generator, and ( ; ) on the right hand side means the s
alarprodu
t of L2(Q; �t). Then the Markov pro
ess satis�es the standard-
urrent propertyif �t = Pt and (for f and g real) jt(f; g) is equal toJt(f; g) = 2~ Im h	tjf̂Hĝj	ti ; (116)or, in other words, if twi
e the anti-symmetri
 part of its ba
kward generator Lt agreeswith the operator 
orresponding to Jt as given by (Jtf; g) = Jt(f; g), 2AntiLt = Jt. Theminimal pro
ess is then the standard-
urrent pro
ess that has, in a suitable sense, thesmallest amount of randomness.Let us 
onsider some examples. The di�usion pro
ess with generator L given below(and for � = P) has the standard-
urrent property (in fa
t, be
ause its \
urrent velo
ity"[26℄ is v) for the S
hr�odinger Hamiltonian (3) but is not minimal:L � = �2��� div (�~v); with ~v := v + �2r(log j	j2) (117)where � is any positive 
onstant (the di�usion 
onstant) and v is the Bohmian velo
-ity (1); this pro
ess was already 
onsidered in [24, 10℄. Note that Nelson's sto
hasti
me
hani
s [26℄ 
orresponds to � = ~. It is obvious without any mathemati
al analysisthat the smallest amount of sto
hasti
ity 
orresponds to absen
e of di�usion, � = 0,whi
h yields Bohmian me
hani
s. Pro
esses like the di�usion (117) for � > 0 seem lessnatural for the fundamental evolution law of a physi
al theory sin
e they involve greatermathemati
al 
omplexity than is needed for a straightforward asso
iation of a pro
ess40



with H and 	. Examples of pro
esses that do not have the standard-
urrent property,for the S
hr�odinger Hamiltonian (3), are provided by the alternative velo
ity formulas
onsidered by Deotto and Ghirardi [12℄; one 
an say that their 
urrent is not the onesuggested by H and 	.We return to the general dis
ussion of the minimal pro
ess. As we have alreadyindi
ated, when, for a standard-
urrent pro
ess, we view J as well as its ba
kwardgenerator L as operators on L2(Q;P), then 12J is the anti-symmetri
 (skew-adjoint) partof L; thus, only the symmetri
 (self-adjoint) part of L remains at our disposal. Sin
e oneof the properties of a ba
kward generator is L1 = 0, the �rst possibility ~L for L that maysatisfy the formal 
riteria for being a ba
kward generator is ~Lf = 12Jf � (12J1)f . WhenP is a PVM, this is also the operator we obtain by applying, to an arbitrary quantumHamiltonian H, the formula (32) for what we 
alled the minimal free generator, whi
hwe repeat here for 
onvenien
e:~Lf(q) = Re h	jP (dq) i~[H; f̂ ℄j	ih	jP (dq)j	i : (118)Whereas this formula merely provided an alternative de�nition of the free pro
ess inSe
tion 2.9, it now plays a di�erent role: a step towards obtaining the minimal pro
essfrom the Hamiltonian H. As we have pointed out in Se
tion 2.9, ~L is also an obviousnaive guess for the ba
kward generator L, quite independent of equivarian
e or the
urrent J, sin
e i~ [H; f̂ ℄ is the time derivative of f̂ . Moreover, it manifestly satis�es~L1 = 0. For the ba
kward generator L of a standard-
urrent pro
ess we must have,when P is a PVM, that L = ~L + S where S is a symmetri
 operator and S1 = 0.For the minimal pro
ess, we have to 
hoose S as small as possible|while keeping Ssymmetri
 and L a ba
kward generator.Suppose P is a PVM. Observe then that ifH is a di�erential operator (as H0 often is)of the kind 
onsidered in Se
tion 2.9, ~L is itself a ba
kward generator, so that S = 0 is apossible, and in fa
t the smallest, 
hoi
e. If H is an integral operator, what keeps ~L, anintegral operator as well, from being a ba
