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1 IntrodutionThe aim of this paper is to present methods for onstruting Bell-type QFTs. These havein ommon a good deal of mathematial struture, whih we will eluidate. The primaryvariables of Bell-type QFTs are the positions of the partiles. Bell suggested a dynamiallaw, governing the motion of the partiles, in whih the Hamiltonian H and the statevetor 	 determine ertain jump rates [3℄. Sine these rates are in a sense the smallesthoie possible, we all them the minimal jump rates. By onstrution, they preserve thej	j2 distribution. We assume a well-de�ned Hamiltonian as given; to ahieve this, it isoften neessary to introdue ut-o�s. We shall assume this has been done where needed.In ases in whih one has to hoose between several possible position observables, forexample beause of issues related to the Newton{Wigner operator [27, 23℄, we shall alsoassume that a hoie has been made.Bell-type QFTs an also be regarded as extensions of Bohmian mehanis. Whenone tries to inorporate partile reation and annihilation into Bohmian mehanis, oneis naturally lead to models like the one we presented in [14℄. The quantum equilibriumdistribution, playing a entral role in Bohmian mehanis, then more or less ditatesthat reation of a partile ours in a stohasti manner|just as in Bell's model.The paper is organized as follows. In Setion 2 we introdue all the main ideasand reasonings; a super�ial reading should fous on this setion. Some examples ofBell-type QFTs are presented in Setion 3. (Simple examples of minimal jump ratesan be found in [15℄.) In Setion 4 we desribe the onstrution of a proess for thefree Hamiltonian based on \seond quantization." In Setion 5 we sketh the oneptof the \minimal proess" assoiated with a Hamiltonian H. Setion 6 onerns someproperties of Bell-type QFTs that derive from the onstrution methods developed inthis paper. In Setion 7 we onlude.2 Ingredients of Bell-Type Quantum Field Theories2.1 Review of Bohmian Mehanis and EquivarianeBohmian mehanis [6, 19, 21℄ is a non-relativisti theory aboutN point partiles movingin 3-spae, aording to whih the on�guration Q = (Q1; : : : ;QN) evolves aording tothe de Broglie{Bohm law1 dQdt = v(Q) ; v = ~ Im 	�r		�	 : (1)	 = 	t(q) is the wave funtion, whih evolves aording to the Shr�odinger equationi~�	�t = H	 ; (2)1The masses mk of the partiles have been absorbed in the Riemann metri g�� on on�gurationspae R3N , gia;jb = mi Æij Æab, i; j = 1 : : :N; a; b = 1; 2; 3, and r is the gradient assoiated with g�� ,i.e., r = (m�11 rq1 ; : : : ;m�1N rqN ). 3



with H = �~22 � + V (3)for spinless partiles, with � = divr. For partiles with spin, 	 takes values in theappropriate spin spae C k , V may be matrix valued, and numerator and denominatorof (1) have to be understood as involving inner produts in spin spae. The key tothe suess of Bohmian mehanis in yielding the preditions of standard quantummehanis is the fat that the on�guration Qt is j	tj2-distributed in on�gurationspae at all times t, provided that the initial on�guration Q0 (part of the Cauhy dataof the theory) is so distributed. This property, alled equivariane in [19℄, suÆes forempirial agreement between any quantum theory (suh as a QFT) and any versionthereof with additional (often alled \hidden") variables Q, provided the outomes ofall experiments are registered or reorded in these variables. That is why equivarianewill be our guide for obtaining the dynamis of the partiles.The equivariane of Bohmian mehanis follows immediately from omparing theontinuity equation for a probability distribution � assoiated with (1),���t = � div (�v) ; (4)with the equation satis�ed by j	j2 whih follows from (2),�j	j2�t (q; t) = 2~ Im h	�(q; t) (H	)(q; t)i : (5)In fat, it follows from (3) that2~ Im h	�(q; t) (H	)(q; t)i = � div h~ Im	�(q; t)r	(q; t)i (6)so, realling (1), one obtains that�j	j2�t = � div (j	j2v) ; (7)and hene that if �t = j	tj2 at some time t then �t = j	tj2 for all times. Equivarianeis an expression of the ompatibility between the Shr�odinger evolution for the wavefuntion and the law, suh as (1), governing the motion of the atual on�guration. In[19℄, in whih we were onerned only with the Bohmian dynamis (1), we spoke of thedistribution j	j2 as being equivariant. Here we wish to �nd proesses for whih we haveequivariane, and we shall therefore speak of equivariant proesses and motions.2.2 Equivariant Markov ProessesThe study of example QFTs like that of [14℄ has lead us to the onsideration of Markovproesses as andidates for the equivariant motion of the on�guration Q for Hamilto-nians H more general than those of the form (3).4



Consider a Markov proess Qt on on�guration spae. The transition probabilitiesare haraterized by the bakward generator Lt, a (time-dependent) linear operatorating on funtions f on on�guration spae:Ltf(q) = ddsE (f(Qt+s)jQt = q) (8)where d=ds means the right derivative at s = 0 and E ( � j � ) denotes the onditionalexpetation. Equivalently, the transition probabilities are haraterized by the forwardgenerator Lt (or, as we shall simply say, generator), whih is also a linear operator butats on (signed) measures on the on�guration spae. Its de�ning property is that forevery proess Qt with the given transition probabilities, the distribution �t of Qt evolvesaording to ��t�t = Lt�t : (9)Lt is the adjoint of Lt in the sense thatZ f(q)Lt�(dq) = Z Ltf(q) �(dq) : (10)We will use both Lt and Lt, whihever is more onvenient. We will enounter severalexamples of generators in the subsequent setions.We an easily extend the notion of equivariane from deterministi to Markov pro-esses. Given the Markov transition probabilities, we say that the j	j2 distribution isequivariant if and only if for all times t and t0 with t < t0, a on�guration Qt with dis-tribution j	tj2 evolves, aording to the transition probabilities, into a on�guration Qt0with distribution j	t0j2. In this ase, we also simply say that the transition probabilitiesare equivariant, without expliitly mentioning j	j2. Equivariane is equivalent toLtj	tj2 = �j	tj2�t (11)for all t. When (11) holds (for a �xed t) we also say that Lt is an equivariant generator(with respet to 	t and H). Note that this de�nition of equivariane agrees with theprevious meaning for deterministi proesses.We all a Markov proess Q equivariant if and only if for every t the distribution �tof Qt equals j	tj2. For this to be the ase, equivariant transition probabilities are ne-essary but not suÆient. (While for a Markov proess Q to have equivariant transitionprobabilities amounts to the property that if �t = j	tj2 for one time t, where �t denotesthe distribution of Qt, then �t0 = j	t0j2 for every t0 > t, aording to our de�nition ofan equivariant Markov proess, in fat �t = j	tj2 for all t.) However, for equivarianttransition probabilities there exists a unique equivariant Markov proess.Noting that (5) is ompletely general, the ruial idea for our onstrution of anequivariant Markov proess is to �nd a generator Lt suh that the right hand side of(5) an be read as the ation of L on � = j	j2,2~ Im	�H	 = L j	j2 : (12)5



We shall implement this idea beginning in Setion 2.6, after a review of jump proessesand some general onsiderations. But �rst we shall illustrate the idea with the familiarase of Bohmian mehanis.For H of the form (3), we have (6) and hene that2~ Im	�H	 = � div (~ Im	�r	) = � div �j	j2~ Im 	�r	j	j2 � : (13)Sine the generator of the (deterministi) Markov proess orresponding to the dynam-ial system dQ=dt = v(Q) given by a veloity vetor �eld v isL � = � div (�v) ; (14)we may reognize the last term of (13) as L j	j2 with L the generator of the determin-isti proess de�ned by (1). Thus, as is well known, Bohmian mehanis arises as thenatural equivariant proess on on�guration spae assoiated with H and 	.To be sure, Bohmian mehanis is not the only solution of (12) for H given by(3). Among the alternatives are Nelson's stohasti mehanis [26℄ and other veloityformulas [12℄. However, Bohmian mehanis is the most natural hoie, the one mostlikely to be relevant to physis. It is, in fat, the anonial hoie, in the sense of minimalproess whih we shall explain in Setion 5.3.2.3 Equivariant Jump ProessesLet Q denote the on�guration spae of the proess, whatever sort of spae that maybe (vetor spae, lattie, manifold, et.); mathematially speaking, we need that Q be ameasurable spae. A (pure) jump proess is a Markov proess on Q for whih the onlymotion that ours is via jumps. Given that Qt = q, the probability for a jump to q0,i.e., into the in�nitesimal volume dq0 about q0, by time t + dt is �t(dq0jq) dt, where � isalled the jump rate. In this notation, � is a �nite measure in the �rst variable; �(Bjq)is the rate (the probability per unit time) of jumping to somewhere in the set B � Q,given that the present loation is q. The overall jump rate is �(Qjq).It is often the ase that Q is equipped with a distinguished measure, whih we shalldenote by dq or dq0, slightly abusing notation. For example, if Q = Rd , dq may be theLebesgue measure, or if Q is a Riemannian manifold, dq may be the Riemannian volumeelement. When �( � jq) is absolutely ontinuous relative to the distinguished measure,we also write �(q0jq) dq0 instead of �(dq0jq). Similarly, we sometimes use the letter � fordenoting a measure and sometimes the density of a measure, �(dq) = �(q) dq.A jump �rst ours when a random waiting time T has elapsed, after the time t0 atwhih the proess was started or at whih the most reent previous jump has ourred.For purposes of simulating or onstruting the proess, the destination q0 an be hosenat the time of jumping, t0 + T , with probability distribution �t0+T (Qjq)�1 �t0+T ( � jq).In ase the overall jump rate is time-independent, T is exponentially distributed withmean �(Qjq)�1. When the rates are time-dependent|as they will typially be in what6



follows|the waiting time remains suh thatZ t0+Tt0 �t(Qjq) dtis exponentially distributed with mean 1, i.e., T beomes exponential after a suitable(time-dependent) resaling of time. For more details about jump proesses, see [8℄.The generator of a pure jump proess an be expressed in terms of the rates:L��(dq) = Zq02Q ��(dqjq0)�(dq0)� �(dq0jq)�(dq)� ; (15)a \balane" or \master" equation expressing ��=�t as the gain due to jumps into dqminus the loss due to jumps away from q.We shall say that jump rates � are equivariant if L� is an equivariant generator. Itis one of our goals in this paper to desribe a general sheme for obtaining equivariantjump rates. In Setions 2.6 and 2.7 we will explain how this leads us to the minimaljump rates, formula (29).2.4 Proess AdditivityThe Hamiltonian of a QFT usually omes as a sum, suh asH = H0 +HI (16)with H0 the free Hamiltonian and HI the interation Hamiltonian. If several partilespeies are involved, H0 is itself a sum ontaining one free Hamiltonian for eah speies.The left hand side of (12), whih should govern our hoie of the generator, is then alsoa sum, 2~ Im	�H0	+ 2~ Im	�HI	 = L j	j2 : (17)This opens the possibility of �nding a generator L by setting L = L0 +LI , providedwe have generators L0 and LI orresponding to H0 and HI in the sense that2~ Im	�H0	 = L0j	j2 (18a)2~ Im	�HI	 = LI j	j2 : (18b)This feature of (12) we all proess additivity ; it is based on the fat that the left handside of (12) is linear in H. Note that the bakward generator of the proess with forwardgenerator L0 +LI is L0 + LI ; thus forward and bakward generators lead to the samenotion of proess additivity, and to the same proess orresponding to H0 + HI . Inmany ases, as will be elaborated in Setion 2.8, H0 is based on an operator known fromquantum mehanis (e.g., the Dira operator), in suh a way that L0 an be obtained7



from the appropriate Bohmian law of motion. In Setion 2.6 we will explain how LIan usually be taken as the generator of a jump proess.Our proposal is to take seriously the proess generated by L = L0+LI and regardit as the proess naturally assoiated with H. The bottom line is that proess additivityprovides a method of onstruting a Bell-type theory.Obviously, the mathematial observation of proess additivity (that sums of gener-ators de�ne an equivariant proess assoiated with sums of Hamiltonians) applies notonly to the splitting of H into a free and an interation ontribution, but to every asewhere H is a sum. And it seems that proess additivity provides a physially very rea-sonable proess in every ase where H is naturally a sum, in fat the most reasonableproess: the one that should be onsidered the Bell-type proess, de�ning the Bell-typetheory.2.5 What Added Proesses May Look LikeTo get some feeling for what addition of generators, L = L1 +L2, means for the or-responding proesses, we onsider some examples. First onsider two deterministi pro-esses (on the same on�guration spae), having generators of the formL � = � div (�v).To add the generators obviously means to add the veloity vetor �elds, v = v1 + v2, sothe resulting veloity is a superposition of two ontributions.Next onsider a pure jump proess. Sine, aording to (15), the generator L islinear in �, adding generators means adding rates, � = �1 + �2. This is equivalent tosaying there are two kinds of jumps: if the present loation is q 2 Q, with probability�1(Qjq) dt the proess performs a jump of the �rst type within the next dt time units, andwith probability �2(Qjq) dt a jump of the seond type. That does not mean, however,that one an deide from a given realization of the proess whih jump was of whihtype.Next suppose we add the generators of a deterministi and a jump proess,L �(q) = � div (�v)(q) + Zq02Q ��(qjq0) �(q0)� �(q0jq) �(q)�dq0 : (19)This proess moves with veloity v(q) until it jumps to q0, where it ontinues moving,with veloity v(q0). The jump rate may vary with time in two ways: �rst beause �may be time-dependent, seond beause � may be position-dependent and Qt moveswith veloity v. One an easily understand (19) in terms of gain or loss of probabilitydensity due to motion and jumps. So this proess is pieewise deterministi: althoughthe temporal length of the piees (the intervals between two subsequent jumps) and thestarting points (the jump destinations) are random, given this data the trajetory isdetermined.The generator of the Wiener proess in Rd is the Laplaian, and to add to it thegenerator of a deterministi proess means to introdue a drift. Note that this is di�erentfrom adding, in Rd , a Wiener proess to a solution of the deterministi proess. In spaeslike Rd , where it so happens that one is allowed to add loations, there is a danger of8



