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entral formula of this paper is�(dqjq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i : (1)It plays a role similar to that of Bohm's equation of motion (2). Together, these twoequations make possible a formulation of quantum �eld theory (QFT) that makes no2



referen
e to observers or measurements, while implying that observers, when makingmeasurements, will arrive at pre
isely the results that QFT is known to predi
t. Spe
ial
ases of formula (1) have been utilized before [3, 11, 31℄. Part of what we explain in thispaper is what this formula means, how to arrive at it, when it 
an be applied, and whatits 
onsequen
es are. Su
h a formulation of QFT takes up ideas from the seminal paperof John S. Bell [3℄, and we will often refer to theories similar to the model suggested byBell in [3℄ as \Bell-type QFTs". (What similar means here will be 
eshed out in the
ourse of this paper.)The aim of this paper is to de�ne a 
anoni
al Bell-type model for more or less anyregularized QFT. We assume a well-de�ned Hamiltonian as given; to a
hieve this, it isoften ne
essary to introdu
e 
ut-o�s. We shall assume this has been done where needed.In 
ases in whi
h one has to 
hoose between several possible position observables, forexample be
ause of issues related to the Newton{Wigner operator [26, 19℄, we shall alsoassume that a 
hoi
e has been made.The primary variables of Bell-type QFTs are the positions of the parti
les. Bell sug-gested a dynami
al law, governing the motion of the parti
les, in whi
h the HamiltonianH and the state ve
tor 	 determine the jump rates �. We point out how Bell's rates�t naturally into a more general s
heme summarized by (1). Sin
e these rates are in asense the smallest 
hoi
e possible (as explained in Se
tion 5), we 
all them the minimaljump rates. By 
onstru
tion, they preserve the j	j2 distribution. Most of this paper
on
erns the properties and mathemati
al foundations of minimal jump rates. In Bell-type QFTs, whi
h 
an be regarded as extensions of Bohmian me
hani
s, the sto
hasti
jumps often 
orrespond to the 
reation and annihilation of parti
les. We will dis
ussfurther aspe
ts of Bell-type QFTs and their 
onstru
tion in our forth
oming work [12℄.The paper is organized as follows. In Se
tion 2 we introdu
e all the main ideasand reasonings; a super�
ial reading should fo
us on this se
tion. Some examples ofpro
esses de�ned by minimal jump rates are presented in Se
tion 3. In Se
tion 4 weprovide 
onditions for the rigorous existen
e and �niteness of the minimal jump rates. InSe
tion 5 we explain in what sense the rates (1) are minimal. Se
tion 6 
on
erns furtherproperties of pro
esses de�ned by minimal jump rates. In Se
tion 7 we 
on
lude.2 The Jump Rate Formula2.1 Review of Bohmian Me
hani
s and Equivarian
eBohmian me
hani
s [4, 14, 16℄ is a non-relativisti
 theory aboutN point parti
les movingin 3-spa
e, a

ording to whi
h the 
on�guration Q = (Q1; : : : ;QN) evolves a

ordingto1 dQdt = v(Q) ; v = ~ Im 	�r		�	 : (2)1The masses mk of the parti
les have been absorbed in the Riemann metri
 g�� on 
on�gurationspa
e R3N , gia;jb = mi Æij Æab, i; j = 1 : : :N; a; b = 1; 2; 3, and r is the gradient asso
iated with g�� ,i.e., r = (m�11 rq1 ; : : : ;m�1N rqN ). 3



	 = 	t(q) is the wave fun
tion, whi
h evolves a

ording to the S
hr�odinger equationi~�	�t = H	 ; (3)with H = �~22 � + V (4)for spinless parti
les, with � = divr. For parti
les with spin, 	 takes values in theappropriate spin spa
e C k , V may be matrix valued, and numerator and denominatorof (2) have to be understood as involving inner produ
ts in spin spa
e. The se
retof the su

ess of Bohmian me
hani
s in yielding the predi
tions of standard quantumme
hani
s is the fa
t that the 
on�guration Qt is j	tj2-distributed in 
on�guration spa
eat all times t, provided that the initial 
on�guration Q0 (part of the Cau
hy data of thetheory) is so distributed. This property, 
alled equivarian
e in [14℄, suÆ
es for empiri
alagreement between any quantum theory (su
h as a QFT) and any version thereof withadditional (often 
alled \hidden") variables Q, provided the out
omes of all experimentsare registered or re
orded in these variables. That is why equivarian
e will be our guidefor obtaining the dynami
s of the parti
les.The equivarian
e of Bohmian me
hani
s follows immediately from 
omparing the
ontinuity equation for a probability distribution � asso
iated with (2),���t = � div (�v) ; (5)with the equation satis�ed by j	j2 whi
h follows from (3),�j	j2�t (q; t) = 2~ Im h	�(q; t) (H	)(q; t)i : (6)In fa
t, it follows from (4) that2~ Im h	�(q; t) (H	)(q; t)i = � div h~ Im	�(q; t)r	(q; t)i (7)so, re
alling (2), one obtains that�j	j2�t = � div (j	j2v) ; (8)and hen
e that if �t = j	tj2 at some time t then �t = j	tj2 for all times. Equivarian
eis an expression of the 
ompatibility between the S
hr�odinger evolution for the wavefun
tion and the law, su
h as (2), governing the motion of the a
tual 
on�guration. In[14℄, in whi
h we were 
on
erned only with the Bohmian dynami
s (2), we spoke of thedistribution j	j2 as being equivariant. Here we wish to �nd pro
esses for whi
h we haveequivarian
e, and we shall therefore speak of equivariant pro
esses and motions.4



2.2 Equivariant Markov Pro
essesThe study of example QFTs like that of [11℄ has lead us to the 
onsideration of Markovpro
esses as 
andidates for the equivariant motion of the 
on�guration Q for Hamilto-nians H more general than those of the form (4).Consider a Markov pro
ess Qt on 
on�guration spa
e. The transition probabilitiesare 
hara
terized by the ba
kward generator Lt, a (time-dependent) linear operatora
ting on fun
tions f on 
on�guration spa
e:Ltf(q) = ddsE (f(Qt+s)jQt = q) (9)where d=ds means the right derivative at s = 0 and E ( � j � ) denotes the 
onditionalexpe
tation. Equivalently, the transition probabilities are 
hara
terized by the forwardgenerator Lt (or, as we shall simply say, generator), whi
h is also a linear operator buta
ts on (signed) measures on the 
on�guration spa
e. Its de�ning property is that forevery pro
ess Qt with the given transition probabilities, the distribution �t of Qt evolvesa

ording to ��t�t = Lt�t : (10)Lt is the dual of Lt in the sense thatZ f(q)Lt�(dq) = Z Ltf(q) �(dq) : (11)We will use both Lt and Lt, whi
hever is more 
onvenient. We will en
ounter severalexamples of generators in the subsequent se
tions.We 
an easily extend the notion of equivarian
e from deterministi
 to Markov pro-
esses. Given the Markov transition probabilities, we say that the j	j2 distribution isequivariant if and only if for all times t and t0 with t < t0, a 
on�guration Qt with dis-tribution j	tj2 evolves, a