kward generator is that the o�-diagonal partof its P-kernel (q; ~Lq0) = P(q)~L(q; q0) = 1~ Im h	jqihqjHjq0ihq0j	i may assume negativevalues whereas the o�-diagonal part of the P-kernel of L, (q; Lq0) = P(q)�(qjq0), 
annotbe negative. The smallest possible 
hoi
e of S has as o�-diagonal elements what isneeded to 
ompensate the negative values, and this leads to the minimal jump pro
ess,as des
ribed in Se
tion 5.2. The diagonal part 
ontains only what is needed to ensurethat S1 = 0. For H of the form H0 +HI , the role of S is again to 
ompensate negativevalues o� the diagonal, and the minimal pro
ess has velo
ities determined by H0 via(32) and jump rates determined by HI via (29).In any 
ase, the ba
kward generator of the minimal pro
ess is the one 
losest, in asuitable sense, to (118). This formula may thus be regarded as 
ontaining the essentialstru
ture of L, for the deterministi
 as well as for the jump part of the pro
ess.Another approa
h towards a general notion of minimal pro
ess may be to approxi-mate H by Hilbert{S
hmidt operators Hn, with whi
h are asso
iated, a

ording to theresults of Se
tions 4.2.1 and 4.2.4 of [15℄, minimal jump pro
esses Qn, and take the limit41



n ! 1 of the pro
esses Qn. This leads to a number of mathemati
al questions, su
has under what 
onditions on H;	; P , and Hn does a limiting pro
ess exist, and is itindependent of the 
hoi
e of the approximating sequen
e Hn.6 Remarks6.1 SymmetriesPro
ess additivity preserves symmetries, in the sense that the pro
ess generated byPL (i) shares the symmetries respe
ted by all of the building blo
ks L (i). This se
tionelaborates on this statement, and the following ones: The minimal jump rates (29) andthe minimal free generator (32) share the symmetries of the Hamiltonians with whi
hthey are asso
iated. The \se
ond quantization" algorithm preserves the symmetriesrespe
ted by the one-parti
le pro
ess.Here are some desirable symmetries that may serve as examples: spa
e translations,rotations and inversion, time translations and reversal, Galilean or Lorentz boosts, global
hange of phase 	! ei�	, relabeling of parti
les,13 and gauge transformations.We fo
us �rst on symmetries that do not involve time in any way, su
h as rotationsymmetry. In this 
ase, a symmetry group G a
ts on Q, so that to every g 2 G there
orresponds a mapping 'g : Q ! Q. In addition, G a
ts on H through a proje
tiveunitary (or anti-unitary) representation, so that to every g 2 G there 
orresponds aunitary (or anti-unitary) operator Ug. Then the theory is G-invariant if both the wavefun
tion dynami
s and the pro
ess on Q are, i.e., if H is G-invariant,U�1g HUg = H ; (119)and 'g(Q	t ) = QUg	t (120)in distribution on path spa
e. A ne
essary 
ondition for (120) is that the \
on�gurationobservable" transforms like the 
on�guration, in the sense thatU�1g P ( � )Ug = 'g�P ( � ) ; (121)where '� denotes the a
tion of ' on measures. Without (121), (120) would already failat time t = 0, no matter what the generator is. Given (121), (120) is equivalent to theG-invarian
e of the generator: 'g�L 	'g�1� = L Ug	 : (122)Sin
e 'g� is a linear operator, it follows immediately that the sum of G-invariant gen-erators is again G-invariant. The minimal jump pro
ess, when it exists, is G-invariant,13This may mean two things: 
hanging the arti�
ial labels given to identi
al parti
les, or ex
hangingtwo spe
ies of parti
les. 42



as follows from the fa
t that 'g��	(dqj'g(q0)) = �Ug	(dqjq0), whi
h 
an be seen by in-spe
ting the jump rate formula (29). The minimal free generator (35) satis�es (122)by virtue of (119) and (121). \Se