onfusing addition of generators with addition of realizations. Whenever we speak ofadding proesses, it means we add generators.To add generators of a di�usion and a pure jump proess yields what is often alled ajump di�usion proess, one making jumps with time- and position-dependent rates andfollowing a di�usion path in between. Di�usion proesses, however, will play almost norole in this paper.2.6 Integral Operators Correspond to Jump ProessesWe now address the interation part HI of the Hamiltonian (16). In QFTs with uto�sit is usually the ase that HI is an integral operator. For that reason, we shall in thiswork fous on integral operators for HI . We now point out why the naturally assoiatedproess is a pure jump proess. For short, we will write H rather than HI in this andthe subsequent setion. For the time being, think of Q as Rd and of wave funtions asomplex valued.What haraterizes jump proesses versus ontinuous proesses is that some amountof probability that vanishes at q 2 Q an reappear in an entirely di�erent region ofon�guration spae, say at q0 2 Q. This is manifest in the equation for ��=�t, (15):the �rst term in the integrand is the probability inrease due to arriving jumps, theseond the derease due to departing jumps, and the integration over q0 reets that q0an be anywhere in Q. This suggests that Hamiltonians for whih the expression (5)for �j	j2=�t is naturally an integral over dq0 orrespond to pure jump proesses. Sowhen is the left hand side of (12) an integral over dq0? When H is an integral operator,i.e., when hqjHjq0i is not merely a formal symbol, but represents an integral kernel thatexists as a funtion or a measure and satis�es(H	)(q) = Z dq0 hqjHjq0i	(q0) : (20)In this ase, we should hoose the jump rates in suh a way that, when � = j	j2,�(qjq0) �(q0)� �(q0jq) �(q) = 2~ Im	�(q) hqjHjq0i	(q0) ; (21)and this suggests, sine jump rates must be nonnegative (and the right hand side of (21)is anti-symmetri), that�(qjq0) �(q0) = h2~ Im	�(q) hqjHjq0i	(q0)i+(where x+ denotes the positive part of x 2 R, that is, x+ is equal to x for x > 0 and iszero otherwise), or �(qjq0) = �(2=~) Im	�(q) hqjHjq0i	(q0)�+	�(q0)	(q0) : (22)These rates are an instane of what we all the minimal jump rates assoiated with H(and 	). The name omes from the fat that they are atually the minimal possible9



values given (21), as is expressed by the inequality (114) and will be explained in detailin Setion 5.2. Minimality entails that at any time t, one of the transitions q1 ! q2 orq2 ! q1 is forbidden. We will all the proess de�ned by the minimal jump rates theminimal jump proess (assoiated with H).In ontrast to jump proesses, ontinuous motion, as in Bohmian mehanis, or-responds to suh Hamiltonians that the formal matrix elements hqjHjq0i are nonzeroonly in�nitesimally lose to the diagonal, and in partiular to di�erential opera-tors like the Shr�odinger Hamiltonian (3), whih has matrix elements of the typeÆ00(q � q0) + V (q) Æ(q � q0). We an summarize the situation, as a rule of thumb, bythe following table:A ontribution to H that is a . . . orresponds to . . .integral operator jumpsdi�erential operator deterministi ontinuous motionmultipliation operator no motion (L = 0)The minimal jump rates as given by (22) have some nie features. The possiblejumps for this proess orrespond to the nonvanishing matrix elements of H (though,depending on the state 	, even some of the jump rates orresponding to nonvanishingmatrix elements of H might happen to vanish). Moreover, in their dependene on thestate 	, the jump rates � depend only \loally" upon 	: the jump rate for a given jumpq0 ! q depends only on the values 	(q0) and 	(q) orresponding to the on�gurationslinked by that jump. Disretizing R3 to a lattie "Z3, one an obtain Bohmian mehanisas a limit "! 0 of minimal jump proesses [33, 34℄, whereas greater-than-minimal jumprates lead to Nelson's stohasti mehanis [26℄ and similar di�usions, suh as (117);see [34, 22℄. If the Shr�odinger operator (3) is approximated in other ways by operatorsorresponding to jump proesses, e.g., by H" = e�"HHe�"H, the minimal jump proessespresumably also onverge to Bohmian mehanis.We have reason to believe that there are lots of self-adjoint operators whih do notorrespond to any stohasti proess that an be regarded as de�ned, in any reasonablesense, by (22).2 But suh operators seem never to our in QFT. (The Klein{Gordonoperator pm24 � ~22� does seem to have a proess, but it requires a more detaileddisussion whih will be provided in a forthoming work [18℄.)2.7 Minimal Jump RatesThe reasoning of the previous setion applies to a far more general setting than just on-sidered: to arbitrary on�guration spaes Q and \generalized observables"|POVMs|de�ning, for our purposes, what the \position representation" is. We now present thismore general reasoning, whih leads to one of the main formulas of this paper, (29).2Consider, for example, H = p os p where p is the one-dimensional momentum operator �i~�=�q.Its formal kernel hqjH jq0i is the distribution � i2Æ0(q� q0� 1)� i2Æ0(q� q0+1), for whih (22) would nothave a meaning. From a sequene of smooth funtions onverging to this distribution, one an obtaina sequene of jump proesses with rates (22): the jumps our very frequently, and are by amounts ofapproximately �1. A limiting proess, however, does not exist.10



The proess we onstrut relies on the following ingredients from QFT:1. A Hilbert spae H with salar produt h	j�i.2. A unitary one-parameter group Ut in H with Hamiltonian H,Ut = e� i~ tH ;so that in the Shr�odinger piture the state 	 evolves aording toi~d	tdt = H	t : (23)Ut ould be part of a representation of the Poinar�e group.3. A positive-operator-valued measure (POVM) P (dq) on Q ating on H , so thatthe probability that the system in the state 	 is loalized in dq at time t isPt(dq) = h	tjP (dq)j	ti : (24)Mathematially, a POVM P on Q is a ountably additive set funtion (\measure"),de�ned on measurable subsets of Q, with values in the positive (bounded self-adjoint)operators on (a Hilbert spae) H , suh that P (Q) is the identity operator.3 Physially,for our purposes, P ( � ) represents the (generalized) position observable, with values inQ. The notion of POVM generalizes the more familiar situation of observables givenby a set of ommuting self-adjoint operators, orresponding, by means of the spetraltheorem, to a projetion-valued measure (PVM): the ase where the positive operatorsare projetion operators. A typial example is the single Dira partile: the positionoperators on L2(R3 ; C 4) indue there a natural PVM P0( � ): for any Borel set B �R3 , P0(B) is the projetion to the subspae of funtions that vanish outside B, or,equivalently, P0(B)	(q) = 1B(q)	(q) with 1B the indiator funtion of the set B.Thus, h	jP0(dq)j	i = j	(q)j2dq. When one onsiders as Hilbert spae H only thesubspae of positive energy states, however, the loalization probability is given byP ( � ) = P+P0( � )I with P+ : L2(R3 ; C 4) ! H the projetion and I : H ! L2(R3 ; C 4)the inlusion mapping. Sine P+ does not ommute with most of the operators P0(B),P ( � ) is no longer a PVM but a genuine POVM4 and onsequently does not orrespond toany position operator|although it remains true (for 	 in the positive energy subspae)that h	jP (dq)j	i = j	(q)j2dq. That is why in QFT, the position observable is indeedmore often a POVM than a PVM. POVMs are also relevant to photons [1, 25℄. In oneapproah, the photon wave funtion 	 : R3 ! C 3 is subjet to the onstraint onditionr � 	 = �1	1 + �2	2 + �3	3 = 0. Thus, the physial Hilbert spae H is the (losure3The ountable additivity is to be understood as in the sense of the weak operator topology. Thisin fat implies that ountable additivity also holds in the strong topology.4This situation is indeed more general than it may seem. By a theorem of Naimark [11, p. 142℄,every POVM P ( � ) ating onH is of the form P ( � ) = P+P0( � )I where P0 is a PVM on a larger Hilbertspae, P+ the projetion to H , and I the inlusion mapping.11



of the) subspae of L2(R3 ; C 3) de�ned by this onstraint, and the natural PVM onL2(R3 ; C 3) gives rise, by projetion, to a POVM on H . So muh for POVMs. Let usget bak to the onstrution of a jump proess.The goal is to speify equivariant jump rates � = �	;H;P , i.e., suh rates thatL�P = dPdt : (25)To this end, one may take the following steps:1. Note that dPt(dq)dt = 2~ Im h	tjP (dq)Hj	ti : (26)2. Insert the resolution of the identity I = Rq02Q P (dq0) and obtaindPt(dq)dt = Zq02Q Jt(dq; dq0) ; (27)where Jt(dq; dq0) = 2~ Im h	tjP (dq)HP (dq0)j	ti : (28)3. Observe that J is anti-symmetri, J(dq0; dq) = �J(dq; dq0). Thus, sine x = x+ �(�x)+,J(dq; dq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+ � [(2=~) Im h	jP (dq0)HP (dq)j	i℄+ :4. Multiply and divide both terms by P( � ), obtaining thatZq02Q J(dq; dq0) = Zq02Q � [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i P(dq0)�� [(2=~) Im h	jP (dq0)HP (dq)j	i℄+h	jP (dq)j	i P(dq)� :5. By omparison with (15), reognize the right hand side of the above equation asL�P, with L� the generator of a Markov jump proess with jump rates�(dqjq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i ; (29)whih we all the minimal jump rates.
12



Mathematially, the right hand side of this formula as a funtion of q0 must be understoodas a density (Radon{Nikod�ym derivative) of one measure relative to another.5 The plussymbol denotes the positive part of a signed measure; it an also be understood asapplying the plus funtion, x+ = max(x; 0), to the density, if it exists, of the numerator.To sum up, we have argued that with H and 	 is naturally assoiated a Markovjump proess Qt whose marginal distributions oinide at all times by onstrution withthe quantum probability measure, �t( � ) = Pt( � ), so that Qt is an equivariant Markovproess.In Setion 4 of [15℄, we establish preise onditions on H;P , and 	 under whih thejump rates (29) are well-de�ned and �nite P-almost everywhere, and prove that in thisase the rates are equivariant, as suggested by the steps 1-5 above. It is perhaps worthremarking at this point that any H an be approximated by Hamiltonians Hn (namelyHilbert{Shmidt operators) for whih the rates (29) are always (for all 	) well-de�nedand equivariant [15℄. Conerning this, see also the end of Setion 5.3.2.8 Proess Assoiated with the Free HamiltonianWe now address the free Hamiltonian H0 of a QFT. We desribe the proess naturallyassoiated with H0, when this is the seond quantized Shr�odinger or Dira operator.We will treat more general free Hamiltonians in the next setion. We shall onsider here5Quite aside from the previous disussion, it is perhaps worth noting that there are not so manyexpressions in H;P , and 	 that would meet the formal riteria for being a andidate for the jumprate. Sine the only onnetion between abstrat Hilbert spae and on�guration spae is by P , whihleads to measures on Q, the only way to obtain a funtion on Q is to form a Radon{Nikod�ym quotientof two measures, �(q0) = A(dq0)=B(dq0). Sine � must be a measure-valued funtion, the numeratorshould be a bi-measure (a measure in eah of two variables). The simplest measure one an form fromH;P , and 	 is h	jP (dq)j	i; the simplest bi-measures are h	jHn1P (dq)Hn2P (dq0)Hn3 j	i. Jump ratesmust have dimension 1/time, and the only objet at hand having this dimension is H=~. Thus, H anappear only one in the numerator. The expressions h	jHP (dq)P (dq0)j	i and h	jP (dq)P (dq0)H j	iare no good beause for PVMs P they are onentrated on the diagonal of Q � Q and hene do notlead to nontrivial jumps. Let us write � for the measure-valued funtion we have arrived at:�(dq; q0) = 1~ h	jP (dq)HP (dq0)j	ih	jP (dq0)j	i :This provides omplex measures, whereas �( � jq0) must be a positive real measure. There are not manyways of forming a positive real measure from a omplex one, the essential ones beingj�j; jRe�j; jIm�j; (Re�)+; (Re�)�; (Im�)+; (Im�)�times a numerial onstant � > 0. One ould of ourse form additional expressions at the prie ofhigher omplexity.This has gotten us already pretty lose to the minimal rates (29), whih orrespond to � = 2(Im�)+.To proeed further, we might demand the absene of unneessary jumps; that means that at any time,either the jump q1 ! q2 or q2 ! q1 is forbidden; this leaves only �(Im�)�. Moreover, 2(Im�)+ isthe only expression in the list that has Bohmian mehanis as a limiting ase or implies equivariane.Furthermore it orresponds to the natural guess (118) for a bakward generator, disussed in Setion5.3. 13



only Hamiltonians for one type of partile.We �rst de�ne the on�guration spae Q. Let us write Q(1) (\one-partile on�gu-ration spae") for physial spae; this is typially, but not neessarily, R3 . The spaeQ in whih the \free proess" takes plae is the on�guration spae for a variable num-ber of idential partiles; we all it �Q(1). It an be de�ned as the spae of all �nitesubsets-with-multipliities of Q(1). A set-with-multipliities onsists of a set and, foreah element x of the set, a positive integer, alled the multipliity of x. The numberof partiles in a on�guration q is the sum of its multipliities, #q. Suh on�gura-tions desribe several idential partiles, some of whih may be loated at the sameposition in spae. Equivalently, one ould say that �Q(1) is the set of all mappingsn : Q(1) ! N [ f0g (meaning the number of partiles at a given loation) suh thatXq2Q(1) n(q) <1 :(Here the sum sign is to be taken literally also when Q(1) is unountable: the aboveondition implies that there are only �nitely many loations where n is nonzero.) An-other equivalent de�nition is the set of all �nite nonnegative measures n( � ) on Q(1) thatassume only integer values; the meaning of n(R) is the number of partiles in the regionR of physial spae. Finally, one an de�ne�Q(1) = 1[n=0Q(n) where Q(n) = (Q(1))n=permutations:A related spae, for whih we write �6=Q(1), is the spae of all �nite subsets of Q(1);it is ontained in �Q(1), after obvious identi�ations. In fat, �6=Q(1) = �Q(1) n�, where� is the set of oinidene on�gurations, i.e., those having two or more partiles at thesame position. �6=Q(1) is the union of the spaes Q(n)6= for n = 0; 1; 2; : : :, where Q(n)6= isthe spae of subsets of Q(1) with n elements.For Q(1) = Rd , the n-partile setor Q(n)6= is a manifold of dimension nd (see [13℄ fora disussion of Bohmian mehanis on this manifold). If d � 2, the set � of oinideneon�gurations has odimension � 2 and thus an usually be ignored. We an thenreplae �Rd by the somewhat simpler spae �6=Rd .The position POVM P (1) on Q(1) (ating on the one-partile Hilbert spae) naturallyleads to a POVM we all �P (1) on Q = �Q(1), ating on Fok spae (see Setion 4.2.3for the de�nition).6 Sine a on�guration from �R3 de�nes the number of partiles andtheir positions, the name \position observable" for P = �P (1) strethes the meaning of\position" somewhat: it now also enompasses the number of partiles.We now give a desription of the free proess assoiated with the seond-quantizedShr�odinger operator; it arises from Bohmian mehanis. Fok spaeH = F is a diretsum F = 1Mn=0F (n); (30)6The oinidene on�gurations form a null set, �P (1)(�) = 0, when Q(1) is a ontinuum, or, morepreisely, when P (1) is nonatomi as a measure. 14