ording to the transition probabilities, into a 
on�guration Qt0with distribution j	t0j2. In this 
ase, we also simply say that the transition probabilitiesare equivariant, without expli
itly mentioning j	j2. Equivarian
e is equivalent toLtj	tj2 = �j	tj2�t (12)for all t. When (12) holds (for a �xed t) we also say that Lt is an equivariant generator(with respe
t to 	t and H). Note that this de�nition of equivarian
e agrees with theprevious meaning for deterministi
 pro
esses.We 
all a Markov pro
ess Q equivariant if and only if for every t the distribution �tof Qt equals j	tj2. For this to be the 
ase, equivariant transition probabilities are ne
-essary but not suÆ
ient. (While for a Markov pro
ess Q to have equivariant transitionprobabilities amounts to the property that if �t = j	tj2 for one time t, where �t denotesthe distribution of Qt, then �t0 = j	t0j2 for every t0 > t, a

ording to our de�nition ofan equivariant Markov pro
ess, in fa
t �t = j	tj2 for all t.) However, for equivarianttransition probabilities there exists a unique equivariant Markov pro
ess.5



The 
ru
ial idea for our 
onstru
tion of an equivariant Markov pro
ess is to notethat (6) is 
ompletely general, and to �nd a generator Lt su
h that the right hand sideof (6) 
an be read as the a
tion of L on � = j	j2,2~ Im	�H	 = L j	j2 : (13)We shall implement this idea beginning in Se
tion 2.4, after a review of jump pro
essesand some general 
onsiderations. But �rst we shall illustrate the idea with the familiar
ase of Bohmian me
hani
s.For H of the form (4), we have (7) and hen
e that2~ Im	�H	 = � div (~ Im	�r	) = � div �j	j2~ Im 	�r	j	j2 � : (14)Sin
e the generator of the (deterministi
) Markov pro
ess 
orresponding to the dynam-i
al system dQ=dt = v(Q) given by a velo
ity ve
tor �eld v isL � = � div (�v) ; (15)we may re
ognize the last term of (14) as L j	j2 with L the generator of the determin-isti
 pro
ess de�ned by (2). Thus, as is well known, Bohmian me
hani
s arises as thenatural equivariant pro
ess on 
on�guration spa
e asso
iated with H and 	.To be sure, Bohmian me
hani
s is not the only solution of (13) for H given by(4). Among the alternatives are Nelson's sto
hasti
 me
hani
s [25℄ and other velo
ityformulas [8℄. However, Bohmian me
hani
s is the most natural 
hoi
e, the one mostlikely to be relevant to physi
s. (It is, in fa
t, the 
anoni
al 
hoi
e, in the sense ofminimal pro
ess whi
h we shall explain in [12, Se
. 5.2℄.)An important 
lass of equivariant Markov pro
esses are equivariant jump pro
esses,whi
h we dis
uss in the next three se
tions. They arise naturally in QFT, as we shallexplain in Se
tion 2.6.2.3 Equivariant Jump Pro
essesLet Q denote the 
on�guration spa
e of the pro
ess, whatever sort of spa
e that maybe (ve
tor spa
e, latti
e, manifold, et
.); mathemati
ally speaking, we need that Q be ameasurable spa
e. A (pure) jump pro
ess is a Markov pro
ess on Q for whi
h the onlymotion that o

urs is via jumps. Given that Qt = q, the probability for a jump to q0,i.e., into the in�nitesimal volume dq0 about q0, by time t + dt is �t(dq0jq) dt, where � is
alled the jump rate. In this notation, � is a �nite measure in the �rst variable; �(Bjq)is the rate (the probability per unit time) of jumping to somewhere in the set B � Q,given that the present lo
ation is q. The overall jump rate is �(Qjq).It is often the 
ase that Q is equipped with a distinguished measure, whi
h we shalldenote by dq or dq0, slightly abusing notation. For example, if Q = Rd , dq may be theLebesgue measure, or if Q is a Riemannian manifold, dq may be the Riemannian volumeelement. When �( � jq) is absolutely 
ontinuous relative to the distinguished measure,6



we also write �(q0jq) dq0 instead of �(dq0jq). Similarly, we sometimes use the letter � fordenoting a measure and sometimes the density of a measure, �(dq) = �(q) dq.A jump �rst o

urs when a random waiting time T has elapsed, after the time t0 atwhi
h the pro
ess was started or at whi
h the most re
ent previous jump has o

urred.For purposes of simulating or 
onstru
ting the pro
ess, the destination q0 
an be 
hosenat the time of jumping, t0 + T , with probability distribution �t0+T (Qjq)�1 �t0+T ( � jq).In 
ase the overall jump rate is time-independent, T is exponentially distributed withmean �(Qjq)�1. When the rates are time-dependent|as they will typi
ally be in whatfollows|the waiting time remains su
h thatZ t0+Tt0 �t(Qjq) dtis exponentially distributed with mean 1, i.e., T be
omes exponential after a suitable(time-dependent) res
aling of time. For more details about jump pro
esses, see [6℄.The generator of a pure jump pro
ess 
an be expressed in terms of the rates:L��(dq) = Zq02Q ��(dqjq0)�(dq0)� �(dq0jq)�(dq)� ; (16)a \balan
e" or \master" equation expressing ��=�t as the gain due to jumps to dq minusthe loss due to jumps away from q.We shall say that jump rates � are equivariant if L� is an equivariant generator. Itis one of our goals in this paper to des
ribe a general s
heme for obtaining equivariantjump rates. In Se
tions 2.4 and 2.5 we will explain how this leads us to formula (1).2.4 Integral Operators Correspond to Jump Pro
essesWhat 
hara
terizes jump pro
esses versus 
ontinuous pro
esses is that some amountof probability that vanishes at q 2 Q 
an reappear in an entirely di�erent region of
on�guration spa
e, say at q0 2 Q. This is manifest in the equation for ��=�t, (16):the �rst term in the integrand is the probability in
rease due to arriving jumps, these
ond the de
rease due to departing jumps, and the integration over q0 re
e
ts that q0
an be anywhere in Q. This suggests that Hamiltonians for whi
h the expression (6)for �j	j2=�t is naturally an integral over dq0 
orrespond to pure jump pro
esses. Sowhen is the left hand side of (13) an integral over dq0? When H is an integral operator,i.e., when hqjHjq0i is not merely a formal symbol, but represents an integral kernel thatexists as a fun
tion or a measure and satis�es(H	)(q) = Z dq0 hqjHjq0i	(q0) : (17)(For the time being, think of Q as Rd and of wave fun
tions as 
omplex valued.) In this
ase, we should 
hoose the jump rates in su
h a way that, when � = j	j2,�(qjq0) �(q0)� �(q0jq) �(q) = 2~ Im	�(q) hqjHjq0i	(q0) ; (18)7