ond quantization" provides G-a
tions on �Q(1) andF = �H (1) from given a
tions on Q(1) and H (1); (119), (121) and (122) are inheritedfrom their 1-parti
le versions.Time-translation invarian
e is parti
ularly simple. Consider generators L (i)	 whi
hdo not depend on time ex
ept through their dependen
e on 	. Then the same is true ofPL (i). The same 
an be said of the \se
ond quantized" generator, and, provided H istime-independent, of the minimal jump rates (29) and the minimal free generator (35).Next we 
onsider time reversal. It is represented on H by an anti-unitary operatorT , i.e., an anti-linear operator su
h that hT�jT	i is the 
onjugate of h�j	i. We assumethat the Hamiltonian is reversible, THT�1 = H. Then the reversibility of the theorymeans that Q	0�t = QT	0t (123)in distribution on path spa
e, where the supers
ript should be understood as indi
atingthe state ve
tor at t = 0. The ne
essary 
ondition analogous to (121) readsT�1P ( � )T = P ( � ) ; (124)and given that, (123) is equivalent to the T -invarian
e of the generator:L 	 = LT	 ; or L	 = LT	 ; (125)whereL and L denote the forward and ba
kward generator of the time-reversed pro
ess.L 
an be 
omputed from L, for an equivariant Markov pro
ess, a

ording to14Lf = Lyf � (Ly1)f (126)14To make this formula plausible, it may be helpful to note that the se
ond term on the right handside is just the 
orre
tion needed to ensure that Ly1 = 0, a ne
essary 
ondition for being a ba
kwardgenerator. If P were stationary, the se
ond term on the right hand side would vanish.Here is a derivation of (126): Let (f; g) = Rq2Q f(q) g(q)P(dq) be the s
alar produ
t in L2(Q;P). Itfollows from the de�nition (8) of L that(g; Lf) = limt&0 1t E�g(Q0)f(Qt)� g(Q0)f(Q0)� :Correspondingly, L is 
hara
terized (for f and g real) by(g; Lf) = limt&0 1t E�g(Q0)f(Q�t)� g(Q0)f(Q0)� == limt&0 1t E�g(Q0)f(Q�t)� g(Q�t)f(Q�t)� ++ limt&0 1t E�g(Q�t)f(Q�t)� g(Q0)f(Q0)� == (f; Lg)� Zq2Q g(q) f(q) _P(dq) (10)= (Lg; f)� (L(gf);1) = (g; Lyf)� (fg; Ly1) ;whi
h amounts to (126). 43



where y denotes the adjoint operator on L2(Q;P), with P given by (24). Sin
e L is linearin L, 
ondition (125) is preserved when adding (forward or ba
kward) generators; it isalso preserved under \se
ond quantization." For a pure jump pro
ess, (125) boils downto �	(dqjq0) h	jP (dq0)j	i = �T	(dq0jq) h	jP (dq)j	i ; (127)whi
h is satis�ed for the minimal jump rates, by inspe
tion of (29). The minimal freegenerator (32) 
hanges sign when repla
ing 	 by T	, whi
h means the velo
ity 
hangessign, as it should under time reversal (see Se
tion 5.1).Invarian
e under Galilean boosts is a more involved story, and as it is not 
onsideredas fundamental in physi
s anyway, we omit it here. Lorentz boosts are even tri
kier, sin
efor more than just one parti
le, they even fail to map (simultaneous) 
on�gurations into(simultaneous) 
on�gurations. As a result, the problem of Lorentz invarian
e belongsin an altogether di�erent league, whi
h shall not be entered here.6.2 On the Notion of ReversibilityIt may appear, and it is in fa
t a widespread belief, that sto
hasti
ity is in
ompati-ble with time reversibility. We naturally view the past as �xed, and the future, in asto
hasti
 theory, as free, determined only by innovations. Even Bell expressed su
h abelief [5, p. 177℄. However, from the proper perspe
tive the 
on
i
t disappears, and thisperspe
tive is to 
onsider the path spa