where F (n) is the n-partile Hilbert spae. F (n) is the subspae of symmetri (forbosons) or anti-symmetri (for fermions) funtions in L2(R3n ; (C 2s+1)
n) for spin-s par-tiles. Thus, 	 2 F an be deomposed into a sequene 	 = �	(0);	(1); : : : ;	(n); : : :�,the n-th member 	(n) being an n-partile wave funtion, the wave funtion representingthe n-partile setor of the quantum state vetor. The obvious way to obtain a proesson Q = �R3 is to let the on�guration Q(t), ontaining N = #Q(t) partiles, moveaording to the N -partile version of the de Broglie{Bohm law (1), guided by 	(N).7This is indeed an equivariant proess sine H0 has a blok diagonal form with respetto the deomposition (30), H0 = 1Mn=0 H(n)0 ;and H(n)0 is just a Shr�odinger operator for n noninterating partiles, for whih, as wealready know, Bohmian mehanis is equivariant. We used a very similar proess in [14℄(the only di�erene being that partiles were numbered in [14℄).Similarly, if H0 is the seond quantized Dira operator, we let a on�guration Q withN partiles move aording to the usual N -partile Bohm{Dira law [7, p. 274℄dQdt = 	�(Q)�N 	(Q)	�(Q)	(Q) (31)where  denotes the speed of light and �N = (�(1); : : : ;�(N)) with �(k) ating on thespin index of the k-th partile.2.9 Other Approahes to the Free ProessWe will give below a general veloity formula, appliable to a wider lass of free Hamil-tonians. Alternatively, we an provide a free proess for any H0 if we are given anequivariant proess for the one-partile Hamiltonian H(1). This is based on the par-tiular mathematial struture of H0, whih an be expressed by saying it arises froma one-partile Hamiltonian H(1) by applying a \seond quantization funtor �" [29℄.That is, there is an algorithm (in a bosoni or fermioni version) for forming, froma one-partile Hilbert spae H (1) and a one-partile Hamiltonian H(1), a Fok spaeF = �H (1) and free Hamiltonian H0 = �H(1). And parallel to this \seond quanti-zation" algorithm, there is an algorithm for the anonial onstrution, from a givenequivariant one-partile Markov proess Q(1)t , of a proess we all �Q(1)t that takes plaein Q = �Q(1) and is equivariant with respet to H0. This algorithm may be alled the\seond quantization" of a Markov proess.The algorithm is desribed in Setion 4.2. What the algorithm does is essentially toonstrut an n-partile version of Q(1)t for every n, and �nally ombine these by means7As de�ned, on�gurations are unordered, whereas we have written the de Broglie{Bohm law (1)for ordered on�gurations. Thanks to the (anti-)symmetry of the wave funtion, however, all orderingswill lead to the same partile motion. For more about suh onsiderations, see our forthoming work[13℄. 15



of a random partile number N = N(t) = #Q(t) whih is onstant under the freeproess, parallel to the fat that the partile number operator is onserved by H0. Wenote further that the proess �Q(1)t is deterministi if Q(1)t is. If we take the one-partileproess to be Bohmian mehanis or the Bohm{Dira motion, the algorithm reproduesthe proesses desribed in the previous setion.The algorithm leaves us with the task of �nding a suitable one-partile law, whihwe do not address in this paper. For some Hamiltonians, suh as the Dira operator,this is immediate, for others it is rather nontrivial, or even unsolved. The Klein{Gordonoperator pm24 � ~22� will be disussed in forthoming work [18℄, and for a study ofphotons see [28℄.When H0 is made of di�erential operators of up to seond order (whih inludes ofourse the Shr�odinger and Dira operators), there is another way to haraterize theproess assoiated with H0, a way whih allows a partiularly suint desription of theproess and a partiularly diret derivation and onstrution. In fat, we give a formulafor its bakward generator L0, or alternatively the veloity (or the forward generatorL0), in terms of H0; P , and 	.We begin by de�ning, for any H;P , and 	, an operator L ating on funtionsf : Q ! R, whih may or may not be the bakward generator of a proess, byLf(q) = Reh	jP (dq)L̂f̂ j	ih	jP (dq)j	i = Reh	jP (dq) i~[H; f̂ ℄j	ih	jP (dq)j	i : (32)where [ ; ℄ means the ommutator,̂f = Zq2Q f(q)P (dq) ; (33)and L̂ is the \generator" of the (Heisenberg) time evolution of the operator f̂ ,L̂f̂ = dd� eiH�=~ f̂ e�iH�=~����=0 = i~ [H; f̂ ℄ : (34)(If P is a PVM, then f̂ = f(q̂), where q̂ is the on�guration operator.) (32) ould beguessed in the following way: sine Lf is in a ertain sense, see (8), the time derivativeof f , it might be expeted to be related to L̂f̂ , whih is in a ertain sense, see (34), thetime derivative of f̂ . As a way of turning the operator L̂f̂ into a funtion Lf(q), themiddle term in (32) is an obvious possibility. Note that this way of arriving at (32) doesnot make use of equivariane; for another way that does, see Setion 5.1.The formula for the forward generator equivalent to (32) readsL �(dq) = Re h	j bd�dP i~ [H;P (dq)℄j	i; (35)as follows from (10).Whenever L is indeed a bakward generator, we all it the minimal free (bakward)generator assoiated with 	; H, and P . (The name is based on the onept of minimal16



proess as explained in Setion 5.3.) Then the orresponding proess is equivariant (seeSetion 5.1). This is the ase if (and, there is reason to expet, only if ) P is a PVMand H is a di�erential operator of up to seond order in the position representation,in whih P is diagonal. In that ase, the proess is deterministi, and the bakwardgenerator has the form L = v � r where v is the veloity vetor �eld; thus, (32) diretlyspei�es the veloity, in the form of a �rst-order di�erential operator v � r. In ase His the N -partile Shr�odinger operator with or without spin, (32) yields the Bohmianveloity (1), and if H is the Dira operator, the Bohm{Dira veloity (31). To sum up,in some ases de�nition (32) leads to just the right bakward generator.To return to our starting point: if the one-partile generator L (1) arises from theone-partile Hamiltonian H(1) by (35), then (35) also holds between the free generatorL0 = �L (1) and the free Hamiltonian H0 = �H(1). (See Setion 5.1 for details.) Inother words, (32) is ompatible with the \seond quantization" algorithm. Thus, inrelevant ases (32) allows a diret de�nition of the free proess in terms of H0, just as(29) diretly de�nes, in terms of HI , the jump rates.A relevant point is that the \seond quantization" of a di�erential operator is againa di�erential operator, in a suitable sense, and has the same order. Note also that (32),when applied to the seond quantized Shr�odinger or Dira Hamiltonian, de�nes thesame vetor �eld on �R3 as desribed in the previous setion.2.10 Bell-Type QFTWe briey summarize what we have obtained. A Bell-type QFT is about partilesmoving in physial 3-spae; their number and positions are represented by a point Qt inon�guration spae Q. Provided physial spae is R3 , Q is usually �R3 or a Cartesianprodut of several suh spaes, eah fator representing a di�erent partile speies. Qtfollows a Markov proess in Q, whih is governed by a state vetor 	 in a suitableHilbert spae H . H is related to Q by means of a PVM or POVM P . 	 undergoes aunitary evolution with Hamiltonian H. The proess Qt usually onsists of deterministiontinuous trajetories interrupted by stohasti jumps; more generally, it arises byproess additivity (i.e., by adding generators) from a free proess assoiated with H0 anda jump proess assoiated with HI . The jump rates are given by (29) for H = HI . Thefree proess arises from Bohmian mehanis, or a suitable analogue, by a onstrutionthat an be formalized as the \seond quantization" of a one-partile Markov proess;when appropriate, it is de�ned diretly by (32). The proess Qt is equivariant, i.e.,h	tjP (dq)j	ti distributed.Examples of Bell-type QFTs an be found in [3, 14℄ and in Setion 3. It is ourontention that, essentially, there is a unique Bell-type version of every regularizedQFT. We have to postpone, however, the disussion of operators of the Klein{Gordontype. We also have to assume that the QFT provides us with the POVM P ( � ); thisis related to an ongoing disussion in the literature [27, 25, 23℄ onerning the rightposition operator. 17



2.11 More on Idential PartilesThe n-partile setor of the on�guration spae (without oinidene on�gurations) ofidential partiles �6=R3 is the manifold of n-point subsets of R3 ; let Q be this manifold.The most ommon way of desribing the quantum state of n fermions is by an anti-symmetri (square-integrable) wave funtion 	 on Q̂ := R3n ; let H be the spae ofsuh funtions. Whereas for bosons 	 ould be viewed as a funtion on Q, for fermions	 is not a funtion on Q.Nonetheless, the on�guration observable still orresponds to a PVM P on Q: forB � Q, we set P (B)	(q1; : : : ; qn) = 	(q1; : : : ; qn) if fq1; : : : ; qng 2 B and zero oth-erwise. In other words, P (B) is multipliation by the indiator funtion of ��1(B)where � is the obvious projetion mapping Q̂ n� ! Q, with � the set of oinideneon�gurations.To obtain other useful expressions for this PVM, we introdue the formal kets jq̂ifor q̂ 2 Q̂ (to be treated like elements of L2(Q̂)), the anti-symmetrization operator S(i.e., the projetion L2(Q̂) ! H ), the normalized anti-symmetrizer8 s = pn!S, andthe formal kets jsq̂i := sjq̂i (to be treated like elements of H ). The jq̂i and jsq̂i arenormalized in the sense thathq̂jq̂0i = Æ(q̂ � q̂0) and hsq̂jsq̂0i = (�1)%(q̂;q̂0) Æ(q � q0);where q = �(q̂), q0 = �(q̂0), %(q̂; q̂0) is the permutation that arries q̂ into q̂0 given thatq = q0, and (�1)% is the sign of the permutation %. Now we an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq; (36)where the sum is over the n! ways of numbering the n points in q; the last two termsatually do not depend on the hoie of q̂ 2 ��1(q), the numbering of q.The probability distribution arising from this PVM isP(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n! j	(q̂)j2 dq = jhsq̂j	ij2 dq (37)with arbitrary q̂ 2 ��1(q).There is a way of viewing fermion wave funtions as being de�ned on Q, rather thanR3n , by regarding them as ross-setions of a partiular 1-dimensional vetor bundleover Q. To this end, de�ne an n!-dimensional vetor bundle E byEq := Mq̂2��1(q) C : (38)8The name means this: sine S is a projetion, S	 is usually not a unit vetor when 	 is. Whenever	 2 L2(Q̂) is supported by a fundamental domain of the permutation group, i.e., by a set 
 � Q̂ onwhih (the restrition of) � is a bijetion to Q, the norm of S	 is 1=pn!, so that s	 is again a unitvetor. 18



Every funtion 	 : R3n ! C naturally gives rise to a ross-setion � of E, de�ned by�(q) := Mq̂2��1(q)	(q̂) : (39)The anti-symmetri funtions form a 1-dimensional subbundle of E (see also [13℄ for adisussion of this bundle).3 Appliation to Simple ModelsIn this setion, we point out how the jump rates of the model in [14℄ are ontained in(29) and present a full-edged Bell-type QFT for the seond-quantized Dira equationin an external lassial eletromagneti �eld.Further ut-o� QFTs that may provide interesting examples of Bell-type QFTs,worth a detailed disussion in a future work [17℄, are the salar self-interating �eld(e.g., �4), QED, and other gauge �eld theories. We have to postpone the treatmentof these theories beause they require disussions lying outside the sope of this paper,in partiular a disussion of the position representation of photon wave funtions inQED, and, onerning �4, of the appropriate probability urrent for the Klein{Gordonequation.3.1 A Simple QFTWe presented a simple example of a Bell-type QFT in [14℄, and we will now briey pointto the aspets of this model that are relevant here. The model is based on one of thesimplest possible QFTs [32, p. 339℄.The relevant on�guration spae Q for a QFT (with a single partile speies) is theon�guration spae of a variable number of idential partiles in R3 , whih is the set�R3 , or, ignoring the oinidene on�gurations (as they are exeptions), the set �6=R3 ofall �nite subsets of R3 . The n-partile setor of this is a manifold of dimension 3n; thison�guration spae is thus a union of (disjoint) manifolds of di�erent dimensions. Therelevant on�guration spae for a theory with several partile speies is the Cartesianprodut of several opies of �6=R3 . In the model of [14℄, there are two partile speies, afermion and a boson, and thus the on�guration spae isQ = �6=R3 � �6=R3 : (40)We will denote on�gurations by q = (x; y) with x the on�guration of the fermions andy the on�guration of the bosons.For simpliity, we replaed in [14℄ the setors of �6=R3 � �6=R3 , whih are manifolds,by vetor spaes of the same dimension (by arti�ially numbering the partiles), andobtained the union Q̂ = 1[n=0(R3)n � 1[m=0(R3)m ; (41)19



with n the number of fermions and m the number of bosons. Here, however, we willuse (40) as the on�guration spae, sine we have already disussed the spae �6=R3 . Inomparison with (41), this amounts to (merely) ignoring the numbering of the partiles.H is the tensor produt of a fermion Fok spae and a boson Fok spae, and thus thesubspae of wave funtions in L2(Q̂) that are anti-symmetri in the fermion oordinatesand symmetri in the boson oordinates. Let S denote the appropriate symmetrizationoperator, i.e., the projetion operator L2(Q̂)!H , and s the normalized symmetrizers	(x1; : : : ;xn;y1; : : : ;ym) = pn!m!S	(x1; : : : ;xn;y1; : : : ;ym); (42)i.e., s = pN !M !S with N and M the fermion and boson number operators, whihommute with S and with eah other. As in Setion 2.11, we denote by � the projetionmapping Q̂ n � ! Q, �(x1; : : : ;xn;y1; : : : ;ym) = (fx1; : : : ;xng; fy1; : : : ;ymg). Theon�guration PVM P (B) on Q is multipliation by 1��1(B), whih an be understood asating on H , though it is de�ned on L2(Q̂), sine it is permutation invariant and thusmaps H to itself. We utilize again the formal kets jq̂i where q̂ 2 Q̂ n� is a numberedon�guration, for whih we also write q̂ = (x̂; ŷ) = (x1; : : : ;xn;y1; : : : ;ym). We also usethe symmetrized and normalized kets jsq̂i = sjq̂i. As in (36), we an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!m!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq (43)with arbitrary q̂ 2 ��1(q). For the probability distribution, we thus have, as in (37),P(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n!m! j	(q̂)j2 dq = jhsq̂j	ij2 dq (44)with arbitrary q̂ 2 ��1(q).The free Hamiltonian is the seond quantized Shr�odinger operator (with zero poten-tial), assoiated with the free proess desribed in Setion 2.8. The interation Hamil-tonian is de�ned by HI = Z d3x y(x) (ay'(x) + a'(x)) (x) (45)with  y(x) the reation operators (in position representation), ating on the fermionFok spae, and ay'(x) the reation operators (in position representation), ating on theboson Fok spae, regularized through onvolution with an L2 funtion ' : R3 ! R. HIhas a kernel; we will now obtain a formula for it, see (51) below. The jsq̂i are onnetedto the reation operators aording tojsq̂i =  y(xn) � � � y(x1)ay(ym) � � �ay(y1)j0i ; (46)where j0i 2H denotes the vauum state. A relevant fat is that the reation and annihi-lation operators  y;  ; ay and a possess kernels. Using the anonial (anti-)ommutation20