and this suggests, sin
e jump rates must be nonnegative (and the right hand side of (18)is anti-symmetri
), that�(qjq0) �(q0) = h2~ Im	�(q) hqjHjq0i	(q0)i+(where x+ denotes the positive part of x 2 R, that is, x+ is equal to x for x > 0 and iszero otherwise), or �(qjq0) = �(2=~) Im	�(q) hqjHjq0i	(q0)�+	�(q0)	(q0) : (19)These rates are an instan
e of what we 
all the minimal jump rates asso
iated with H(and 	). They are also an instan
e of formula (1), as will be
ome 
lear in the followingse
tion. The name 
omes from the fa
t that they are a
tually the minimal possiblevalues given (18), as is expressed by the inequality (96) and will be explained in detailin Se
tion 5. Minimality entails that at any time t, one of the transitions q1 ! q2 orq2 ! q1 is forbidden. We will 
all the pro
ess de�ned by the minimal jump rates theminimal jump pro
ess (asso
iated with H).In 
ontrast to jump pro
esses, 
ontinuous motion, as in Bohmian me
hani
s, 
or-responds to su
h Hamiltonians that the formal matrix elements hqjHjq0i are nonzeroonly in�nitesimally 
lose to the diagonal, and in parti
ular to di�erential opera-tors like the S
hr�odinger Hamiltonian (4), whi
h has matrix elements of the typeÆ00(q � q0) + V (q) Æ(q � q0).The minimal jump rates as given by (19) have some ni
e features. The possiblejumps for this pro
ess 
orrespond to the nonvanishing matrix elements of H (though,depending on the state 	, even some of the jump rates 
orresponding to nonvanishingmatrix elements of H might happen to vanish). Moreover, in their dependen
e on thestate 	, the jump rates � depend only \lo
ally" upon 	: the jump rate for a given jumpq0 ! q depends only on the values 	(q0) and 	(q) 
orresponding to the 
on�gurationslinked by that jump. Dis
retizing R3 to a latti
e "Z3, one 
an obtain Bohmian me
hani
sas a limit "! 0 of minimal jump pro
esses [31, 32℄, whereas greater-than-minimal jumprates lead to Nelson's sto
hasti
 me
hani
s [25℄ and similar di�usions; see [32, 17℄. Ifthe S
hr�odinger operator (4) is approximated in other ways by operators 
orrespondingto jump pro
esses, e.g., by H" = e�"HHe�"H, the minimal jump pro
esses presumablyalso 
onverge to Bohmian me
hani
s.We have reason to believe that there are lots of self-adjoint operators whi
h do not
orrespond to any sto
hasti
 pro
ess that 
an be regarded as de�ned, in any reasonablesense, by (19).2 But su
h operators seem never to o

ur in QFT. (The Klein{Gordonoperator pm2
4 � ~2
2� does seem to have a pro
ess, but it requires a more detaileddis
ussion whi
h will be provided in a forth
oming work [13℄.)2Consider, for example, H = p 
os p where p is the one-dimensional momentum operator �i~�=�q.Its formal kernel hqjH jq0i is the distribution � i2Æ0(q� q0� 1)� i2Æ0(q� q0+1), for whi
h (19) would nothave a meaning. From a sequen
e of smooth fun
tions 
onverging to this distribution, one 
an obtaina sequen
e of jump pro
esses with rates (19): the jumps o

ur very frequently, and are by amounts ofapproximately �1. A limiting pro
ess, however, does not exist.8



2.5 Minimal Jump RatesThe reasoning of the previous se
tion applies to a far more general setting than just 
on-sidered: to arbitrary 
on�guration spa
es Q and \generalized observables"|POVMs|de�ning, for our purposes, what the \position representation" is. We now present thismore general reasoning, whi
h leads to formula (1).The pro
ess we 
onstru
t relies on the following ingredients from QFT:1. A Hilbert spa
e H with s
alar produ
t h	j�i.2. A unitary one-parameter group Ut in H with Hamiltonian H,Ut = e� i~ tH ;so that in the S
hr�odinger pi
ture the state 	 evolves a

ording toi~d	tdt = H	t : (20)Ut 
ould be part of a representation of the Poin
ar�e group.3. A positive-operator-valued measure (POVM) P (dq) on Q a
ting on H , so thatthe probability that the system in the state 	 is lo
alized in dq at time t isPt(dq) = h	tjP (dq)j	ti : (21)Mathemati
ally, a POVM P on Q is a 
ountably additive set fun
tion (\measure"),de�ned on measurable subsets of Q, with values in the positive (bounded self-adjoint)operators on (a Hilbert spa
e) H , su
h that P (Q) is the identity operator.3 Physi
ally,for our purposes, P ( � ) represents the (generalized) position observable, with values inQ. The notion of POVM generalizes the more familiar situation of observables givenby a set of 
ommuting self-adjoint operators, 
orresponding, by means of the spe
traltheorem, to a proje
tion-valued measure (PVM): the 
ase where the positive operatorsare proje
tion operators. A typi
al example is the single Dira
 parti
le: the positionoperators on L2(R3 ; C 4) indu
e there a natural PVM P0( � ): for any Borel set B �R3 , P0(B) is the proje
tion to the subspa
e of fun
tions that vanish outside B, or,equivalently, P0(B)	(q) = 1B(q)	(q) with 1B the indi
ator fun
tion of the set B.Thus, h	jP0(dq)j	i = j	(q)j2dq. When one 
onsiders as Hilbert spa
e H only thesubspa
e of positive energy states, however, the lo
alization probability is given byP ( � ) = P+P0( � )I with P+ : L2(R3 ; C 4) ! H the proje
tion and I : H ! L2(R3 ; C 4)the in
lusion mapping. Sin
e P+ does not 
ommute with most of the operators P0(B),P ( � ) is no longer a PVM but a genuine POVM4 and 
onsequently does not 
orrespond to3The 
ountable additivity is to be understood as in the sense of the weak operator topology. Thisin fa
t implies that 
ountable additivity also holds in the strong topology.4This situation is indeed more general than it may seem. By a theorem of Naimark [7, p. 142℄, everyPOVM P ( � ) a
ting on H is of the form P ( � ) = P+P0( � )P+ where P0 is a PVM on a larger Hilbertspa
e, and P+ the proje
tion to H . 9



any position operator|although it remains true (for 	 in the positive energy subspa
e)that h	jP (dq)j	i = j	(q)j2dq. That is why in QFT, the position observable is indeedmore often a POVM than a PVM. POVMs are also relevant to photons [1, 22℄. In oneapproa
h, the photon wave fun
tion 	 : R3 ! C 3 is subje
t to the 
onstraint 
onditionr � 	 = �1	1 + �2	2 + �3	3 = 0. Thus, the physi
al Hilbert spa
e H is the (
losureof the) subspa
e of L2(R3 ; C 3) de�ned by this 
onstraint, and the natural PVM onL2(R3 ; C 3) gives rise, by proje
tion, to a POVM on H . So mu
h for POVMs. Let usget ba
k to the 
onstru
tion of a jump pro
ess.The goal is to spe
ify equivariant jump rates � = �	;H;P , i.e., su
h rates thatL�P = dPdt : (22)To this end, one may take the following steps:1. Note that dPt(dq)dt = 2~ Im h	tjP (dq)Hj	ti : (23)2. Insert the resolution of the identity I = Rq02Q P (dq0) and obtaindPt(dq)dt = Zq02Q Jt(dq; dq0) ; (24)where Jt(dq; dq0) = 2~ Im h	tjP (dq)HP (dq0)j	ti : (25)3. Observe that J is anti-symmetri
, J(dq0; dq) = �J(dq; dq0). Thus, sin
e x = x+ �(�x)+,J(dq; dq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+ � [(2=~) Im h	jP (dq0)HP (dq)j	i℄+ :4. Multiply and divide both terms by P( � ), obtaining thatZq02Q J(dq; dq0) = Zq02Q � [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i P(dq0)�� [(2=~) Im h	jP (dq0)HP (dq)j	i℄+h	jP (dq)j	i P(dq)� :5. By 
omparison with (16), re
ognize the right hand side of the above equation asL�P, with L� the generator of a Markov jump pro
ess with jump rates (1), whi
hwe 
all the minimal jump rates. We repeat the formula for 
onvenien
e:�(dqjq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i :10