e (of the universe) and the probability measurethereon. If t 7! Qt is a history of a universe governed by a Bell-type QFT, then its timereverse, t 7! Q�t, is again a possible path of this Bell-type QFT, though 
orrespondingto a di�erent initial state ve
tor T	 instead of 	, with T the time reversal operator asdis
ussed in Se
tion 6.1. More than this, the distribution of the reversed path t 7! Q�t
oin
ides with the probability measure on path spa
e arising from T	.15It may also be helpful to think of how the situation appears when viewed from outsidespa
e-time: then the path Qt 
orresponds to the de
oration of spa
e-time with a patternof world lines, and this pattern is random with respe
t to a probability measure on what
orresponds to path spa
e, namely the spa
e of all possible de
orations of spa
e-time.Then time reversal is a mere re
e
tion, and for a theory to be time reversible meansthe same as being invariant under this re
e
tion: that we 
ould have had as well there
e
ted probability measure, provided we had started with T	 instead of 	.To sum up, we would like to 
onvey that the sense of reversibility for Markov pro-
esses indeed mat
hes the sense of reversibility that one should expe
t from a physi
altheory.15We 
an be more pre
ise about the meaning of the measure on path spa
e: as in Bohmian me
hani
s[19℄, its role \is pre
isely to permit de�nition of the word `typi
al'." [5, p. 129℄ Consequently, themeaning of the reversibility property of the measures we just mentioned is that the time reverse of ahistory that is typi
al with respe
t to 	, is typi
al with respe
t to T	.
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6.3 Heisenberg Pi
tureIn (24), we have applied the S
hr�odinger pi
ture, a

ording to whi
h the state ve
torevolves while the operators remain �xed. Eq. (24) and the reasoning following it 
anas well be translated to the Heisenberg pi
ture where the state ve
tor 	 is regarded as�xed and the operators Pt( � ) as evolving. Thus, we 
ould equivalently writePt(dq) = h	jPt(dq)j	iinstead of (24). Similarly, H0 and HI be
ome time-dependent while their sum is 
on-stant. We often use an ambiguous notation like h	jP (dq)j	i and formula (29) sin
ethe formulas are equally valid in both pi
tures (and, for that matter, in the intera
tionpi
ture).Like the jump rate formula (29), the formula (32) for the minimal free generator isequally valid in the Heisenberg pi
ture.We further remark that in the Heisenberg pi
ture, the following ni
e equation holdsfor a pure jump pro
ess with minimal rates when P is a PVM:ProbfQt+dt 2 dq;Qt 2 dq0g = h	jfPt+dt(dq); Pt(dq0)gj	i+ (128)for dq \ dq0 = ;, where f ; g on the right hand side means the anti-
ommutator. Thesimilarity to the one-time distribution formulaProbfQt 2 dqg = h	jPt(dq)j	iis striking. Spe
ifying the two-time distribution for in�nitesimal time di�eren
es is a wayof 
hara
terizing a Markov pro
ess, equivalent to spe
ifying the (forward or ba
kward)generator and the one-time distribution. Thus, for a PVM P (128) provides anotherformula for the minimal jump rates (29). A similar formula for the pro
ess generatedby the minimal free generator (32) is E�g(Qt)f(Qt+dt)� = 12h	jfĝt; f̂t+dtgj	i.6.4 Examples of Pro
ess AdditivityAmong di�erent 
on
rete realizations of Bohmian me
hani
s we �nd numerous examplesof pro
ess additivity (and, remarkably, no example violating it):� The Hamiltonian for n nonintera
ting parti
les is the sum of the Hamiltoniansfor the individual parti
les, and it is easy to see that this 
orresponds to thede
omposition of the ve
tor �eld on R3n , whi
h de�nes Bohmian me
hani
s forthe n-parti