relations for  and a, one obtains from (46) the following formulas for the kernels of (r) and a(r), r 2 R3 :hsq̂j (r)jsq̂0i = Æn;n0�1 Æm;m0 Æ3n0(x [ r � x0) (�1)%((x̂;r);x̂0) Æ3m(y � y0) (47)hsq̂ja(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Æ3m0(y [ r � y0) (48)where (x; y) = q = �(q̂), and %(x̂; x̂0) denotes the permutation that arries x̂ to x̂0 giventhat x = x0. The orresponding formulas for  y and ay an be obtained by exhangingq̂ and q̂0 on the right hand sides of (47) and (48). For the smeared-out operator a'(r),we obtainhsq̂ja'(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)'(y0 � r) (49)We make use of the resolution of the identityI = ZQ dq jsq̂ihsq̂j : (50)Inserting (50) twie into (45) and exploiting (47) and (49), we �ndhsq̂jHI jsq̂0i = Æn;n0 Æm�1;m0 Æ3n(x� x0) (�1)%(x̂;x̂0)Xy2y Æ3m0(y n y � y0)Xx2x '(y � x)+ Æn;n0 Æm0�1;m Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)Xx2x '(y0 � x) :(51)By (43), the jump rates (29) are�(qjq0) = h 2~ Im h	jsq̂ihsq̂jHI jsq̂0ihsq̂0j	ii+h	jsq̂0ihsq̂0j	i : (52)More expliitly, we obtain from (51) the rates�(qjq0) = Ænn0 Æm�1;m0 Æ3n(x� x0)Xy2y Æ3m0(y n y � y0) �rea(q0 [ yjq0)+ Ænn0 Æm;m0�1 Æ3n(x� x0)Xy02y0 Æ3m(y � y0 n y0) �ann(q0 n y0jq0) (53)with �rea(q0 [ yjq0) = 2pm0 + 1~ hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y � x0)	(q̂0)i+	�(q̂0)	(q̂0) (54a)�ann(q0 n y0jq0) = 2~pm0 hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y0 � x0)	(q̂0)i+	�(q̂0)	(q̂0) ; (54b)21



for arbitrary q̂0 2 ��1(q0) and q̂ 2 ��1(q) with q = (x0; y0[y) respetively q = (x0; y0ny0).(Note that a sum sign an be drawn out of the plus funtion if the terms have disjointsupports.)Equation (53) is worth looking at losely: One an read o� that the only possiblejumps are (x0; y0) ! (x0; y0 [ y), reation of a boson, and (x0; y0) ! (x0; y0 n y0), an-nihilation of a boson. In partiular, while one partile is reated or annihilated, theother partiles do not move. The proess that we onsidered in [14℄ onsists of piees ofBohmian trajetories interrupted by jumps with rates (53); the proess is thus an ex-ample of the jump rate formula (29), and an example of ombining jumps and Bohmianmotion by means of proess additivity.The example shows how, for other QFTs, the jump rates (29) an be applied torelevant interation Hamiltonians: If HI is, in the position representation, a polynomialin the reation and annihilation operators, then it possesses a kernel on the relevanton�guration spae. A ut-o� (implemented here by smearing out the reation andannihilation operators) needs to be introdued to make HI a well-de�ned operator onL2. If, in some QFT, the partile number operator is not onserved, jumps between thesetors of on�guration spae are inevitable for an equivariant proess. And, indeed,when HI does not ommute with the partile number operator (as is usually the ase),jumps an our that hange the number of partiles. Often, HI ontains only o�-diagonal terms with respet to the partile number; then every jump will hange thepartile number. This is preisely what happens in the model of [14℄.3.2 EÆient Calulation of Rates in the Previous ExampleWe would like to give another, re�ned way of alulating the expliit jump rates (53)from the de�nition (45) of HI . The alulation above is rather umbersome, partlybeause of all the Æ's. It is also striking that only very few transitions q0 ! q areatually possible, whih suggests that it is unneessary to write down a formula for thekernel hqjHIjq0i valid for all pairs q; q0. Rather than writing down all the Æ terms as in(53), it is easier to speify the possible transitions q0 ! q and to write down the rates,suh as (54a) and (54b), only for these transitions. Thus, for a more eÆient alulationof the rates, it is advisable to �rst determine the possible transitions, and then we needkeep trak only of the orresponding kernel elements.3.2.1 A Diagram NotationTo formulate this more eÆient strategy, it is helpful to regard 	 as a ross-setion of a�ber bundle E over the Riemannian manifold Q, or of a ountable union E = SiE(i) ofbundles E(i) over Riemannian manifoldsQ(i) with Q = SiQ(i). (In the present example,with Q given by (40), we take i to be the pair (n;m) of partile numbers, Q(n;m) to bethe (n;m)-partile setor, and E(i) to be de�ned by (38) (with � the natural projetionfrom Q̂ n�, with Q̂ given by (41), to Q). The q̂ 2 ��1(q) an be viewed as de�ning anorthonormal basis of Eq.) 22



A key element of the strategy is a speial diagram notation for operators. Theoperators we have in mind are HI and its building bloks, the �eld operators. Thestrategy will start with the diagrams for the �eld operators, and obtain from them adiagram for HI . The diagram will speify, for an operator O, what the kernel of O is,while leaving out parts of the kernel that are zero. So let us assume that O has kernelhqjOjq0i, i.e., (O	)(q) = R hqjOjq0i	(q0) dq0. The diagramq0 K(q0;�)����!O F (q0; �) (55)may be read as: \Aording to O, the possible transitions from q0 are to F (q0; �), andare assoiated with the amplitudes K(q0; �)." It means that the operator O has kernelonstruted from F and K,hqjOjq0i = Z� d� Æ�q � F (q0; �)�K(q0; �); (56)where � varies in some parameter spae �, F : Q � � ! Q, and K is a funtion (ordistribution) of q0 and � suh that K(q0; �) : Eq0 ! EF (q0;�) is a C -linear mapping.The role of � is to parametrize the possible transitions; e.g., for the boson reation(54a) in the previous setion, � would be the position y of the new boson, and � = R3 .The notation (55) does not expliitly mention what � and the measure d� are; this willusually be lear from the ontext of the diagram. The measure d� will usually be auniform distribution over the parameter spae �, suh as Lebesgue measure if � = Rdor the ounting measure if � is �nite or ountably in�nite. We may also allow having adi�erent �q0 for every q0.When O = H, a jump from q0 an lead only to those q's for whih q = F (q0; �) forsome value of �, and the orresponding jump rate (29) is��F (q0; �)��q0� = [(2=~) Im	�(F (q0; �))K(q0; �)	(q0)℄+	�(q0)	(q0) ; (57)provided that for given q0, F (q0; � ) is an injetive mapping. Here, �(qjq0) is the densityof the measure �(dqjq0) with respet to the measure on Q�q0(dq) = Z� d� Æ�q � F (q0; �)� dq; (58)where Æ(q�q0) dq denotes the measure on Q with total weight 1 onentrated at q0. (58),the image of d� under the map F (q0; � ), is onentrated on the set fF (q0; �) : � 2 �gof possible destinations and plays the role of the \uniform distribution" over this set.In other words, (57) is the rate of ourrene, with respet to d�, of the transitionorresponding to �. (For the boson reation rate (54a), �q0(dq) turns out the Lebesguemeasure in y on the subset fq0 [ y : y 2 R3 n q0g � Q.)Given O, the hoie of �; F , and K is not unique. One ould always hoose � = Q,F (q0; q) = q, and K(q0; q) = hqjOjq0i, whih of ourse would mean to miss the point23



of this notation. The ase that F and K do not depend on a parameter � is formallyontained in the sheme (56) by taking � to be a one-point set (and d� the ountingmeasure); in this ase (56) meanshqjOjq0i = Æ(q � F (q0))K(q0) : (59)Conversely, whenever #� = 1, the dependene of F and K on the parameter � isirrelevant.A basi advantage of the notation (55), ompared to writing down a formula forhqjOjq0i, is that many Æ fators beome unneessary. For example, if O is multipliationby V (q), then (� is a one-point set and) we have the diagramq0 V (q0)���!O q0:3.2.2 Operations With DiagramsFor the produt O2O1 of two operators given by diagrams, we have the diagramq0 K2(F1(q0;�1);�2)K1(q0;�1)���������������!O2O1 F2(F1(q0; �1); �2) (60)with parameter spae �1 � �2, for whih we also writeq0 K1(q0;�1)�����!O1 F1(q0; �1) K2(F1(q0;�1);�2)���������!O2 F2(F1(q0; �1); �2): (61)We thus de�ne the onatenation of two diagrams by means of the omposition of thetransition mappings and the produt of the amplitudes, i.e., using obvious notation,q1 ��! q2 ��! q3 means q1 ���! q3: (62)Thus, multipliation of operators orresponds to onatenation of diagrams.For the sum O1 + O2 of two operators given by diagrams with the same parameterspae �1 = �2 = � and the same transition mapping F1(q0; �) = F2(q0; �) = F (q0; �),we have the diagram q0 K1(q0;�)+K2(q0;�)����������!O1+O2 F (q0; �): (63)3.2.3 Diagrams of Creation and Annihilation OperatorsWe now write down diagrams for reation and annihilation operators. In the ase thatO = O(r) arises from formally evaluating an operator-valued distributionO(x) at x = r,the dependene of K(q0; �) on � is in the sense of distributions rather than funtions.More preisely, we have K(q0; �) = D(q0; �)K0(q0; �) (64)where D is a (real-valued) distribution on Q � �, and K0 a mapping-valued funtionsuh that for every q0 and �, K0(q0; �) is a linear mapping Eq0 ! EF (q0;�).24



For  y(r) and  (r), r 2 R3 , we have (reall that x0 is a �nite subset of R3)(x0; y0) �f���! y(r) (x0 [ r; y0) (#� = 1) (65a)(x0; y0) Æ(x0�r) "f������! (r) (x0 n x0; y0) (� = x0; � = x0) (65b)using linear mappings �f : Eq0 ! E(x0[r;y0) (\append a fermion") and "f : Eq0 ! E(x0nx0;y0)(\erase a fermion"), whih an be regarded as the natural mappings between these �berspaes. They are de�ned through the following properties:�f	 is appropriately symmetrized (66a)��f	�((x̂0; r); ŷ0) = 1pn0 + 1 	(x̂0; ŷ0) (66b)�"f	�(x̂; ŷ0) = pn0	((x̂;x0); ŷ0) (66)where 	 2 Eq0, and x̂ is an arbitrary ordering of the set x = x0 n x0. (Reall that theset ��1(q0) of the possible orderings of q0 forms a basis of Eq0 , so that every ordering(x̂0; ŷ0) = q̂0 2 ��1(q0) orresponds to a partiular omponent of 	. Thus, ((x̂0; r); ŷ0) 2��1(x0 [ r; y0) orresponds to a partiular omponent in E(x0[r;y0).)For the smeared-out reation and annihilation operators ay'(r) and a'(r), we have(x0; y0) '(y�r)�b������!ay'(r) (x0; y0 [ y) (� = R3 ; � = y) (67a)(x0; y0) '(y0�r) "b������!a'(r) (x0; y0 n y0) (� = y0; � = y0) (67b)where �b (\append a boson") and "b (\erase a boson") are the analogous linear mappingsrelating di�erent spaes, �b : Eq0 ! E(x0;y0[y) and "b : Eq0 ! E(x0;y0ny0), de�ned by thefollowing properties: �b	 is appropriately symmetrized (68a)��b	�(x̂0; (ŷ0;y)) = 1pm0 + 1 	(x̂0; ŷ0) (68b)�"b	�(x̂0; ŷ) = pm0	(x̂0; (ŷ;y0)); (68)where ŷ is an arbitrary ordering of the set y = y0 n y0, x̂0 one of x0, ŷ0 one of y0, and	 2 Eq0 .3.2.4 Appliation of the Diagram MethodNow let us apply the strategy to the example (45) of the previous setion. For y(r) ay'(r) (r), we have the diagramq0 Æ(x0�r) "f������! (r) (x0 n x0; y0) '(y�r)�b������!ay'(r) (x0 n x0; y0 [ y) �f���! y(r) (x0 n x0 [ r; y0 [ y)25



with � = x0 � R3 . Using the onatenation rule (62), we an write insteadq0 Æ(x0�r)'(y�r)�f�b"f�������������! y(r) ay'(r) (r) (x0 n x0 [ r; y0 [ y):Integrating over dr, we obtain, sine x0 n x0 [ r may be replaed by x0, whih is inde-pendent of x0, q0 Px02x0 '(y�x0)�f�b"f������������!R dr  y(r) ay'(r) (r) (x0; y0 [ y); (69)with � = R3 . We have now taken are of one of two terms in (45), involving ay ratherthan a. From (69) we read o�, without a big alulation, that this term orrespondsto jumps (x0; y0)! (x0; y0 [ y), or reation of a boson. The orresponding jump rate isgiven by (57), and reads here:�(x0; y0 [ yjq0) = 2~ hIm	�(x0; y0 [ y) Px02x0 '(y � x0)�f�b"f 	(q0)i+	�(q0)	(q0) : (70)This result agrees with (54a).9We treat the term R dr  y(r) a'(r) (r) in the same way: We begin with the diagramq0 Æ(x0�r) "f������! (r) (x0 n x0; y0) '(y0�r) "b������!a'(r) (x0 n x0; y0 n y0) �f���! y(r) (x0 n x0 [ r; y0 n y0)with � = x0 � y0. Then we integrate over dr and obtain the assoiated jump rate�(x0; y0 n y0jq0) = 2~ hIm	�(x0; y0 n y0) Px02x0 '(y0 � x0)�f"b"f 	(q0)i+	�(q0)	(q0) ; (71)whih agrees with (54b). Finally, HI (the sum of both ontributions) orresponds a-ording to (29) to jumps whih, sine the two ontributions have no transitions q0 ! qin ommon (or, in other words, sine their kernels have disjoint supports in Q�Q), areeither q0 ! (x0; y0 [ y), with rate (70), or q0 ! (x0; y0 n y0), with rate (71).3.3 Pair Creation in an External FieldAs our seond example, we present the Bell-type version of a reasonable and often usedQFT of eletrons and positrons, in whih the eletromagneti �eld is a bakground �eld[31℄. The Bell-type version exhibits pair reation and annihilation (in the literal sense)and employs various notions we have introdued: proess additivity, the on�gurationspae �6=R3 of a variable number of idential partiles, the free proess, POVMs whihare not PVMs, and stohasti jumps.9Here is why: First, 	�(q0)	(q0) = n0!m0! 	�(q̂0)	(q̂0) beause the inner produt in Eq0 involvessummation over all q̂0 2 ��1(q0). Similarly, the square braket in the numerator of (70) involves theinner produt of E(x0;y0[y0), onsisting of n0! (m0 +1)! ontributions. The numberings q̂ and q̂0 in (54a)an be so hosen that x̂ = x̂0, x0 gets the last plae of x̂0, and ŷ = ŷ0 [ y0; then %(x̂; x̂0) is trivial, and�f�b"f	(q̂) = (n0)�1=2(m0 + 1)�1=2(n0)1=2	(q̂0). Thus, the square braket in (70) is n0!m0!pm0 + 1times the square braket in (54a). 26