Mathemati
ally, the right hand side of this formula as a fun
tion of q0 must be understoodas a density (Radon{Nikod�ym derivative) of one measure relative to another. The plussymbol denotes the positive part of a signed measure; it 
an also be understood asapplying the plus fun
tion, x+ = max(x; 0), to the density, if it exists, of the numerator.To sum up, we have argued that with H and 	 is naturally asso
iated a Markovjump pro
ess Qt whose marginal distributions 
oin
ide at all times by 
onstru
tion withthe quantum probability measure, �t( � ) = Pt( � ), so that Qt is an equivariant Markovpro
ess.In Se
tion 4, we establish pre
ise 
onditions on H;P , and 	 under whi
h the jumprates (1) are well-de�ned and �nite P-almost everywhere, and prove that in this 
asethe rates are equivariant, as suggested by the steps 1-5 above. It is perhaps worthremarking at this point that any H 
an be approximated by Hamiltonians Hn (namelyHilbert{S
hmidt operators) for whi
h the rates (1) are always (for all 	) well-de�nedand equivariant, as we shall prove in Se
tion 4.2.1.2.6 Bell-Type QFTA Bell-type QFT is about parti
les moving in physi
al 3-spa
e; their number and posi-tions are represented by a point Qt in 
on�guration spa
e Q, with Q de�ned as follows.Let �R3 denote the 
on�guration spa
e of a variable (but �nite) number of identi
alparti
les in R3 , i.e., the union of (R3)n modulo permutations,�R3 = 1[n=0(R3)n=Sn : (26)Q is the Cartesian produ
t of several 
opies of �R3 , one for ea
h spe
ies of parti
les.For a dis
ussion of the spa
e �R3 , and indeed of �S for any other measurable spa
e Splaying the role of physi
al spa
e, see [12, Se
. 2.8℄.A related spa
e, for whi
h we write �6=R3 , is the spa
e of all �nite subsets of R3 ;it is 
ontained in �R3 , after obvious identi�
ations. In fa
t, �6=R3 = �R3 n �, where� is the set of 
oin
iden
e 
on�gurations, i.e., those having two or more parti
les atthe same position. �6=R3 is the union of the spa
es Q(n)6= for n = 0; 1; 2; : : :, where Q(n)6=is the spa
e of subsets of R3 with n elements, a manifold of dimension 3n (see [10℄for a dis
ussion of Bohmian me
hani
s on this manifold). The set � of 
oin
iden
e
on�gurations has 
odimension 3 and thus 
an usually be ignored. We 
an thus repla
e�R3 by the somewhat simpler spa
e �6=R3 .Qt follows a Markov pro
ess in Q, whi
h is governed by a state ve
tor 	 in a suitableHilbert spa
e H . H is related to Q by means of a PVM or POVM P .The Hamiltonian of a QFT usually 
omes as a sum, su
h asH = H0 +HI (27)with H0 the free Hamiltonian and HI the intera
tion Hamiltonian. If several parti
lespe
ies are involved, H0 is itself a sum 
ontaining one free Hamiltonian for ea
h spe
ies.11



The left hand side of (13), whi
h should govern our 
hoi
e of the generator, is then alsoa sum, 2~ Im	�H0	+ 2~ Im	�HI	 = L j	j2 : (28)This opens the possibility of �nding a generator L by setting L = L0 +LI , providedwe have generators L0 and LI 
orresponding to H0 and HI in the sense that2~ Im	�H0	 = L0j	j2 (29a)2~ Im	�HI	 = LI j	j2 : (29b)This feature of (13) we 
all pro
ess additivity ; it is based on the fa
t that the left handside of (13) is linear in H.In a Bell-type QFT, the generatorL is of the formL = L0+LI, whereL0 is usuallythe generator of a deterministi
 pro
ess, usually de�ned by the Bohmian or Bohm{Dira
law of motion, see below, and LI is the generator of a pure jump pro
ess, whi
h is ourmain fo
us in this paper. The pro
ess generated by L is then given by deterministi
motion determined by L0, randomly interrupted by jumps at a rate determined by LI .We thus need to de�ne two equivariant pro
esses, one (the \free pro
ess") asso
iatedwith H0 and the other (the \intera
tion pro
ess") with HI. The intera
tion pro
ess isthe pure jump pro
ess with rates given by (1) with HI in pla
e of H. We now give ades
ription of the free pro
ess for the two most relevant free Hamiltonians: the se
ond-quantized S
hr�odinger operator and the se
ond-quantized Dira
 operator. We give amore general and more detailed dis
ussion of free pro
esses in [12℄; there we provide aformula, roughly analogous to (1), forL0 in terms of H0, and an algorithm for obtainingthe free pro
ess from a one-parti
le pro
ess that is roughly analogous to the \se
ondquantization" pro
edure for obtaining H0 from a one-parti
le Hamiltonian.The free pro
ess asso
iated with a se
ond-quantized S
hr�odinger operator arises fromBohmian me
hani
s. Fo
k spa
e H = F is a dire
t sumF = 1Mn=0F (n); (30)where F (n) is the n-parti
le Hilbert spa
e. F (n) is the subspa
e of symmetri
 (forbosons) or anti-symmetri
 (for fermions) fun
tions in L2(R3n ; (C 2s+1)
n) for spin-s par-ti
les. Thus, 	 2 F 
an be de
omposed into a sequen
e 	 = �	(0);	(1); : : : ;	(n); : : :�,the n-th member 	(n) being an n-parti
le wave fun
tion, the wave fun
tion represent-ing the n-parti
le se
tor of the quantum state ve
tor. The obvious way to obtain apro
ess on Q = �R3 is to let the 
on�guration Q(t), 
ontaining N = #Q(t) parti
les,move a

ording to the N -parti
le version of Bohm's law (2), guided by 	(N).5 This is5As de�ned, 
on�gurations are unordered, whereas we have written Bohm's law (2) for ordered
on�gurations. Thanks to the (anti-)symmetry of the wave fun
tion, however, all orderings will lead tothe same parti
le motion. For more about su
h 
onsiderations, see our forth
oming work [10℄.12