le system, into its n 
omponents parallel to the n fa
tors R3 . Asalready mentioned, sums of generators for deterministi
 pro
esses amount to sumsof the de�ning ve
tor �elds.Moreover, the ve
tor �eld for ea
h parti
le is essentially the Bohmian one-parti
lelaw. To point out that this is a nontrivial fa
t, we mention that this is not so forthe alternative velo
ity formula (10.2) in [12℄ 
onsidered by Deotto and Ghirardi,for whi
h the velo
ity of the i-th parti
le di�ers from the one-parti
le law. SoBohmian me
hani
s of n parti
les 
an be viewed as built from n 
opies of theone-parti
le version, in fa
t by the \se
ond quantization" algorithm of Se
tion 4.2.45



� The ve
tor �eld of Bohmian me
hani
s for a single spinless parti
le may also beseen as arising in this way. If a Hamiltonian H = �X2 is the negative squareof an (in
ompressible) ve
tor �eld (regarded as a �rst-order di�erential operator)X = a(x)�r on R3 (with r�a = 0 ensuring formal self-adjointness of the square),then the simplest equivariant pro
ess asso
iated with H is given by the velo
ityve
tor �eld v = 2~ Im a � r		 a :The 
orresponding ba
kward generator is L = 2~ Im (X		 )X. Now �~22 � =�P�X�2 is the sum of 3 negative squares of ve
tor �elds X� = ~p2�=�x� 
orre-sponding to the individual degrees of freedom. The asso
iated Bohm velo
ity isthe sum of the velo
ities 
orresponding to the squares. So Bohmian me
hani
s inthree dimensions 
an be viewed as built of 3 
opies of the one-dimensional ver-sion. To point out that this is a nontrivial fa
t, we mention that this is not true,e.g., of the velo
ity formulas (10.1) and (10.2) in [12℄, whi
h do not make sense indimensions other than 3.� If we add an intera
tion potential V to�~22 �, the Bohm velo
ity is the appropriatesum, sin
e the operator V is asso
iated with the trivial motion v = 0.� We may also in
lude an external ve
tor potential A(x; t) in the S
hr�odinger equa-tion, that is, repla
e �~22 � = �~22 r2 by �~22 �r+ i e~A(x; t)�2 = �~22 �� ~22 (i e~r �A+ i e~A � r) + e22 A2. The sum of the asso
iated velo
ities, namely~ Im 	�r		�	 + eA+ 0equals the velo
ity one obtains dire
tly, ~ Im	�(r+ i e~A)	=	�	.� In the Bohm{Dira
 theory (31), however, one 
an in
lude an external gauge 
on-ne
tion A�(x; t) in the Dira
 equation without 
hanging the velo
ity formula. That
onforms with pro
ess additivity be
ause the operator (
0)�1
�A� = A0 + � �Ais asso
iated (termwise) with v = 0.� In the Dira
 Hamiltonian H = �i
~� � r + �m
2, the �rst term 
orresponds tothe Bohm{Dira
 velo
ity (31), whereas the se
ond term 
orresponds to v = 0; asa 
onsequen
e, the Bohm{Dira
 velo
ity does not depend on the mass. Moreover,the three 
omponents of the Bohm{Dira
 velo
ity are ea
h equivariant with respe
tto the 
orresponding derivative term in H.In addition, we point out 
ases of pro
ess additivity in the \se
ond quantization"algorithm and minimal jump pro
esses.The \se
ond quantized" generator �L (1) as 
onstru
ted in Se
tion 4.2 provides anexample of pro
ess additivity (or may be viewed as an appli
ation of pro
ess additivity):LH0;	 = 1Xn=0LH(n)0 ;	(n) ;46



where the generators in the sum 
orrespond to motions in the respe
tive di�erent se
torsof Q.Suppose we regard the parti
les as ordered, Q = (Q1; : : : ;QN). Then another 
aseof pro
ess additivity be
omes visible:H(N)0 = NXi=1 hiwhere hi is the one-parti
le Hamiltonian a
ting on the i-th parti
le. Correspondingly,LH(N)0 = NXi=1 Liwhere Li is equivariant with respe
t to hi. This applies not only to Bohmian me-
hani
s (as des