3.3.1 Fok Spae and HamiltonianWe onsider the seond quantized Dira �eld in an eletromagneti bakground �eldA�(x; t). In terms of �eld operators, the Hamiltonian readsH = Z d3x : ��(x)�� i~� � r+ �m2 + e(� �A+ A0)��(x) : ; (72)with olons denoting normal ordering. Note that H is time-dependent due to the time-dependene of A�(x; t); more preisely, HI is time-dependent while H0 is �xed. As aonsequene, the relevant jump rate (29) is now time-dependent in three ways: throughHI, through 	, and through q0 = Qt.We quikly reall what the Hilbert spae and the �eld operators are, and speifywhat POVM we use. After that, we onstrut the assoiated proess.The Hilbert spae L2(R3 ; C 4) of the Dira equation is split into the orthogonal sumH+ �H� of the positive and negative energy subspaes of the free Dira operator,h0 = �i~� � r+ �m2 :The 1-eletron Hilbert spae He and the 1-positron Hilbert spae Hp are opies ofH+, and the Fok spae F = �H (1) arises then from the one-partile Hilbert spaeH (1) =He �Hp in the usual manner: with the anti-symmetrization operator Anti ,F = 1MN=0Anti ((He �Hp)
N) ; (73)whih an be naturally identi�ed withH := Fe 
Fp = 1Mn=0 Anti (H 
ne )
 1Men=0 Anti (H 
enp ) : (74)Sine H+ � L2(R3 ; C 4), H an be understood as a subspae ofHext := 1Mn=0 Anti (L2(R3 ; C 4)
n)
 1Men=0 Anti (L2(R3 ; C 4)
en): (75)We hoose the POVM and on�guration spae in the way suggested by the form(74), rather than (73): Q = �6=R3 � �6=R3 ; (76)where the �rst fator represents eletrons and the seond positrons. (Reall from Se-tion 2.8 that �6=R3 denotes the spae of all �nite subsets of R3 . Another interestingpossibility, suggested by the representation (73), is to set Q = �6=R3 . This would meanthat, insofar as the on�guration is onerned, eletrons and positrons are not distin-guished. However, we will not pursue this possibility here.) The natural POVM P (see27



Setion 4.2.3 and Setion 2.11) an be expressed as an extension from retangular sets(the existene of suh an extension is proved in Setion 4.4 of [15℄):P (Be �Bp) = �P (1)(Be)
 �P (1)(Bp)with P (1) the POVM on H+ that we onsidered before, arising by projetion from thenatural PVM on L2(R3 ; C 4). Alternatively, P an be viewed as arising, by projetionto H , and from Q̂ = S1n=0(R3)n � S1en=0(R3)en to Q, of the natural PVM on Q̂ atingon Hext. Note that P represents the usual j	j2 distribution in the sense that for aon�guration q with eletrons at x1; : : : ;xn and positrons at ex1; : : : ; exen, we haveP(dq) = h	jP (dq)j	i = n!en! j	(n;en)(x1; : : : ; exen)j2 dx1 � � �dexenwhere 	(n;en) is just the wave funtion (R3)n+en ! (C 4)
(n+en) we get when we deomposethe state vetor in the manner suggested by (75). 	 is normalized so that1Xn;en=0 Z dx1 � � �dexen j	(n;en)(x1; : : : ; exen)j2 = 1:The �eld operator is de�ned by�(f) = b(P+f) + d�(CP�f) (77)where f is a test funtion from L2(R3 ; C 4), P� is the projetion to H� � L2(R3 ; C 4), Cis the harge onjugation operator whih maps H� to H+ and vie versa, and b is theeletron annihilation and d� the positron reation operator. Letting ei be the standardorthonormal basis of C 4 , i = 1; 2; 3; 4, �(x) stands for �i(x) = �(ei Æ( � � x)), where igets ontrated with the � matries. Similarly, we de�ne, as usual,bi(x) = b�P+(ei Æ( � � x))� (78a)and di(x) = d�CP�(ei Æ( � � x))�: (78b)We thus have �i(x) = bi(x) + d�i (x).3.3.2 The Assoiated ProessWe now desribe the assoiated Markov proess. The free part of (72),H0 = Z d3x : ��(x)�� i~� � r+ �m2��(x) : ;preserves partile numbers (it ommutes with the eletron and positron number opera-tors), evolving the (n; en)-partile setor of the Fok spae aording to the free (n; en)-partile Hamiltonian H(n;en)0 = nXk=1 h(k)0 + enXek=1 eh(ek)0 ;28



with h(k)0 = �i~�(k) � rk + �(k)m2eh(ek)0 = �i~e�(ek) � erek + e�(ek)m2 ;where �(k) and �(k) at on the k-th eletron index in the tensor produt representation(74) and e�(ek) and e�(ek) on the ek-th positron index. erek is the gradient with respet toexek.With H0 is assoiated a deterministi motion of the on�guration in Q, the free pro-ess introdued in Setion 2.8. During this motion, the atual numbers N; eN of eletronsand positrons remain onstant, while the positions (X1; : : : ;XN ;fX1; : : : ;fX eN) =: Qmove aording to Bohm{Dira veloities (31), i.e._Xk = 	�(Q)�(k)	(Q)	�(Q)	(Q) (79a)_fXek = 	�(Q) e�(ek)	(Q)	�(Q)	(Q) (79b)where numerators and denominators are salar produts in (C 4)
(N+ eN).We turn now to the interation part. Setting A = � � eA+ eA0, we have thatHI = Z d3x : ��(x)A(x) �(x) : = (80a)= 4Xi;j=1Z d3x : (b�i (x) + di(x))Ai;j(x) (bj(x) + d�j(x)) : = (80b)= 4Xi;j=1Z d3x�b�i (x)Ai;j(x) bj(x) + di(x)Ai;j(x) bj(x) ++ b�i (x)Ai;j(x) d�j(x)� d�j(x)Ai;j(x) di(x)�: (80)Sine HI is a polynomial in reation and annihilation operators, it possesses a kernel andorresponds to stohasti jumps. To ompute the rates, we apply the strategy developedin Setion 3.2, using diagrams. To this end, we regard fermioni wave funtions againas ross-setions of a bundle E, de�ned here byEq = Mq̂2��1(q)(C 4)
n 
 (C 4)
en: (81)Fermioni symmetry of a ross-setion 	 of E means that	%(i1:::in);e%(~{1:::~{en)(%(x1 : : :xn); e%(ex1 : : : exen)) = (�1)% (�1)e%	 i1:::in;~{1:::~{en(x1 : : :xn; ex1 : : : exen) (82)29



for all permutations % 2 Sn and e% 2 Sen.The diagrams for b�i (x); bi(x); d�i (x), and di(x) are(x0; ex0) Pj S+ji (x0�x)�e(ej)������������!b�i (x) (x0 [ x0; ex0) (83a)(x0; ex0) Pj S+ji (x0�x) "e(ej)������������!bi(x) (x0 n x0; ex0) (83b)(x0; ex0) Pj S�ji (ex0�x)�p(ej)������������!d�i (x) (x0; ex0 [ ex0) (83)(x0; ex0) Pj S�ji (ex0�x) "p(ej)������������!di(x) (x0; ex0 n ex0) (83d)where the matrix funtion S+ij(x) is de�ned as the j-omponent of P+(ei Æ( � )), andS�ij(x) as the j-omponent of CP�(ei Æ( � )). The linear mappings �e(ej) : Eq0 !E(x0[x0;ex0) (\append an eletron with spinor ej") and "e(ej) : Eq0 ! E(x0nx0;ex0) (\erasean eletron, ontrating with spinor ej") are de�ned through their properties that for	 2 Eq0 , �e	 is appropriately symmetrized (84a)��e(ej)	�((x̂0;x0); êx0) = 1pn0 + 1 	(x̂0; êx0)
 ej (84b)�"e(ej)	�(x̂; êx0) = pn0	j((x̂;x0); êx0); (84)where x̂ is an arbitrary ordering of x = x0 n x0, x̂0 one of x0, and êx0 one of ex0. We referto the last eletron slot when writing the tensor produt or taking the j-omponent.�p(ej) and "p(ej) are de�ned analogously.For the four terms in (80), we thus get the four diagrams (omitting the multipliationby Ai;j(x))(x0; ex0) Pk S+kj (x0�x) "e(ek)������������!bj(x) (x0 n x0; ex0) P` S+ì(x00�x)�e(e`)������������!b�i (x) (x0 n x0 [ x00; ex0) (85a)(x0; ex0) Pk S+kj (x0�x) "e(ek)������������!bj(x) (x0 n x0; ex0) P` S� ì(ex0�x) "p(e`)������������!di(x) (x0 n x0; ex0 n ex0) (85b)(x0; ex0) Pk S�kj (ex0�x)�p(ek)�������������!d�j (x) (x0; ex0 [ ex0) P` S+ì(x0�x)�e(e`)������������!b�i (x) (x0 [ x0; ex0 [ ex0) (85)(x0; ex0) Pk S�ki (ex0�x) "p(ek)������������!di(x) (x0; ex0 n ex0) P` S� j̀(ex00�x)�p(e`)������������!d�j (x) (x0; ex0 n ex0 [ ex00): (85d)We read o� that the �rst term orresponds to the jump of a single eletron from x0 tox00, while all other partiles remain where they were, the seond to the annihilation ofan eletron{positron pair at loations x0 and ex0, the third to the reation of an eletron{positron pair at loations x0 and ex0, and the last to the jump of a positron from ex0 to30



ex00. The orresponding jump rates are�e(x0 n x0 [ x00; ex0jq0) = [(2=~) Im	�(q)Pk;` �k;`e (x0;x00)�e(e`)"e(ek)	(q0)℄+	�(q0)	(q0) (86a)�ann(x0 n x0; ex0 n ex0jq0) = [(2=~) Im	�(q)Pk;` �k;`ann(x0; ex0)"p(e`)"e(ek)	(q0)℄+	�(q0)	(q0) (86b)�rea(x0 [ x0; ex0 [ ex0jq0) = [(2=~) Im	�(q)Pk;` �k;`rea(x0; ex0)�e(e`)�p(ek)	(q0)℄+	�(q0)	(q0) (86)�p(x0; ex0 n ex0 [ ex00jq0) = [(2=~) Im	�(q)Pk;` �k;`p (ex0; ex00)�p(e`)"p(ek)	(q0)℄+	�(q0)	(q0) ; (86d)where q denotes the respetive destination, and�k;`e (x0;x00) = Xi;j Z d3xS+ ì(x00 � x)Ai;j(x)S+kj (x0 � x) (87a)�k;`ann(x0; ex0) = Xi;j Z d3xS� ì(ex0 � x)Ai;j(x)S+kj (x0 � x) (87b)�k;`rea(x0; ex0) = Xi;j Z d3xS+ ì(x0 � x)Ai;j(x)S�kj (ex0 � x) (87)�k;`p (ex0; ex00) = �Xi;j Z d3xS�j̀(ex00 � x)Ai;j(x)S�ki (ex0 � x): (87d)The proess for H0 +HI that we obtain through proess additivity is the motion (79)interrupted by stohasti jumps with rates (86).Note that the jump of a single eletron has small probability to be aross a distanemuh larger than the width of the funtions S�, whih is of the order of the Comptonwavelength of the eletron. Similarly, the distane jx � exj of a newly reated pair, orof a pair at the moment of annihilation, has small probability to be muh larger thanthe width of S�. While the jump of a single eletron or positron leaves the number Nof eletrons and the number eN of positrons unhanged, pair reation and annihilationan only either derease or inrease both N and eN by 1. As a onsequene, the atualnet harge eN �N is onserved by the proess.4 Seond Quantization of a Markov Proess4.1 Preliminaries Conerning the Conditional Density MatrixIn the next setion, we desribe the algorithm for the \seond quantization" of a proess.But before that, we have to introdue, as a preparation, the notion of a onditionaldensity matrix. In [19℄, we have de�ned for Bohmian mehanis the onditional wavefuntion of, say, subsystem 1 of a omposite system with on�guration spae Q =31



Q1�Q2 by 	ond(q1) = 	(q1; Q2). From a omplex wave funtion 	 : Q ! C , togetherwith the atual on�guration Q2 of the environment of the subsystem in the omposite,we thus form a wave funtion 	ond : Q1 ! C ; for Bohmian mehanis with spin, inontrast, we would not, in general, obtain a suitable wave funtion for subsystems inthis way, beause 	ond as just de�ned would have more spin indies than appropriate.We an however still de�ne the onditional density matrix for subsystem 1,Wond s1;s01(q1; q01) = 1Xs2 	s1;s2(q1; Q2)	�s01;s2(q01; Q2) (88)where the s's are spin indies. In order that W , like any density matrix, have trae 1,the normalizing fator  must be hosen as = Zq12Q1 Xs1;s2	�s1;s2(q1; Q2)	s1;s2(q1; Q2) dq1 :This W an play most of the roles of the onditional wave funtion in spinless Bohmianmehanis. The notion of a onditional density matrix easily generalizes from the sit-uation just desribed, orresponding to wave funtions in L2(Q; C k ) and the naturalloalization PVM, to the situation of any produt loalization POVM on any tensorprodut Hilbert spae: for H =H1 
H2 and P (dq1 � dq2) = P1(dq1)
 P2(dq2), setWond = tr2�j	ih	jP (Q1 � dq2)�tr�j	ih	jP (Q1 � dq2)� ���q2=Q2 ; (89)where tr2 is the partial trae over H2. The quotient is to be understood as a Radon{Nikod�ym derivative in q2. Like onditional wave funtions, onditional density matriesannot be de�ned in orthodox quantum theory, for lak of the on�guration Q2. Westress that onditional density matries have nothing, absolutely nothing, to do withstatistial ensembles of state vetors in H1. Like any density matrix, they do, however,de�ne a probability distribution on Q1,PWond1 ( � ) = tr�Wond P1( � )� ; (90)whih oinides with the onditional distribution of Q1 given Q2,P(Q1 2 � jQ2) = h	jP1( � )
 P2(dq2)j	ih	j1
 P2(dq2)j	i ���q2=Q2 :The evolution of Wond is not autonomous; it will typially depend on (and alwaysbe determined by) 	t and Q2;t. For a given density matrix W of a system that isnot regarded as a subsystem, however, one an de�ne (as usual) the time evolutionby Wt = e�iHt=~W eiHt=~, whih gives rise to a time-dependent distribution PWt( � ) =tr(WtP ( � )). We all a Markov proess that is PWt-distributed at every time t equivariant32



with respet to W and H. Given the right initial distribution, this is equivalent to thefollowing ondition on the generator:L PW ( � ) = 2~ Im tr(W P ( � )H) : (91)This is the version of (12) for density matries, and de�nes an equivariant generatorwith respet to W and H.Sine onditional density matries will play a ruial role in the onstrution of themany-partile proess, we require that, as part of the input data of the algorithm, weare given an equivariant generator L (1)W for every density matrix from a dense subsetof the density matries in H (1)� 
H (1). This is not muh of a restrition, as all rele-vant examples of equivariant generators naturally extend to density matries: Bohmianmehanis with spin spae C k an be extended [4℄ tovW (q) = ~ Im rqtrCk W (q; q0)trCk W (q; q0) (q0 = q) ; (92)Bohm{Dira to vW (q) = trC4 (W (q; q)�)trC 4 (W (q; q)) ; (93)and minimal jump rates to�W (dqjq0) = [(2=~) Im tr(WP (dq)HP (dq0))℄+tr(WP (dq0)) : (94)Note also that (92) would not make any sense ifW represented a statistial ensemble [4℄,whereas it makes good sense for onditional density matries, expressing the true relationbetween the Bohmian veloity for a subsystem arising from (1) and the onditionaldensity matrix (88) of that subsystem. Mutatis mutandis, the same is true of (93).Similarly, in ase that P is a PVM, (94) expresses the jump rates for a deoupledsubsystem arising from (29) for the omposite in terms of the onditional density matrixof that subsystem.4.2 AlgorithmThe input data of this algorithm are the one-partile Hilbert spae H (1), on�gurationspae Q(1), POVM P (1), and a family of generators L (1) = L (1)W labeled by the densitymatries W from a dense subset of the density matries in H (1)� 
H (1). The outputis a family of generators �L (1) = L0 = L0;	 labeled by the state vetors 	 in (a densesubspae of) Fok spae. If L (1)W is equivariant with respet to W and H(1), then L0;	is equivariant with respet to 	 and H0.The algorithm is based on two proedures for suitably ombining generators for diretsums or tensor produts of Hilbert spaes.33