indeed an equivariant pro
ess sin
e H0 has a blo
k diagonal form with respe
t to thede
omposition (30), H0 = 1Mn=0 H(n)0 ;and H(n)0 is just a S
hr�odinger operator for n nonintera
ting parti
les, for whi
h, as wealready know, Bohmian me
hani
s is equivariant. We used a very similar pro
ess in [11℄(the only di�eren
e being that parti
les were numbered in [11℄).Similarly, if H0 is the se
ond quantized Dira
 operator, we let a 
on�guration Q withN parti
les move a

ording to the usual N -parti
le Bohm{Dira
 law [5, p. 274℄dQdt = 
	�(Q)�N 	(Q)	�(Q)	(Q) (31)where 
 denotes the speed of light and �N = (�(1); : : : ;�(N)) with �(k) a
ting on thespin index of the k-th parti
le.This 
ompletes the 
onstru
tion of the Bell-type QFT. An expli
it example of aBell-type pro
ess for a simple QFT is des
ribed in [11℄, whi
h we take up again inSe
tion 3.12 below to point out how its jump rates �t into the s
heme (1). Anothersu
h example, 
on
erning ele
tron{positron pair 
reation in an external ele
tromagneti
�eld, is des
ribed in [12, Se
. 3.3.℄.3 ExamplesIn this se
tion, we present various spe
ial 
ases of the jump rate formula (1) and examplesof its appli
ation. We also point out how the jump rates of the models in [11℄ and [3℄are 
ontained in (1).3.1 A First ExampleTo begin with, we 
onsider Q = Rd , H = L2(Rd ; C ), and P the natural PVM, whi
hmay be written P (dq) = jqihqj dq. Then, P(dq) = h	jP (dq)j	i = j	(q)j2dq, and thejump rate formula (1) reads�(qjq0) = [(2=~) Im	�(q) hqjHjq0i	(q0)℄+	�(q0)	(q0) (32a)= h2~ Im 	�(q) hqjHjq0i	�(q0) i+: (32b)Note that (32a) is the same expression as (19). As a simple example of an operator HIwith a kernel, 
onsider a 
onvolution operator, HI = V ?, where V may be 
omplex-valued and V (�q) = V �(q),(HI	)(q) = Z V (q � q0)	(q0) dq0 :13



The kernel is hqjHIjq0i = V (q � q0). Together with H0 = �~22 �, we obtain a babyexample of a Hamiltonian H = H0 +HI that goes beyond the form (4) of S
hr�odingeroperators, in parti
ular in that it is no longer lo
al in 
on�guration spa
e. Re
all thatH0 is asso
iated with the Bohmian motion (2). Combining the two generators on thebasis of pro
ess additivity, we obtain a pro
ess that is pie
ewise deterministi
, withjump rates (19) and Bohmian traje
tories between su

essive jumps.3.2 Wave Fun
tions with SpinLet us next be
ome a bit more general and 
onsider wave fun
tions with spin, i.e.,with values in C k . We have Q = Rd ;H = L2(Rd ; C k) and P the natural PVM, whi
hmay be written P (dq) = Pki=1 jq; iihq; ij dq, where i indexes the standard basis of C k .Another way of viewing P is to understand H as the tensor produ
t L2(Rd ; C ) 
 C k ,and P (dq) = P0(dq)
 ICk with P0 the natural PVM on L2(Rd ; C ) and ICk the identityoperator on C k . Using the notation hh�(q)j	(q)ii for the s
alar produ
t in C k , we 
anwrite P(dq) = h	jP (dq)j	i = hh	(q)j	(q)ii dq, and the jump rate formula (1) reads�(qjq0) = [(2=~) Im hh	(q)jK(q; q0)j	(q0)ii℄+hh	(q0)j	(q0)ii (33)with K(q; q0), the kernel of H, a k � k matrix. If we write ��(q)	(q) for hh�(q)j	(q)ii,as we did in (2) and (31), and hqjHjq0i for K(q; q0), (33) reads�(qjq0) = [(2=~) Im	�(q) hqjHjq0i	(q0)℄+	�(q0)	(q0) ;whi
h is (19) again, interpreted in a di�erent way.3.3 Ve
tor BundlesNext 
onsider, instead of the �xed value spa
e C k , a ve
tor bundle E over a RiemannianmanifoldQ, and 
ross-se
tions of E as wave fun
tions. In order to have a s
alar produ
tof wave fun
tions, we need that every bundle �ber Eq be equipped with a Hermitianinner produ
t hh � j � iiq. We 
onsider H = L2(E) (the spa
e of square-integrable 
ross-se
tions) and P the natural PVM. For any q and q0, K(q; q0) then has to be a C -linearmapping Eq0 ! Eq, so that the kernel of H is a 
ross-se
tion of the bundle Sq;q0 Eq
E�q0over Q�Q. (1) then reads�(qjq0) = [(2=~) Im hh	(q)jK(q; q0)	(q0)iiq℄+hh	(q0)j	(q0)iiq0 : (34)In the following we will use the notation ��(q)	(q) for hh�(q)j	(q)iiq and hqjHjq0i forK(q; q0), so that �(qjq0) = [(2=~) Im	�(q) hqjHjq0i	(q0)℄+	�(q0)	(q0) ;whi
h looks like (19) again. 14



3.4 Kernels of the Measure TypeThe kernel hqjHjq0i 
an be less regular than a fun
tion. Sin
e the numerator of (1) isa measure in q and q0, the formula still makes sense (for P the natural PVM) whenthe kernel hqjHjq0i is a 
omplex measure in q and q0. The mathemati
al details willbe dis
ussed in Se
tion 4.2. For instan
e, the kernel 
an have singularities like a Dira
Æ, but it 
annot have singularities worse than Æ, su
h as derivatives of Æ (as wouldarise from an operator whose position representation is a di�erential operator). It 
anhappen that the kernel is not a fun
tion but a measure even for a very well-behaved(even bounded) operator. For example, this is the 
ase for H a multipli
ation operator(i.e., a fun
tion V (q̂) of the position operator), hqjHjq0i = V (q) Æ(q� q0). Note, though,that multipli
ation operators 
orrespond to zero jump rates.A nontrivial example of an operator with Æ singularities in the kernel is H = 1 �
os(p=p0) where p = �i~�=�q is the momentum operator in one dimension, H =L2(R; C ), and p0 is a 
onstant. The dispersion relation E = 1�
os(p=p0) begins at p = 0like 12(p=p0)2 but deviates from the parabola for large p. In the position representation,H is the 
onvolution with ((2�)�1=2 times) the inverse Fourier transform of the fun
tion1� 
os(~k=p0), and thus hqjHjq0i = Æ(q� q0)� 12 Æ(q� q0+ ~p0 )� 12 Æ(q� q0� ~p0 ). In this
ase, (1) leads to�(qjq0) = [(�1=~) Im	�(q)	(q0)℄+	�(q0)	(q0) �Æ(q � q0 + ~p0 ) + Æ(q � q0 � ~p0 )�: (35)(Note that nonnegative fa
tors 
an be drawn out of the plus fun
tion.) This formulamay be viewed as 
ontained in (19) as well, in a formal sense. As a 
onsequen
e of (35),only jumps by an amount of � ~p0 
an o