ribed earlier in this se
tion), but generally to the \se
ond quantiza-tion" pro
edure as des
ribed in Se
tion 4.2. We also note that the \se
ond quantiza-tion" algorithm presented in Se
tion 4.2 preserves pro
ess additivity in the sense that�(L (1)1 +L (1)2 ) = �L (1)1 + �L (1)2 while �(H(1)1 +H(1)2 ) = �H(1)1 + �H(1)2 .We now turn to pro
ess additivity among minimal jump pro
esses.A jump pro
ess generated by a sum need not be a minimal jump pro
ess evenwhen its 
onstituents are. But under 
ertain 
onditions it is. Two su
h 
ases are the\dire
t sum" and \tensor produ
t" pro
esses 
onstru
ted in Se
tions 4.2.1 and 4.2.2:H = LnH (n) with Q = SnQ(n) and H = LnH(n), and H = H [1℄ 
 � � � 
H [N ℄with Q = Q[1℄� � � � �Q[N ℄ and H =Pi 1
 � � � 
H [i℄
 � � � 
 1, with L =PLi whereLi a
ts nontrivially, in an obvious sense, only on Q(i) or on Q[i℄. These are spe
ial 
asesof the general fa
t that minimality is 
ompatible with additivity whenever the addendsof the Hamiltonian 
orrespond to di�erent sorts of jumps. That 
an be most easilyunderstood in the 
ase of a PVM 
orresponding to an orthonormal basis fjqi : q 2 QgofH : suppose H = H1+H2 and for every pair q; q0 either hqjH1jq0i = 0 or hqjH2jq0i = 0.Then � = �1+�2. The 
orresponding 
ondition in the POVM 
ontext is that the kernelsof H1 and H2 have disjoint supports. When H is naturally given as a sum this 
onditionwould be expe
ted to be satis�ed.Finally, we remark that the minimal free generator L = L H as de�ned in (35) isadditive in H.6.5 Se
ond Quantization of a Minimal Jump Pro
essWe note that the \se
ond quantization" of a minimal jump pro
ess asso
iated with aPVM P (1), as des
ribed in Se
tion 4.2, is the minimal jump pro
ess asso
iated withthe se
ond-quantized Hamiltonian; this is a 
onsequen
e of the observation that Ligenerates the minimal jump pro
ess for Hi in this 
ase. This fa
t is probably physi
allyirrelevant but it is mathemati
ally ni
e. 47



6.6 Global Existen
e QuestionThe rates �t and velo
ities vt, together with Pt, de�ne the pro
ess Qt asso
iated withH;P , and 	, whi
h 
an be 
onstru
ted along the lines of Se
tion 2.3. However, therigorous existen
e of this pro
ess, like the global existen
e of solutions for an ordinarydi�erential equation, is no trivial matter. See Se
tion 4.3 of [15℄ for a dis
ussion of whatmust be 
ontrolled in order to establish the global existen
e of the pro
ess, and [20℄ foran example of su
h a global existen
e proof.6.7 POVM Versus PVMAs we have already remarked in footnote 4, every POVM P is related to a PVM Pext,the Naimark extension, on a larger Hilbert spa
e Hext a

ording to P ( � ) = P+Pext( � )Iwith P+ the proje
tion Hext ! H and I the in
lusion H ! Hext. This fa
t allowsa se
ond perspe
tive on P , and sometimes 
reates a 
ertain ambiguity as to whi
hpro
ess is the suitable one for a Bell-type QFT, as follows. At several pla
es in thispaper, we have des
ribed 
onsiderations leading to and methods for de�ning Markovpro
esses, in parti
ular minimal jump rates (29) and the minimal free generator (32);these 
onsiderations and methods 
ould be applied using eitherHext and Pext orH andP . One would insist that the state ve
tor 	 must lie inH , the spa
e of physi
al states,but even then one might arrive at di�erent pro
esses starting from P or Pext. To obtaina pro
ess from Pext requires, of 
ourse, that we have a Hamiltonian on Hext, while His de�ned on H ; su
h a Hamiltonian, however, 
an easily be 
onstru
ted from H bysetting Hext = IHP+.In some 