4.2.1 Diret SumsGiven a �nite or ountable sequene of Hilbert spaes H (n) with POVMs P (n) on on-�guration spaes Q(n), and for eah n a family of generators L (n) labeled by the vetorsin H (n), there is a anonially onstruted family of generators L � = L �	 , labeledby the vetors in the diret sum LnH (n). The spae Q in whih the orrespondingproess takes plae is the disjoint union of the Q(n). If every L (n)	n is equivariant withrespet to 	n 2H (n) and H(n), then L �	 is equivariant with respet to 	 2LnH (n)and LnH(n).Here are the details. The POVM P =Ln P (n) on Q that naturally arises from thedata is given by P (B) = Ln P (n)(B \ Q(n)) for B � Q. Let Pn denote the projetionH !H (n). The generator L � is given by�L �	 ����Q(n) = L (n)Pn	=kPn	k����Q(n)� : (95)It generates a (Markov) proess Q�t suh that when Q�0 2 Q(n), it is generated bythe state vetor Pn	=kPn	k, i.e., it is a Markov proess Q(n)t in Q(n) generated byL (n)Pn	=kPn	k. The equivariane statement follows diretly, sine kPn	tk2 = Pt(Q(n)) isinvariant under the evolution generated by H0 =LnH(n).4.2.2 Tensor ProdutsGiven a �nite sequene of Hilbert spaes H [1℄; : : : ;H [n℄ with POVMs P [i℄ on on-�guration spaes Q[i℄, and for eah i a family of generators L [i℄ = L [i℄Wi labeled bythe density matries on H [i℄, there is a anonially onstruted family of generatorsL 
 = L 
W , labeled by the density matries on the tensor produt H [1℄ 
 � � � 
H [n℄.The orresponding proess takes plae in the Cartesian produt Q = Q[1℄ � � � � � Q[n℄.If every L [i℄Wi is equivariant with respet to the density matrix Wi on H [i℄ and theHamiltonian H [i℄, then L �W is equivariant with respet to W on H [1℄ 
 � � � 
H [n℄ andH =Pi 1
 � � � 
H [i℄ 
 � � � 
 1 =Pi Hi.Here are the details. The POVM that naturally arises from the data is10P (dq1 � � � � � dqn) = P [1℄(dq1)
 � � � 
 P [n℄(dqn): (96)For any q 2 Q, let qi denote its i-th omponent and let bqi = (q1; : : : ; qi�1; qi+1; : : : ; qn).For every i and bqi, de�neWi(bqi) = tr6=i�WP (dq1 � � � � � Q[i℄ � � � � � dqn)�tr�WP (dq1 � � � � � Q[i℄ � � � � � dqn)� ;where tr 6=i is the partial trae over all fators exept H [i℄. This Wi is the onditionaldensity matrix, regarded as a funtion of the on�guration bqi of the other partiles. Now10The existene of the tensor produt POVM is a onsequene of Corollary 7 in Setion 4.4 of [15℄.34



onsider the proess on Q aording to whih the i-th partile moves as presribed byL [i℄Wi while the other partiles remain �xed. The generator of this proess isLi � := hL [i℄Wi(bqi) �( � jbqi)i �6=i(dbqi) (97)where �6=i is the marginal distribution of bQi (i.e., � integrated over qi) and �( � jbqi) is theonditional distribution of Qi given bQi = bqi; the square braket is a funtion of bqi anda measure in dqi. Now de�ne L 
W� =Pi Li�.To see that L 
 is equivariant when the L [i℄ are, we have to hek (91). Note �rstthat PW (dqijbqi) = tr�Wi(bqi)P [i℄(dqi)�. Due to the equivariane of L [i℄, for � = PW thesquare braket in (97) equals (2=~) Im tr�Wi(bqi)P [i℄(dqi)H [i℄�, from whih we obtain(91) for Li and Hi and hene for L 
 and H.The de�nition of L 
 reprodues the many-partiles Bohm law (1) with or withoutspin from the one-partile version (or, for distinguishable partiles, from several di�erentone-partile versions having di�erent masses and spins). Similarly, it reprodues themany-partiles Bohm{Dira law (31) from the one-partile version.4.2.3 Seond Quantization of the POVMLet Q(n) denote the spae of all subsets-with-multipliities of Q(1) having n elements(ounting in the multipliities). P (1) naturally de�nes a POVM P (1)
n on (Q(1))n atingon H (1)
n by P (1)
n(dq1 � � � � � dqn) = P (1)(dq1) 
 � � � 
 P (1)(dqn), and a POVMP (n) on Q(n) ating on F (n) = P�H (1)
n (the n-partile setor of Fok spae, with P�the projetion to the subspae of (anti-)symmetri elements of H (1)
n, depending onwhether we deal with fermions or bosons) byP (n)(B) = P (1)
n�(q1; : : : ; qn) 2 (Q(1))n : fq1; : : : ; qng 2 B	for B � Q(n), where fq1; : : : ; qng should be understood as a set-with-multipliities.11Sine P (n)(B) is invariant under permutations, it maps symmetri to symmetri and anti-symmetri to anti-symmetri elements of H (1)
n and thus ats on F (n) for bosoni orfermioni Fok spae.12 The orresponding POVM on Q is then P = �P (1) =Ln P (n);more preisely, for B � Q, P (B) = 1Mn=0 P (n)(B \Q(n)) :11This agrees with the de�nition given in Setion 3.1 for the ase of a PVM and the oinideneon�gurations removed from on�guration spae.12In ase that P (1) is nonatomi, P (n) an equivalently be de�ned in the following way: For the set �of oinidene on�gurations we set P (n)(�) = 0, and for volumes dq1; : : : ; dqn in Q(1) that are pairwisedisjoint, we have a orresponding volume dq in Q(n), whih an be obtained from dq1 � � � � � dqn �(Q(1))n by forgetting the ordering, and we set P (n)(dq) = n!P� P (1)(dq1)
 � � � 
 P (1)(dqn)P�.35



4.2.4 Constrution of the Free ProessEquipped with the two proedures for diret sums and tensor produts, we ompletethe onstrution of the free proess.The \tensor produt" proedure above provides a proess on (Q(1))n from n identialopies of L (1). For a state vetor 	(n) 2 F (n) = P�H (1)
n from either the symmetrior the anti-symmetri elements of the n-fold tensor produt spae, let W be the pro-jetion to 	(n); the generator L 
W is permutation invariant beause the tensor-produtonstrution of L 
W is permutation ovariant and a permutation an at most hange thestate vetor by a minus sign, whih does not a�et the density matrix. Consequently,the ordering of the on�guration is irrelevant and may be ignored. We thus obtain aproess onQ(n) whose generator we allL (n). We now apply the \diret sum" proedureto obtain a proess on Q.5 Towards a Notion of Minimal ProessIn this setion, we investigate the ommon traits of the Markov proesses relevant toBell-type QFT, whih an be summarized in the notion of a minimal proess assoiatedwith 	; H, and P . We begin with a loser study of the minimal free generator (32), andthen explain why we all the minimal jump rates \minimal." Finally, in Setion 5.3, wegive an outlook on the notion of minimal proess.5.1 Free Proess From Di�erential OperatorsIn this setion, we disuss some of the details, onerning the two equivalent formulas(32) and (35) for the bakward and forward version of the minimal free generator interms of H;P , and 	, that we omitted in Setion 2.9. To begin with, L as de�nedby (32) satis�es some neessary onditions for being a bakward generator: Lf(q) isreal, and L1 = 0 where 1 is the onstant 1 funtion (this orresponds to L �(Q) = 0,or onservation of total probability). In ase L is indeed a bakward generator, theorresponding proess is equivariant beauseL P(dq) (35)= Re h	j1̂ i~ [H;P (dq)℄j	i = 2~ Im h	jP (dq)Hj	i (26)= _P(dq) :One way to arrive at formula (32) has been desribed in Setion 2.9. A dif-ferent way, leading to (35), is to start from the ansatz L � = A d�dP where A de-notes a (signed-measure-valued) linear operator ating on funtions. Equivarianemeans A1(dq) = h	j i~ [H;P (dq)℄j	i. This suggests Af(dq) = h	jf̂ i~ [H;P (dq)℄j	i, orAf(dq) = h	j i~ [H;P (dq)℄ f̂ j	i, or a onvex ombination thereof. Sine Af(dq) must bereal, we are fored to hoose the ombination with oeÆients 12 and 12 , or equivalentlyAf(dq) = Re h	jf̂ i~ [H;P (dq)℄j	i, whih is (35).That L generates a deterministi proess (when it is a generator at all) is suggestedby the following onsideration|at least when H and P are time-reversal invariant:36



replaing 	 in (35) by T	 where T is the anti-linear time reversal operator (see Setion6.1) hanges the sign of L . The only generators L suh that �L is also a generatorare, presumably, those orresponding to deterministi motion.This gives us an opportunity to hek for whih H (32) does de�ne a proess: fora deterministi proess we must have L = v � r where v is the veloity vetor �eld.It is known that operators of this form, �rst-order di�erential operators, are preiselythose linear operators L on the spae of smooth funtions that satisfy the Leibniz ruleL(fg) = fLg + gLf . Sine (32) is linear in f , we have to hek the Leibniz rule to seewhether L is indeed of the form v � r and thus the bakward generator of a proess.We an see no reason why L should satisfy a Leibniz rule unless P is a PVM, whihimplies that f̂ P (dq) = f(q)P (dq) ; (98)and H is suh that for all (nie) funtions f and g,�[H; f̂ ℄; ĝ� = ĥ (99)for some funtion h, whih holds ifH is a di�erential operator of order � 2. (IfH = ��,then h = �2rf � rg; if H = �i� � r for whatever vetor of matries �, or if His a multipliation operator, then h = 0.) To hek that the Leibniz rule is obeyedin this ase, note that we then have that [H;fg℄ = [H; f̂ ĝ℄ = [H; f̂ ℄ĝ + f̂ [H; ĝ℄ =f̂ [H; ĝ℄ + ĝ[H; f̂ ℄ + �[H; f̂ ℄; ĝ�. Using this in (32), we �nd that, due to (98), the �rst twoterms give the Leibniz rule, whereas the last term, due to (99), does not ontribute tothe real part in (32).When H is an L2 spae over Q and P the natural PVM, i.e., when 	 is a funtion,(32) an be written in the formLf(q) = 1~ Im 	�(q) ([f̂ ; H℄	)(q)	�(q)	(q) (100)where f̂ is the multipliation operator orresponding to f . From this, one easily readso� the Bohm veloity (1) for the N -partile Shr�odinger operator (3) with or withoutspin. Similarly, we get the Bohm{Dira theory when H is the Dira operator in H =AntiL2(R3 ; C 4)
N , Q the manifold of subsets of R3 with N elements, and P the obviousPVM. (100) also leads to the Bohm{Dira motion ifH = L2(R3 ; C 4)
N , Q = R3N , andP is the natural PVM, but not if H is the positive energy subspae beause then theappropriate POVM P is no longer a PVM.To see that the \seond quantization" algorithm maps minimal free generators tominimal free generators, or, in other words, preserves the relation (35) between Hamil-tonian and generator, observe �rst that (35) naturally extends to density matries, andthe extension, if a generator, is equivariant. Next hek that the \diret sum" and\tensor produt" proedures of Setion 4.2 are ompatible with (35) when P is a PVM.Finally, observe that the (anti-)symmetrization operator ommutes with the n-partileHamiltonian, with P (B) for every permutation invariant set B � (Q(1))n, and with f̂for every permutation invariant funtion f : (Q(1))n ! R.37



5.2 MinimalityIn this setion we explain in what sense the minimal jump rates (29)|or (22)|areminimal. In so doing, we will also explain the signi�ane of the quantity J de�ned in(28), and larify the meaning of the steps taken in Setions 2.6 and 2.7 to arrive at thejump rate formulas.Given a Markov proess Qt on Q, we de�ne the net probability urrent jt at time tbetween sets B and B0 byjt(B;B0) = lim�t&0 1�t hProb�Qt 2 B0; Qt+�t 2 B	� (101)�Prob�Qt 2 B;Qt+�t 2 B0	i :This is the amount of probability that ows, per unit time, from B0 to B minus theamount from B to B0. For a pure jump proess, we have thatjt(B;B0) = Zq02B0 �t(Bjq0) �t(dq0)� Zq2B �t(B0jq) �t(dq) ; (102)so that jt(B;B0) = j�;�(B � B0) (103)where j�;� is the signed measure, on Q�Q, given by the integrand of (15),j�;�(dq � dq0) = �(dqjq0) �(dq0)� �(dq0jq) �(dq) : (104)For minimal jump rates �, de�ned by (29) or (22) (and with the probabilities � givenby (24), � = P), this agrees with (28), as was noted earlier,j�;� = J	;H;P ; (105)where we have made expliit the fat that J is de�ned in terms of the quantum entities	; H, and P . Note that both J and the net urrent j are anti-symmetri, Jtr = �J andjtr = �j, the latter by onstrution and the former beause H is Hermitian. (Here trindiates the ation on measures of the transposition (q; q0) 7! (q0; q) on Q � Q.) Theproperty (105) is stronger than the equivariane of the rates �, L�Pt = dPt=dt: Sine,by (15), (L��)(dq) = j�;�(dq �Q); (106)and, by (28), dPdt (dq) = J(dq�Q); (107)the equivariane of the jump rates � amounts to the ondition that the marginals ofboth sides of (105) agree, j�;�(dq �Q) = J(dq�Q) : (108)38