ur in this 
ase.3.5 In�nite RatesThere also exist Markov pro
esses that perform in�nitely many jumps in every �nitetime interval (e.g., Glauber dynami
s for in�nitely many spins). These pro
esses, whi
hwe do not 
ount among the jump pro
esses, may appear pathologi
al, and we will notinvestigate them in this paper, but we note that some Hamiltonians may 
orrespond tosu
h pro
esses. They 
ould arise from jump rates �( � jq0) given by (1) that form not a�nite but merely a �-�nite measure, so that �(Qjq0) =1. Here is an (arti�
ial) exampleof �-�nite (but not �nite) rates, arising from an operator H that is even bounded.Let Q = R, H = L2(R) with P ( � ) the position PVM, and let H, in Fourierrepresentation, be multipli
ation by f(k) = p�=2 sign(k). H is bounded sin
e f is. fis the Fourier transform of i=x, understood as the distribution de�ned by the prin
ipalvalue integral. As a 
onsequen
e, H has, in position representation, the kernel hqjHjq0i =i=(q � q0). From (19) we obtain the jump rates�(qjq0) = 2~ 1	�(q0)	(q0)hRe	�(q)	(q0)q � q0 i+ ; (36)15



whi
h entails that �(Rjq0) = R �(qjq0) dq = 1 at least whenever 	 is 
ontinuous (andnonvanishing) at q0. Nonetheless, sin
e the rate for jumping anywhere outside the inter-val [q0� "; q0+ "℄ is �nite for every " > 0 and sin
e R q0+"q0�" jq� q0j�(qjq0) dq <1, a pro
esswith these rates should exist: among the jumps that the pro
ess would have to makeper unit time, the large ones would be few and the frequent ones would be tiny|tootiny to signi�
antly 
ontribute.3.6 Dis
rete Con�guration Spa
eNow 
onsider a dis
rete 
on�guration spa
e Q. Mathemati
ally, this means Q is a
ountable set. In this 
ase, measures are determined by their values on singletons fqg,and we 
an spe
ify all jump rates by spe
ifying the rate �(qjq0) for ea
h transition q0 ! q.(1) then reads �(qjq0) = �(2=~) Im h	jPfqgHPfq0gj	i�+h	jPfq0gj	i : (37)We begin with the parti
ularly simple 
ase that there is an orthonormal basis of Hlabeled by Q, fjqi : q 2 Qg, and P is the PVM 
orresponding to this basis, Pfqg =jqihqj. In this 
ase, the notation hqjHjq0i and the name \matrix element" 
an be takenliterally. The rates (1) then simplify to�(qjq0) = [(2=~) Im h	jqihqjHjq0ihq0j	i℄+h	jq0ihq0j	i (38a)= h2~ Im h	jqihqjHjq0ih	jq0i i+: (38b)Note that (38a) is the obvious dis
rete analogue of (19); in fa
t, one 
an regard (19) asanother way of writing (38a) in this 
ase.Consider now the more general 
ase that a basis of Hilbert spa
e is indexed by two\quantum numbers," the 
on�guration q and another index i. Then the POVM is givenby the PVM Pfqg = Pi jq; iihq; ij, the proje
tion onto the subspa
e asso
iated with q(whose dimension might depend on q); su
h a PVM may be 
alled \degenerate." Wehave P(q) = h	jPfqgj	i =Pi h	jq; iihq; ij	i, and (1) be
omes�(qjq0) = h 2~ Im Pi;i0 h	jq; iihq; ijHjq0; i0ihq0; i0j	ii+Pi0 h	jq0; i0ihq0; i0j	i : (39)We may also write (39) as (38a), understanding h	jqi and hq0j	i as multi-
omponent,hqjHjq0i as a matrix, and produ
ts as inner produ
ts. In 
ase that the dimension of thesubspa
e asso
iated with q is always k, independent of q, (39) is a dis
rete analogue ofthe rate formula (33) for spinor-valued wave fun
tions.Apart from serving as mathemati
al examples, dis
rete 
on�guration spa
es are rel-evant for several reasons: First, they provide parti
ularly simple 
ases of jump pro
esses16



with minimal rates that are easy to study. Se
ond, any numeri
al 
omputation is dis-
rete by nature. Third, one may 
onsider approximating or repla
ing the R3 that issupposed to model physi
al spa
e by a latti
e Z3; after all, latti
e approa
hes have oftenbeen employed in QFT, for various reasons. Moreover, Bell-type QFTs will usually haveas 
on�gurations the positions of a variable number of parti
les; so the 
on�gurationhas a 
ertain 
ontinuous aspe
t, the positions, and a 
ertain dis
rete aspe
t, the numberof parti
les. Sometimes one wishes to study simpli�ed models, and in this vein it maybe interesting to have only the parti
le number as a state variable, and thus the set ofnonnegative integers as 
on�guration spa
e.3.7 Bell's Pro
essThe model Bell spe
i�ed in [3℄ is a 
ase of a minimal jump pro
ess on a dis
rete set. \Forsimpli
ity," Bell 
onsiders a latti
e � instead of 
ontinuous 3-spa
e, and a Hamiltonianof a latti
e QFT. As a 
onsequen
e, the 
on�guration spa
e Q = �(�) is 
ountable.(Bell even makes Q �nite, but this is not relevant here. We also remark that a

ordingto Bell's formulation, even distinguishable parti
les have 
on�guration spa
e �(�).)Bell 
hooses as the 
on�guration the number of fermions at every latti
e site, ratherthan the total parti
le number (i.e., in our terminology he takes Pfqg to be the pro-je
tion to the joint eigenspa
e of the fermion number operators for all latti
e sites witheigenvalues the o

upation numbers 
orresponding to q 2 �(�)). He thus gives thefermioni
 degrees of freedom a status di�erent from the bosoni
 ones. That is to say,boson parti
les do not exist in Bell's model, despite the fa
t thatH =Hfermions
Hbosonsand the presen
e of bosoni
 terms in the Hamiltonian.Thus the PVM Pfqg = Pfermionsfqg 
 1bosons is \doubly" degenerate: the fermioni
o

upation number operators do not form a 
omplete set of 
ommuting operators, be-
ause of both the spin and the bosoni
 degrees of freedom. Di�erent spin states anddi�erent quantum states of the bosoni
 �elds are 
ompatible with the same fermiono

upation numbers. So a further index i is ne
essary to label a basis fjq; iig of H .The jump rates Bell pres
ribes are then (39), and are thus a spe
ial 
ase of (1). Weemphasize that here the index i does not merely label di�erent spin states, but statesof the quantized radiation as well.3.8 A Case of POVMConsider for H the spa
e of Dira
 wave fun
tions of positive energy. The POVM P ( � )we de�ned on it in Se
tion 2.5 is, as we have already remarked, not a PVM but a genuinePOVM and arises from the natural PVM P0( � ) on L2(R3 ; C 4) by P ( � ) = P+P0( � )I withP+ : L2(R3 ; C 4) ! H the proje
tion and I : H ! L2(R3 ; C 4) the in
lusion mapping.We 
an extend any given intera
tion HamiltonianH onH to an operator on L2(R3 ; C 4),Hext = IHP+. If Hext possesses a kernel hqjHextjq0i, then H 
orresponds to a jumppro
ess, and the rates (1) 
an be expressed in terms of this kernel, sin
e for 	 2 H ,h	jP (dq)HP (dq0)j	i = h	jP+P0(dq)IHP+P0(dq0)Ij	i = h	jP0(dq)HextP0(dq0)j	i =17