ases, the Naimark extension does not lead to an ambiguity. This is the 
asefor the jump rate formula (29), sin
e for 	 2 H , h	jPext(dq)j	i = h	jP (dq)j	i andh	jPext(dq)HextPext(dq0)j	i = h	jP (dq)HP (dq0)j	i. This fa
t suggests that, generally,the minimal pro
ess arising from Hext and Pext is the same as the one arising from Hand P .The situation is di�erent, however, when H is de�ned on Hext to begin with, anddi�erent from Hext. This is the 
ase with the free Dira
 operator h0, de�ned as adi�erential operator on L2(R3 ; C 4), whi
h di�ers from P+h0P+. When we obtained inSe
tion 2.9 the Bohm{Dira
 motion (31) from the formula (32) for the minimal freegenerator, we used h0 and Pext. In 
ontrast, the restri
tion of h0 to the positive energysubspa
e, or equivalently P+h0P+, possesses a kernel; more pre
isely, it is a 
onvolutionoperator S+ ? (h0S+)? in the notation of Se
tion 3.3, and thus 
orresponds to jumps.The asso
iated minimal pro
ess on R3 presumably makes in�nitely many jumps in every�nite time interval, similar to the example of [15℄, Se
tion 3.5.Thus, there are two pro
esses to 
hoose between, the Bohm{Dira
 motion and theminimal pro
ess for P+h0P+. Both are equivariant, and thus it is arguably impossibleto de
ide empiri
ally whi
h one is right. In our example theory in Se
tion 3.3, we 
hosethe simpler, deterministi
 one. But we leave to future work the dis
ussion of whi
h ismore likely relevant to physi
s, and why. 48



6.8 The Role of Field OperatorsThe Bell-type QFTs with whi
h we have been 
on
erned in this paper are models de-s
ribing the behaviour of parti
les moving in physi
al 3-spa
e, not of �elds on 3-spa
e.We have been 
on
erned here mainly with a parti
le ontology, not a �eld ontology. Thisfo
us may be surprising at �rst: almost by de�nition, it would seem that QFT dealswith �elds, and not with parti
les. Consider only the o

urren
e (and prominen
e) of�eld operators in QFT!But there is less to this than might be expe
ted. The �eld operators do not fun
tionas observables in QFT. It is far from 
lear how to a
tually \observe" them, and evenif this 
ould somehow, in some sense, be done, it is important to bear in mind thatthe standard predi
tions of QFT are grounded in the parti
le representation, not the�eld representation: Experiments in high energy physi
s are s
attering experiments, inwhi
h what is observed is the asymptoti
 motion of the outgoing parti
les. Moreover, forFermi �elds|the matter �elds|the �eld as a whole (at a given time) 
ould not possiblybe observable, sin
e Fermi �elds anti-
ommute, rather than 
ommute, at spa
e-likeseparation. One should be 
areful here not to be taken in by the attitude widespreadin quantum theory of intuitively regarding the operators as \quantities," as if theyrepresented something \out there" in the real world; see [9℄ for a 
ritique of this attitude.So let us fo
us on the role of the �eld operators in QFT. This seems to be to relateabstra
t Hilbert spa
e to spa
e-time: the �eld operators are atta
hed to spa
e-timepoints, unlike the quantum states 	, whi
h are usually regarded not as fun
tions but asabstra
t ve
tors. In orthodox quantum �eld theory the �eld operators are an e�e
tivedevi
e for the spe
i�
ation of Hamiltonians having good spa
e-time properties. For ourpurposes here, what is 
riti
al is the 
onne
tion between �eld operators and POVMs.Throughout this paper, the 
onne
tion between Hilbert spa
e and the parti
le posi-tions in physi
al spa
e has been made through the POVM P , and through it alone. Wenow wish to emphasize that the �eld operators are 