In other words, what is speial about proesses with rates satisfying (105) is that notonly the single-time distribution but also the urrent is given by a standard quantumtheoretial expression in terms of H;	, and P . That is why we all (105) the standard-urrent property|de�ning standard-urrent rates and standard-urrent proesses.Though the standard-urrent property is stronger than equivariane, it alone doesnot determine the jump rates, as already remarked in [2, 30℄. This an perhaps be bestappreiated as follows: Note that (104) expresses j�;� as twie the anti-symmetri partof the (nonnegative) measureC(dq � dq0) = �(dqjq0) �(dq0) (109)on Q� Q whose right marginal C(Q� dq0) is absolutely ontinuous with respet to �.Conversely, from any suh measure C the jump rates � an be reovered by forming theRadon{Nikod�ym derivative �(dqjq0) = C(dq � dq0)�(dq0) : (110)Thus, given �, speifying � is equivalent to speifying suh a measure C.In terms of C, the standard-urrent property beomes (with � = P)2AntiC = J: (111)Sine (realling that J = J+� J� is anti-symmetri)J = 2Anti J+; (112)an obvious solution to (111) is C = J+;orresponding to the minimal jump rates. However, (105) �xes only the anti-symmetripart of C. The general solution to (111) is of the formC = J+ + S (113)where S(dq � dq0) is symmetri, sine any two solutions to (111) have the same anti-symmetri part, and S � 0, sine S = C ^ Ctr, beause J+ ^ (J+)tr = 0.In partiular, for any standard-urrent rates, we have thatC � J+; or �(dqjq0) � J+(dq � dq0)P(dq0) : (114)Thus, among all jump rates onsistent with the standard-urrent property, one hoie,distinguished by equality in (114), has the least frequent jumps, or the smallest amountof stohastiity: the minimal rates (29). 39



5.3 Minimal ProessesWe have onsidered in this paper minimal jump proesses, i.e., jump proesses with rates(29), assoiated with integral operators H. There is a more general notion of minimalproess, suh that there is a minimal proess assoiated with every Hamiltonian froma muh wider lass than that of integral operators; a lass presumably ontaining allHamiltonians relevant to QFT. This will be disussed in detail in a forthoming work[16℄.Bohmian mehanis is, in this sense, the minimal proess assoiated with theShr�odinger Hamiltonian (3). The minimal proess assoiated with an integral oper-ator is the jump proess with minimal rates. When the minimal free generator (32)exists, i.e., when (32) is a generator, it generates the minimal proess assoiated withH. The minimal proess assoiated with the Hamiltonian of a QFT is the one we haveobtained in this paper by means of proess additivity. The onept of minimal proessdiretly provides, perhaps always, the proess relevant to a Bell-type QFT.To begin to onvey the notion of the minimal proess, we generalize the standard-urrent property (f. Setion 5.2) from pure jump proesses to general Markov proesses:the net probability urrent j of a Markov proess de�nes a bilinear formjt(f; g) = lim�t&0 1�t E�f(Qt+�t)g(Qt)� f(Qt)g(Qt+�t)� = (g; Ltf)� (f; Ltg) (115)where Lt is its bakward generator, and ( ; ) on the right hand side means the salarprodut of L2(Q; �t). Then the Markov proess satis�es the standard-urrent propertyif �t = Pt and (for f and g real) jt(f; g) is equal toJt(f; g) = 2~ Im h	tjf̂Hĝj	ti ; (116)or, in other words, if twie the anti-symmetri part of its bakward generator Lt agreeswith the operator orresponding to Jt as given by (Jtf; g) = Jt(f; g), 2AntiLt = Jt. Theminimal proess is then the standard-urrent proess that has, in a suitable sense, thesmallest amount of randomness.Let us onsider some examples. The di�usion proess with generator L given below(and for � = P) has the standard-urrent property (in fat, beause its \urrent veloity"[26℄ is v) for the Shr�odinger Hamiltonian (3) but is not minimal:L � = �2��� div (�~v); with ~v := v + �2r(log j	j2) (117)where � is any positive onstant (the di�usion onstant) and v is the Bohmian velo-ity (1); this proess was already onsidered in [24, 10℄. Note that Nelson's stohastimehanis [26℄ orresponds to � = ~. It is obvious without any mathematial analysisthat the smallest amount of stohastiity orresponds to absene of di�usion, � = 0,whih yields Bohmian mehanis. Proesses like the di�usion (117) for � > 0 seem lessnatural for the fundamental evolution law of a physial theory sine they involve greatermathematial omplexity than is needed for a straightforward assoiation of a proess40



with H and 	. Examples of proesses that do not have the standard-urrent property,for the Shr�odinger Hamiltonian (3), are provided by the alternative veloity formulasonsidered by Deotto and Ghirardi [12℄; one an say that their urrent is not the onesuggested by H and 	.We return to the general disussion of the minimal proess. As we have alreadyindiated, when, for a standard-urrent proess, we view J as well as its bakwardgenerator L as operators on L2(Q;P), then 12J is the anti-symmetri (skew-adjoint) partof L; thus, only the symmetri (self-adjoint) part of L remains at our disposal. Sine oneof the properties of a bakward generator is L1 = 0, the �rst possibility ~L for L that maysatisfy the formal riteria for being a bakward generator is ~Lf = 12Jf � (12J1)f . WhenP is a PVM, this is also the operator we obtain by applying, to an arbitrary quantumHamiltonian H, the formula (32) for what we alled the minimal free generator, whihwe repeat here for onveniene:~Lf(q) = Re h	jP (dq) i~[H; f̂ ℄j	ih	jP (dq)j	i : (118)Whereas this formula merely provided an alternative de�nition of the free proess inSetion 2.9, it now plays a di�erent role: a step towards obtaining the minimal proessfrom the Hamiltonian H. As we have pointed out in Setion 2.9, ~L is also an obviousnaive guess for the bakward generator L, quite independent of equivariane or theurrent J, sine i~ [H; f̂ ℄ is the time derivative of f̂ . Moreover, it manifestly satis�es~L1 = 0. For the bakward generator L of a standard-urrent proess we must have,when P is a PVM, that L = ~L + S where S is a symmetri operator and S1 = 0.For the minimal proess, we have to hoose S as small as possible|while keeping Ssymmetri and L a bakward generator.Suppose P is a PVM. Observe then that ifH is a di�erential operator (as H0 often is)of the kind onsidered in Setion 2.9, ~L is itself a bakward generator, so that S = 0 is apossible, and in fat the smallest, hoie. If H is an integral operator, what keeps ~L, anintegral operator as well, from being a bakward generator is that the o�-diagonal partof its P-kernel (q; ~Lq0) = P(q)~L(q; q0) = 1~ Im h	jqihqjHjq0ihq0j	i may assume negativevalues whereas the o�-diagonal part of the P-kernel of L, (q; Lq0) = P(q)�(qjq0), annotbe negative. The smallest possible hoie of S has as o�-diagonal elements what isneeded to ompensate the negative values, and this leads to the minimal jump proess,as desribed in Setion 5.2. The diagonal part ontains only what is needed to ensurethat S1 = 0. For H of the form H0 +HI , the role of S is again to ompensate negativevalues o� the diagonal, and the minimal proess has veloities determined by H0 via(32) and jump rates determined by HI via (29).In any ase, the bakward generator of the minimal proess is the one losest, in asuitable sense, to (118). This formula may thus be regarded as ontaining the essentialstruture of L, for the deterministi as well as for the jump part of the proess.Another approah towards a general notion of minimal proess may be to approxi-mate H by Hilbert{Shmidt operators Hn, with whih are assoiated, aording to theresults of Setions 4.2.1 and 4.2.4 of [15℄, minimal jump proesses Qn, and take the limit41



n ! 1 of the proesses Qn. This leads to a number of mathematial questions, suhas under what onditions on H;	; P , and Hn does a limiting proess exist, and is itindependent of the hoie of the approximating sequene Hn.6 Remarks6.1 SymmetriesProess additivity preserves symmetries, in the sense that the proess generated byPL (i) shares the symmetries respeted by all of the building bloks L (i). This setionelaborates on this statement, and the following ones: The minimal jump rates (29) andthe minimal free generator (32) share the symmetries of the Hamiltonians with whihthey are assoiated. The \seond quantization" algorithm preserves the symmetriesrespeted by the one-partile proess.Here are some desirable symmetries that may serve as examples: spae translations,rotations and inversion, time translations and reversal, Galilean or Lorentz boosts, globalhange of phase 	! ei�	, relabeling of partiles,13 and gauge transformations.We fous �rst on symmetries that do not involve time in any way, suh as rotationsymmetry. In this ase, a symmetry group G ats on Q, so that to every g 2 G thereorresponds a mapping 'g : Q ! Q. In addition, G ats on H through a projetiveunitary (or anti-unitary) representation, so that to every g 2 G there orresponds aunitary (or anti-unitary) operator Ug. Then the theory is G-invariant if both the wavefuntion dynamis and the proess on Q are, i.e., if H is G-invariant,U�1g HUg = H ; (119)and 'g(Q	t ) = QUg	t (120)in distribution on path spae. A neessary ondition for (120) is that the \on�gurationobservable" transforms like the on�guration, in the sense thatU�1g P ( � )Ug = 'g�P ( � ) ; (121)where '� denotes the ation of ' on measures. Without (121), (120) would already failat time t = 0, no matter what the generator is. Given (121), (120) is equivalent to theG-invariane of the generator: 'g�L 	'g�1� = L Ug	 : (122)Sine 'g� is a linear operator, it follows immediately that the sum of G-invariant gen-erators is again G-invariant. The minimal jump proess, when it exists, is G-invariant,13This may mean two things: hanging the arti�ial labels given to idential partiles, or exhangingtwo speies of partiles. 42



as follows from the fat that 'g��	(dqj'g(q0)) = �Ug	(dqjq0), whih an be seen by in-speting the jump rate formula (29). The minimal free generator (35) satis�es (122)by virtue of (119) and (121). \Seond quantization" provides G-ations on �Q(1) andF = �H (1) from given ations on Q(1) and H (1); (119), (121) and (122) are inheritedfrom their 1-partile versions.Time-translation invariane is partiularly simple. Consider generators L (i)	 whihdo not depend on time exept through their dependene on 	. Then the same is true ofPL (i). The same an be said of the \seond quantized" generator, and, provided H istime-independent, of the minimal jump rates (29) and the minimal free generator (35).Next we onsider time reversal. It is represented on H by an anti-unitary operatorT , i.e., an anti-linear operator suh that hT�jT	i is the onjugate of h�j	i. We assumethat the Hamiltonian is reversible, THT�1 = H. Then the reversibility of the theorymeans that Q	0�t = QT	0t (123)in distribution on path spae, where the supersript should be understood as indiatingthe state vetor at t = 0. The neessary ondition analogous to (121) readsT�1P ( � )T = P ( � ) ; (124)and given that, (123) is equivalent to the T -invariane of the generator:L 	 = LT	 ; or L	 = LT	 ; (125)whereL and L denote the forward and bakward generator of the time-reversed proess.L an be omputed from L, for an equivariant Markov proess, aording to14Lf = Lyf � (Ly1)f (126)14To make this formula plausible, it may be helpful to note that the seond term on the right handside is just the orretion needed to ensure that Ly1 = 0, a neessary ondition for being a bakwardgenerator. If P were stationary, the seond term on the right hand side would vanish.Here is a derivation of (126): Let (f; g) = Rq2Q f(q) g(q)P(dq) be the salar produt in L2(Q;P). Itfollows from the de�nition (8) of L that(g; Lf) = limt&0 1t E�g(Q0)f(Qt)� g(Q0)f(Q0)� :Correspondingly, L is haraterized (for f and g real) by(g; Lf) = limt&0 1t E�g(Q0)f(Q�t)� g(Q0)f(Q0)� == limt&0 1t E�g(Q0)f(Q�t)� g(Q�t)f(Q�t)� ++ limt&0 1t E�g(Q�t)f(Q�t)� g(Q0)f(Q0)� == (f; Lg)� Zq2Q g(q) f(q) _P(dq) (10)= (Lg; f)� (L(gf);1) = (g; Lyf)� (fg; Ly1) ;whih amounts to (126). 43



where y denotes the adjoint operator on L2(Q;P), with P given by (24). Sine L is linearin L, ondition (125) is preserved when adding (forward or bakward) generators; it isalso preserved under \seond quantization." For a pure jump proess, (125) boils downto �	(dqjq0) h	jP (dq0)j	i = �T	(dq0jq) h	jP (dq)j	i ; (127)whih is satis�ed for the minimal jump rates, by inspetion of (29). The minimal freegenerator (32) hanges sign when replaing 	 by T	, whih means the veloity hangessign, as it should under time reversal (see Setion 5.1).Invariane under Galilean boosts is a more involved story, and as it is not onsideredas fundamental in physis anyway, we omit it here. Lorentz boosts are even trikier, sinefor more than just one partile, they even fail to map (simultaneous) on�gurations into(simultaneous) on�gurations. As a result, the problem of Lorentz invariane belongsin an altogether di�erent league, whih shall not be entered here.6.2 On the Notion of ReversibilityIt may appear, and it is in fat a widespread belief, that stohastiity is inompati-ble with time reversibility. We naturally view the past as �xed, and the future, in astohasti theory, as free, determined only by innovations. Even Bell expressed suh abelief [5, p. 177℄. However, from the proper perspetive the onit disappears, and thisperspetive is to onsider the path spae (of the universe) and the probability measurethereon. If t 7! Qt is a history of a universe governed by a Bell-type QFT, then its timereverse, t 7! Q�t, is again a possible path of this Bell-type QFT, though orrespondingto a di�erent initial state vetor T	 instead of 	, with T the time reversal operator asdisussed in Setion 6.1. More than this, the distribution of the reversed path t 7! Q�toinides with the probability measure on path spae arising from T	.15It may also be helpful to think of how the situation appears when viewed from outsidespae-time: then the path Qt orresponds to the deoration of spae-time with a patternof world lines, and this pattern is random with respet to a probability measure on whatorresponds to path spae, namely the spae of all possible deorations of spae-time.Then time reversal is a mere reetion, and for a theory to be time reversible meansthe same as being invariant under this reetion: that we ould have had as well thereeted probability measure, provided we had started with T	 instead of 	.To sum up, we would like to onvey that the sense of reversibility for Markov pro-esses indeed mathes the sense of reversibility that one should expet from a physialtheory.15We an be more preise about the meaning of the measure on path spae: as in Bohmian mehanis[19℄, its role \is preisely to permit de�nition of the word `typial'." [5, p. 129℄ Consequently, themeaning of the reversibility property of the measures we just mentioned is that the time reverse of ahistory that is typial with respet to 	, is typial with respet to T	.
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6.3 Heisenberg PitureIn (24), we have applied the Shr�odinger piture, aording to whih the state vetorevolves while the operators remain �xed. Eq. (24) and the reasoning following it anas well be translated to the Heisenberg piture where the state vetor 	 is regarded as�xed and the operators Pt( � ) as evolving. Thus, we ould equivalently writePt(dq) = h	jPt(dq)j	iinstead of (24). Similarly, H0 and HI beome time-dependent while their sum is on-stant. We often use an ambiguous notation like h	jP (dq)j	i and formula (29) sinethe formulas are equally valid in both pitures (and, for that matter, in the interationpiture).Like the jump rate formula (29), the formula (32) for the minimal free generator isequally valid in the Heisenberg piture.We further remark that in the Heisenberg piture, the following nie equation holdsfor a pure jump proess with minimal rates when P is a PVM:ProbfQt+dt 2 dq;Qt 2 dq0g = h	jfPt+dt(dq); Pt(dq0)gj	i+ (128)for dq \ dq0 = ;, where f ; g on the right hand side means the anti-ommutator. Thesimilarity to the one-time distribution formulaProbfQt 2 dqg = h	jPt(dq)j	iis striking. Speifying the two-time distribution for in�nitesimal time di�erenes is a wayof haraterizing a Markov proess, equivalent to speifying the (forward or bakward)generator and the one-time distribution. Thus, for a PVM P (128) provides anotherformula for the minimal jump rates (29). A similar formula for the proess generatedby the minimal free generator (32) is E�g(Qt)f(Qt+dt)� = 12h	jfĝt; f̂t+dtgj	i.6.4 Examples of Proess AdditivityAmong di�erent onrete realizations of Bohmian mehanis we �nd numerous examplesof proess additivity (and, remarkably, no example violating it):� The Hamiltonian for n noninterating partiles is the sum of the Hamiltoniansfor the individual partiles, and it is easy to see that this orresponds to thedeomposition of the vetor �eld on R3n , whih de�nes Bohmian mehanis forthe n-partile system, into its n omponents parallel to the n fators R3 . Asalready mentioned, sums of generators for deterministi proesses amount to sumsof the de�ning vetor �elds.Moreover, the vetor �eld for eah partile is essentially the Bohmian one-partilelaw. To point out that this is a nontrivial fat, we mention that this is not so forthe alternative veloity formula (10.2) in [12℄ onsidered by Deotto and Ghirardi,for whih the veloity of the i-th partile di�ers from the one-partile law. SoBohmian mehanis of n partiles an be viewed as built from n opies of theone-partile version, in fat by the \seond quantization" algorithm of Setion 4.2.45