	�(q) hqjHextjq0i	(q0) dq dq0. We thus obtain�(qjq0) = �(2=~) Im	�(q) hqjHextjq0i	(q0)�+	�(q0)	(q0) : (40)This POVM is used in the pair 
reation model of [12, Se
. 3.3℄.3.9 Another Case of POVMLetH = L2(Rd) and let P0( � ) be the natural PVM. We obtain a POVM P by smearingout P0 with a pro�le fun
tion ' : Rd ! [0;1) with R '(q) dq = 1 and '(�q) = '(q),e.g., a Gaussian: P (B) = Zq2B dq Zq02Rd '(q0 � q)P0(dq0): (41)Whereas P0(B) is multipli
ation by 1B, P (B) is multipli
ation by ' ? 1B. It leads toP(dq) = (' ? j	j2)(q) dq.The jump rate formula (1) then yields�(qjq0) = �(2=~) Im R dq00 R dq000 '(q00 � q)	�(q00) hq00jHjq000i	(q000)'(q000 � q0)�+R dq00 '(q00 � q0)	�(q00)	(q00) ;i.e., the denominator gets smeared out with ', and the square bra
ket in the numeratorgets smeared out with ' in ea
h variable.3.10 Identi
al Parti
lesThe n-parti
le se
tor of the 
on�guration spa
e (without 
oin
iden
e 
on�gurations)of identi
al parti
les �6=(R3) is the manifold of n-point subsets of R3 ; let Q be thismanifold. The most 
ommon way of des
ribing the quantum state of n fermions is byan anti-symmetri
 (square-integrable) wave fun
tion 	 on Q̂ := R3n ; let H be thespa
e of su
h fun
tions. Whereas for bosons 	 
ould be viewed as a fun
tion on Q, forfermions 	 is not a fun
tion on Q.Nonetheless, the 
on�guration observable still 
orresponds to a PVM P on Q: forB � Q, we set P (B)	(q1; : : : ; qn) = 	(q1; : : : ; qn) if fq1; : : : ; qng 2 B and zero oth-erwise. In other words, P (B) is multipli
ation by the indi
ator fun
tion of ��1(B)where � is the obvious proje
tion mapping Q̂ n� ! Q, with � the set of 
oin
iden
e
on�gurations.To obtain other useful expressions for this PVM, we introdu
e the formal kets jq̂ifor q̂ 2 Q̂ (to be treated like elements of L2(Q̂)), the anti-symmetrization operator S(i.e., the proje
tion L2(Q̂) ! H ), the normalized anti-symmetrizer6 s = pn!S, and6The name means this: sin
e S is a proje
tion, S	 is usually not a unit ve
tor when 	 is. Whenever	 2 L2(Q̂) is supported by a fundamental domain of the permutation group, i.e., by a set 
 � Q̂ onwhi
h (the restri
tion of) � is a bije
tion to Q, the norm of S	 is 1=pn!, so that s	 is again a unitve
tor. 18



the formal kets jsq̂i := sjq̂i (to be treated like elements of H ). The jq̂i and jsq̂i arenormalized in the sense thathq̂jq̂0i = Æ(q̂ � q̂0) and hsq̂jsq̂0i = (�1)%(q̂;q̂0) Æ(q � q0);where q = �(q̂), q0 = �(q̂0), %(q̂; q̂0) is the permutation that 
arries q̂ into q̂0 given thatq = q0, and (�1)% is the sign of the permutation %. Now we 
an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq; (42)where the sum is over the n! ways of numbering the n points in q; the last two termsa
tually do not depend on the 
hoi
e of q̂ 2 ��1(q), the numbering of q.The probability distribution arising from this PVM isP(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n! j	(q̂)j2 dq = jhsq̂j	ij2 dq (43)with arbitrary q̂ 2 ��1(q).If an operator Ĥ on L2(Q̂) is permutation invariant,U�1% ĤU% = Ĥ for every permutation %; (44)where U% is the unitary operator on L2(Q̂) performing the permutation %, then Ĥ mapsanti-symmetri
 fun
tions to anti-symmetri
 fun
tions, and thus de�nes an operator Hon H . If Ĥ has a kernel hq̂jĤjq̂0i then the kernel is permutation invariant in the sensethat h%(q̂)jĤj%(q̂0)i = hq̂jĤjq̂0i 8%; (45)where %(q1; : : : ; qn) := (q%(1); : : : ; q%(n)), and H also possesses a kernel,hsq̂jHjsq̂0i = n! hq̂jSĤSjq̂0i = 1n!X%;%0 h%(q̂)jĤj%0(q̂0)i:In this 
ase (1) yields �(qjq0) = h 2~ Im P̂q;q̂0	�(q̂) hq̂jĤjq̂0i	(q̂0)i+P̂q0 	�(q̂0)	(q̂0) (46a)= h 2~ Im h	jsq̂ihsq̂jHjsq̂0ihsq̂0j	ii+h	jsq̂0ihsq̂0j	i (46b)where q̂ 2 ��1(q) and q̂0 2 ��1(q0), as running variables in (46a) and as arbitrary but�xed in (46b). 19



3.11 Another View of FermionsThere is a way of viewing fermion wave fun
tions as being de�ned on Q, rather thanR3n , by regarding them as 
ross-se
tions of a parti
ular 1-dimensional ve
tor bundleover Q. To this end, de�ne an n!-dimensional ve
tor bundle E byEq := Mq̂2��1(q) C : (47)Every fun
tion 	 : R3n ! C naturally gives rise to a 
ross-se
tion � of E, de�ned by�(q) := Mq̂2��1(q)	(q̂) : (48)The anti-symmetri
 fun
tions form a 1-dimensional subbundle of E (see also [10℄ fora dis
ussion of this bundle). The jump rate formula for ve
tor bundles (34) 
an beapplied to either the subbundle or E, depending on the way in whi
h the kernel of H isgiven. The kernel hq̂jĤjq̂0i above translates dire
tly into a kernel on Q�Q with valuesin Eq 
E�q0 , for whi
h the rate formula for bundles (34) is the same as the rate formulafor identi
al parti
les (46a) derived in the previous se
tion.Another alternative view of a fermion wave fun
tion is to regard it as a 
omplexdi�erential form of full rank, a 3n-form, on Q. (See, e.g., [10℄. This would not workif the dimension of physi
al spa
e were even.) Of 
ourse, the 
omplex 3n-forms arenothing but the se
tions of a 
ertain 1-dimensional bundle, usually denoted C 
 �3nQ,whi
h is equivalent to the subbundle of E 
onsidered in the previous paragraph, andwhi
h is 
ontained in the bundle C 
 �Q of Grassmann numbers over Q.3.12 A Simple QFTWe presented a simple example of a Bell-type QFT in [11℄, and we will now brie
y pointto the aspe
ts of this model that are relevant here. The model is based on one of thesimplest possible QFTs [30, p. 339℄.The relevant 
on�guration spa
e Q for a QFT (with a single parti
le spe
ies) isthe 
on�guration spa
e of a variable number of identi
al parti
les in R3 , whi
h is theset �(R3), or, ignoring the 
oin
iden
e 
on�gurations (as they are ex
eptions), the set�6=(R3) of all �nite subsets of R3 . The n-parti
le se
tor of this is a manifold of dimension3n; this 
on�guration spa
e is thus a union of (disjoint) manifolds of di�erent dimensions.The relevant 
on�guration spa
e for a theory with several parti
le spe
ies is the Cartesianprodu
t of several 
opies of �6=(R3). In the model of [11℄, there are two parti
le spe
ies,a fermion and a boson, and thus the 
on�guration spa
e isQ = �6=(R3)� �6=(R3): (49)We will denote 
on�gurations by q = (x; y) with x the 
on�guration of the fermions andy the 
on�guration of the bosons. 20