losely related to P , and indeed that�eld operators are just what is needed for eÆ
iently de�ning a POVM P on �R3 .This 
onne
tion is made through number operators N(R), R � R3 . These de�nea number-operator-valued measure (NOVM) N( � ) on R3 , an \unnormalized POVM"(N(R3) is usually not the identity operator and N(R) is usually an unboundedpositive operator) for whi
h the values N(R) 
ommute and are number operators:spe
trum(N(R)) � f0; 1; 2; 3; : : :g. (The basi
 di�eren
e, then, between a NOVM anda PVM is that the spe
trum of the positive operators is f0; 1; 2; 3; : : :g rather than justf0; 1g.)There is an obvious one-to-one relation between NOVMs N( � ) on R3 and PVMs Pon �R3 , given by N(R) = Zq2�R3 nR(q)P (dq) (129)where nR(q) = #(q \ R) is the number fun
tion on �R3 for the region R. Sin
e (129)is the spe
tral de
omposition of the 
ommuting family N(R), this 
orresponden
e isone-to-one. (Note that the joint spe
trum of the 
ommuting family N(R) is the set of49



nonnegative-integer-valued measures nR on R3 , one of the de�nitions of �R3 given inSe
tion 2.8.)The moral is that a NOVM on R3 is just a di�erent way of speaking about a PVM PonQ = �R3 . All other POVMs arise from PVMs by restri
tion to a subspa
e (Naimark'stheorem [11℄). An easy way to obtain a NOVM N starts with settingN(R) = ZR ��(x)�(x) d3x (130)for suitable operators �(x). An easy way to ensure that the N(R) 
ommute is to requirethat the operators �(x) 
ommute or anti-
ommute with ea
h other and the adjoints��(x0) for x0 6= x. An easy way to ensure that the N(R) have nonnegative integereigenvalues is to require that [�(x); ��(x0)℄� = Æ(x� x0) ; (131)where [ ; ℄� is the (anti-)
ommutator, and that there is a 
y
li
 va
uum state j0i 2 Hfor whi
h �(x)j0i = 0. The relations (131) are of 
ourse just the usual 
anoni
al(anti-)
ommutation relations that �eld operators are required to satisfy.Moreover, in gauge theories the 
onne
tion between matter �eld � and the NOVMis perhaps even more 
ompelling. Consider a gauge theory with internal state spa
eV , equipped with the inner produ
t hh � j � ii. Then, given x 2 R3 , the matter �eld�(x) should formally be regarded as a linear fun
tional V ! O(H ), � 7! ��(x), fromthe internal state spa
e to operators on H , with ����(x) = (��(x))� a linear fun
tionV � ! O(H ) on the dual of V . (131) then be
omes [��(x); ����(x0)℄ = Æ(x� x0) hh�j�ii.Thus the simplest gauge-invariant obje
t asso
iated with � is the NOVM (130), withthe integrand understood as the 
ontra
tion of the tensor V � V � ! O(H ), (�; �) 7!���(x)��(x).Hen
e, not only does the notion of parti
le not 
on
i
t with the prominen
e of �eldoperators (see Se
tions 3.1 and 3.3 for expli
it examples), but �eld operators have anatural pla
e in a theory whose ultimate goal it is to govern the motion of parti
les.One of their important roles is to de�ne the POVM P that relates Hilbert spa
e to
on�guration spa
e. Quantum theory of �elds or quantum theory of parti
les? A theoryof parti
le motion exploiting �eld operators!7 Con
lusionsThe essential point of this paper is that there is a dire
t and natural way of under-standing QFT as a theory about moving parti
les, an idea pioneered, in the realm ofnonrelativisti
 quantum me
hani
s, by de Broglie and Bohm. We leave open, however,three 
onsiderable gaps: the question of the pro
ess asso
iated with the Klein{Gordonoperator, the problem of removing 
ut-o�s, and the issue of Lorentz invarian
e.A
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