� The vetor �eld of Bohmian mehanis for a single spinless partile may also beseen as arising in this way. If a Hamiltonian H = �X2 is the negative squareof an (inompressible) vetor �eld (regarded as a �rst-order di�erential operator)X = a(x)�r on R3 (with r�a = 0 ensuring formal self-adjointness of the square),then the simplest equivariant proess assoiated with H is given by the veloityvetor �eld v = 2~ Im a � r		 a :The orresponding bakward generator is L = 2~ Im (X		 )X. Now �~22 � =�P�X�2 is the sum of 3 negative squares of vetor �elds X� = ~p2�=�x� orre-sponding to the individual degrees of freedom. The assoiated Bohm veloity isthe sum of the veloities orresponding to the squares. So Bohmian mehanis inthree dimensions an be viewed as built of 3 opies of the one-dimensional ver-sion. To point out that this is a nontrivial fat, we mention that this is not true,e.g., of the veloity formulas (10.1) and (10.2) in [12℄, whih do not make sense indimensions other than 3.� If we add an interation potential V to�~22 �, the Bohm veloity is the appropriatesum, sine the operator V is assoiated with the trivial motion v = 0.� We may also inlude an external vetor potential A(x; t) in the Shr�odinger equa-tion, that is, replae �~22 � = �~22 r2 by �~22 �r+ i e~A(x; t)�2 = �~22 �� ~22 (i e~r �A+ i e~A � r) + e22 A2. The sum of the assoiated veloities, namely~ Im 	�r		�	 + eA+ 0equals the veloity one obtains diretly, ~ Im	�(r+ i e~A)	=	�	.� In the Bohm{Dira theory (31), however, one an inlude an external gauge on-netion A�(x; t) in the Dira equation without hanging the veloity formula. Thatonforms with proess additivity beause the operator (0)�1�A� = A0 + � �Ais assoiated (termwise) with v = 0.� In the Dira Hamiltonian H = �i~� � r + �m2, the �rst term orresponds tothe Bohm{Dira veloity (31), whereas the seond term orresponds to v = 0; asa onsequene, the Bohm{Dira veloity does not depend on the mass. Moreover,the three omponents of the Bohm{Dira veloity are eah equivariant with respetto the orresponding derivative term in H.In addition, we point out ases of proess additivity in the \seond quantization"algorithm and minimal jump proesses.The \seond quantized" generator �L (1) as onstruted in Setion 4.2 provides anexample of proess additivity (or may be viewed as an appliation of proess additivity):LH0;	 = 1Xn=0LH(n)0 ;	(n) ;46



where the generators in the sum orrespond to motions in the respetive di�erent setorsof Q.Suppose we regard the partiles as ordered, Q = (Q1; : : : ;QN). Then another aseof proess additivity beomes visible:H(N)0 = NXi=1 hiwhere hi is the one-partile Hamiltonian ating on the i-th partile. Correspondingly,LH(N)0 = NXi=1 Liwhere Li is equivariant with respet to hi. This applies not only to Bohmian me-hanis (as desribed earlier in this setion), but generally to the \seond quantiza-tion" proedure as desribed in Setion 4.2. We also note that the \seond quantiza-tion" algorithm presented in Setion 4.2 preserves proess additivity in the sense that�(L (1)1 +L (1)2 ) = �L (1)1 + �L (1)2 while �(H(1)1 +H(1)2 ) = �H(1)1 + �H(1)2 .We now turn to proess additivity among minimal jump proesses.A jump proess generated by a sum need not be a minimal jump proess evenwhen its onstituents are. But under ertain onditions it is. Two suh ases are the\diret sum" and \tensor produt" proesses onstruted in Setions 4.2.1 and 4.2.2:H = LnH (n) with Q = SnQ(n) and H = LnH(n), and H = H [1℄ 
 � � � 
H [N ℄with Q = Q[1℄� � � � �Q[N ℄ and H =Pi 1
 � � � 
H [i℄
 � � � 
 1, with L =PLi whereLi ats nontrivially, in an obvious sense, only on Q(i) or on Q[i℄. These are speial asesof the general fat that minimality is ompatible with additivity whenever the addendsof the Hamiltonian orrespond to di�erent sorts of jumps. That an be most easilyunderstood in the ase of a PVM orresponding to an orthonormal basis fjqi : q 2 QgofH : suppose H = H1+H2 and for every pair q; q0 either hqjH1jq0i = 0 or hqjH2jq0i = 0.Then � = �1+�2. The orresponding ondition in the POVM ontext is that the kernelsof H1 and H2 have disjoint supports. When H is naturally given as a sum this onditionwould be expeted to be satis�ed.Finally, we remark that the minimal free generator L = L H as de�ned in (35) isadditive in H.6.5 Seond Quantization of a Minimal Jump ProessWe note that the \seond quantization" of a minimal jump proess assoiated with aPVM P (1), as desribed in Setion 4.2, is the minimal jump proess assoiated withthe seond-quantized Hamiltonian; this is a onsequene of the observation that Ligenerates the minimal jump proess for Hi in this ase. This fat is probably physiallyirrelevant but it is mathematially nie. 47



6.6 Global Existene QuestionThe rates �t and veloities vt, together with Pt, de�ne the proess Qt assoiated withH;P , and 	, whih an be onstruted along the lines of Setion 2.3. However, therigorous existene of this proess, like the global existene of solutions for an ordinarydi�erential equation, is no trivial matter. See Setion 4.3 of [15℄ for a disussion of whatmust be ontrolled in order to establish the global existene of the proess, and [20℄ foran example of suh a global existene proof.6.7 POVM Versus PVMAs we have already remarked in footnote 4, every POVM P is related to a PVM Pext,the Naimark extension, on a larger Hilbert spae Hext aording to P ( � ) = P+Pext( � )Iwith P+ the projetion Hext ! H and I the inlusion H ! Hext. This fat allowsa seond perspetive on P , and sometimes reates a ertain ambiguity as to whihproess is the suitable one for a Bell-type QFT, as follows. At several plaes in thispaper, we have desribed onsiderations leading to and methods for de�ning Markovproesses, in partiular minimal jump rates (29) and the minimal free generator (32);these onsiderations and methods ould be applied using eitherHext and Pext orH andP . One would insist that the state vetor 	 must lie inH , the spae of physial states,but even then one might arrive at di�erent proesses starting from P or Pext. To obtaina proess from Pext requires, of ourse, that we have a Hamiltonian on Hext, while His de�ned on H ; suh a Hamiltonian, however, an easily be onstruted from H bysetting Hext = IHP+.In some ases, the Naimark extension does not lead to an ambiguity. This is the asefor the jump rate formula (29), sine for 	 2 H , h	jPext(dq)j	i = h	jP (dq)j	i andh	jPext(dq)HextPext(dq0)j	i = h	jP (dq)HP (dq0)j	i. This fat suggests that, generally,the minimal proess arising from Hext and Pext is the same as the one arising from Hand P .The situation is di�erent, however, when H is de�ned on Hext to begin with, anddi�erent from Hext. This is the ase with the free Dira operator h0, de�ned as adi�erential operator on L2(R3 ; C 4), whih di�ers from P+h0P+. When we obtained inSetion 2.9 the Bohm{Dira motion (31) from the formula (32) for the minimal freegenerator, we used h0 and Pext. In ontrast, the restrition of h0 to the positive energysubspae, or equivalently P+h0P+, possesses a kernel; more preisely, it is a onvolutionoperator S+ ? (h0S+)? in the notation of Setion 3.3, and thus orresponds to jumps.The assoiated minimal proess on R3 presumably makes in�nitely many jumps in every�nite time interval, similar to the example of [15℄, Setion 3.5.Thus, there are two proesses to hoose between, the Bohm{Dira motion and theminimal proess for P+h0P+. Both are equivariant, and thus it is arguably impossibleto deide empirially whih one is right. In our example theory in Setion 3.3, we hosethe simpler, deterministi one. But we leave to future work the disussion of whih ismore likely relevant to physis, and why. 48



6.8 The Role of Field OperatorsThe Bell-type QFTs with whih we have been onerned in this paper are models de-sribing the behaviour of partiles moving in physial 3-spae, not of �elds on 3-spae.We have been onerned here mainly with a partile ontology, not a �eld ontology. Thisfous may be surprising at �rst: almost by de�nition, it would seem that QFT dealswith �elds, and not with partiles. Consider only the ourrene (and prominene) of�eld operators in QFT!But there is less to this than might be expeted. The �eld operators do not funtionas observables in QFT. It is far from lear how to atually \observe" them, and evenif this ould somehow, in some sense, be done, it is important to bear in mind thatthe standard preditions of QFT are grounded in the partile representation, not the�eld representation: Experiments in high energy physis are sattering experiments, inwhih what is observed is the asymptoti motion of the outgoing partiles. Moreover, forFermi �elds|the matter �elds|the �eld as a whole (at a given time) ould not possiblybe observable, sine Fermi �elds anti-ommute, rather than ommute, at spae-likeseparation. One should be areful here not to be taken in by the attitude widespreadin quantum theory of intuitively regarding the operators as \quantities," as if theyrepresented something \out there" in the real world; see [9℄ for a ritique of this attitude.So let us fous on the role of the �eld operators in QFT. This seems to be to relateabstrat Hilbert spae to spae-time: the �eld operators are attahed to spae-timepoints, unlike the quantum states 	, whih are usually regarded not as funtions but asabstrat vetors. In orthodox quantum �eld theory the �eld operators are an e�etivedevie for the spei�ation of Hamiltonians having good spae-time properties. For ourpurposes here, what is ritial is the onnetion between �eld operators and POVMs.Throughout this paper, the onnetion between Hilbert spae and the partile posi-tions in physial spae has been made through the POVM P , and through it alone. Wenow wish to emphasize that the �eld operators are losely related to P , and indeed that�eld operators are just what is needed for eÆiently de�ning a POVM P on �R3 .This onnetion is made through number operators N(R), R � R3 . These de�nea number-operator-valued measure (NOVM) N( � ) on R3 , an \unnormalized POVM"(N(R3) is usually not the identity operator and N(R) is usually an unboundedpositive operator) for whih the values N(R) ommute and are number operators:spetrum(N(R)) � f0; 1; 2; 3; : : :g. (The basi di�erene, then, between a NOVM anda PVM is that the spetrum of the positive operators is f0; 1; 2; 3; : : :g rather than justf0; 1g.)There is an obvious one-to-one relation between NOVMs N( � ) on R3 and PVMs Pon �R3 , given by N(R) = Zq2�R3 nR(q)P (dq) (129)where nR(q) = #(q \ R) is the number funtion on �R3 for the region R. Sine (129)is the spetral deomposition of the ommuting family N(R), this orrespondene isone-to-one. (Note that the joint spetrum of the ommuting family N(R) is the set of49



nonnegative-integer-valued measures nR on R3 , one of the de�nitions of �R3 given inSetion 2.8.)The moral is that a NOVM on R3 is just a di�erent way of speaking about a PVM PonQ = �R3 . All other POVMs arise from PVMs by restrition to a subspae (Naimark'stheorem [11℄). An easy way to obtain a NOVM N starts with settingN(R) = ZR ��(x)�(x) d3x (130)for suitable operators �(x). An easy way to ensure that the N(R) ommute is to requirethat the operators �(x) ommute or anti-ommute with eah other and the adjoints��(x0) for x0 6= x. An easy way to ensure that the N(R) have nonnegative integereigenvalues is to require that [�(x); ��(x0)℄� = Æ(x� x0) ; (131)where [ ; ℄� is the (anti-)ommutator, and that there is a yli vauum state j0i 2 Hfor whih �(x)j0i = 0. The relations (131) are of ourse just the usual anonial(anti-)ommutation relations that �eld operators are required to satisfy.Moreover, in gauge theories the onnetion between matter �eld � and the NOVMis perhaps even more ompelling. Consider a gauge theory with internal state spaeV , equipped with the inner produt hh � j � ii. Then, given x 2 R3 , the matter �eld�(x) should formally be regarded as a linear funtional V ! O(H ), � 7! ��(x), fromthe internal state spae to operators on H , with ����(x) = (��(x))� a linear funtionV � ! O(H ) on the dual of V . (131) then beomes [��(x); ����(x0)℄ = Æ(x� x0) hh�j�ii.Thus the simplest gauge-invariant objet assoiated with � is the NOVM (130), withthe integrand understood as the ontration of the tensor V � V � ! O(H ), (�; �) 7!���(x)��(x).Hene, not only does the notion of partile not onit with the prominene of �eldoperators (see Setions 3.1 and 3.3 for expliit examples), but �eld operators have anatural plae in a theory whose ultimate goal it is to govern the motion of partiles.One of their important roles is to de�ne the POVM P that relates Hilbert spae toon�guration spae. Quantum theory of �elds or quantum theory of partiles? A theoryof partile motion exploiting �eld operators!7 ConlusionsThe essential point of this paper is that there is a diret and natural way of under-standing QFT as a theory about moving partiles, an idea pioneered, in the realm ofnonrelativisti quantum mehanis, by de Broglie and Bohm. We leave open, however,three onsiderable gaps: the question of the proess assoiated with the Klein{Gordonoperator, the problem of removing ut-o�s, and the issue of Lorentz invariane.Aknowledgements. We thank James Taylor of Rutgers University and Stefan Teufelof Tehnishe Universit�at M�unhen for helpful disussions and Mihael Kiessling of Rut-gers University for a very areful reading of a previous version and useful omments. R.T.50
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