For simpli
ity, we repla
ed in [11℄ the se
tors of �6=(R3)��6=(R3), whi
h are manifolds,by ve
tor spa
es of the same dimension (by arti�
ially numbering the parti
les), andobtained the union Q̂ = 1[n=0(R3)n � 1[m=0(R3)m ; (50)with n the number of fermions and m the number of bosons. Here, however, we willuse (49) as the 
on�guration spa
e. In 
omparison with (50), this amounts to (merely)ignoring the numbering of the parti
les.H is the tensor produ
t of a fermion Fo
k spa
e and a boson Fo
k spa
e, and thus thesubspa
e of wave fun
tions in L2(Q̂) that are anti-symmetri
 in the fermion 
oordinatesand symmetri
 in the boson 
oordinates. Let S denote the appropriate symmetrizationoperator, i.e., the proje
tion operator L2(Q̂)!H , and s the normalized symmetrizers	(x1; : : : ;xn;y1; : : : ;ym) = pn!m!S	(x1; : : : ;xn;y1; : : : ;ym); (51)i.e., s = pN !M !S with N and M the fermion and boson number operators, whi
h
ommute with S and with ea
h other. As in Se
tion 3.10, we denote by � the proje
tionmapping Q̂ n � ! Q, �(x1; : : : ;xn;y1; : : : ;ym) = (fx1; : : : ;xng; fy1; : : : ;ymg). The
on�guration PVM P (B) on Q is multipli
ation by 1��1(B), whi
h 
an be understood asa
ting on H , though it is de�ned on L2(Q̂), sin
e it is permutation invariant and thusmaps H to itself. We utilize again the formal kets jq̂i where q̂ 2 Q̂ n� is a numbered
on�guration, for whi
h we also write q̂ = (x̂; ŷ) = (x1; : : : ;xn;y1; : : : ;ym). We also usethe symmetrized and normalized kets jsq̂i = sjq̂i. As in (42), we 
an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!m!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq (52)with arbitrary q̂ 2 ��1(q). For the probability distribution, we thus have, as in (43),P(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n!m! j	(q̂)j2 dq = jhsq̂j	ij2 dq (53)with arbitrary q̂ 2 ��1(q).The free Hamiltonian is the se
ond quantized S
hr�odinger operator (with zero poten-tial), asso
iated with the free pro
ess des
ribed in Se
tion 2.6. The intera
tion Hamil-tonian is de�ned by HI = Z d3x y(x) (ay'(x) + a'(x)) (x) (54)with  y(x) the 
reation operators (in position representation), a
ting on the fermionFo
k spa
e, and ay'(x) the 
reation operators (in position representation), a
ting on theboson Fo
k spa
e, regularized through 
onvolution with an L2 fun
tion ' : R3 ! R. HIhas a kernel; we will now obtain a formula for it, see (60) below. The jsq̂i are 
onne
tedto the 
reation operators a

ording tojsq̂i =  y(xn) � � � y(x1)ay(ym) � � �ay(y1)j0i ; (55)21



where j0i 2H denotes the va
uum state. A relevant fa
t is that the 
reation and annihi-lation operators  y;  ; ay and a possess kernels. Using the 
anoni
al (anti-)
ommutationrelations for  and a, one obtains from (55) the following formulas for the kernels of (r) and a(r), r 2 R3 :hsq̂j (r)jsq̂0i = Æn;n0�1 Æm;m0 Æ3n0(x [ r � x0) (�1)%((x̂;r);x̂0) Æ3m(y � y0) (56)hsq̂ja(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Æ3m0(y [ r � y0) (57)where (x; y) = q = �(q̂), and %(x̂; x̂0) denotes the permutation that 
arries x̂ to x̂0 giventhat x = x0. The 
orresponding formulas for  y and ay 
an be obtained by ex
hangingq̂ and q̂0 on the right hand sides of (56) and (57). For the smeared-out operator a'(r),we obtainhsq̂ja'(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)'(y0 � r) (58)We make use of the resolution of the identityI = ZQ dq jsq̂ihsq̂j : (59)Inserting (59) twi
e into (54) and exploiting (56) and (58), we �ndhsq̂jHI jsq̂0i = Æn;n0 Æm�1;m0 Æ3n(x� x0) (�1)%(x̂;x̂0)Xy2y Æ3m0(y n y � y0)Xx2x '(y � x)+ Æn;n0 Æm0�1;m Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)Xx2x '(y0 � x) :(60)This is another 
ase of a kernel 
ontaining Æ fun
tions (see Se
tion 3.4).By (52), the jump rates (1) are�(qjq0) = h 2~ Im h	jsq̂ihsq̂jHI jsq̂0ihsq̂0j	ii+h	jsq̂0ihsq̂0j	i : (61)More expli
itly, we obtain from (60) the rates�(qjq0) = Ænn0 Æm�1;m0 Æ3n(x� x0)Xy2y Æ3m0(y n y � y0) �
rea(q0 [ yjq0)+ Ænn0 Æm;m0�1 Æ3n(x� x0)Xy02y0 Æ3m(y � y0 n y0) �ann(q0 n y0jq0) (62)with �
rea(q0 [ yjq0) = 2pm0 + 1~ hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y � x0)	(q̂0)i+	�(q̂0)	(q̂0) (63a)�ann(q0 n y0jq0) = 2~pm0 hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y0 � x0)	(q̂0)i+	�(q̂0)	(q̂0) ; (63b)22



for arbitrary q̂0 2 ��1(q0) and q̂ 2 ��1(q) with q = (x0; y0[y) respe
tively q = (x0; y0ny0).(Note that a sum sign 
an be drawn out of the plus fun
tion if the terms have disjointsupports.)Equation (62) is worth looking at 
losely: One 
an read o� that the only possiblejumps are (x0; y0) ! (x0; y0 [ y), 
reation of a boson, and (x0; y0) ! (x0; y0 n y0), an-nihilation of a boson. In parti
ular, while one parti
le is 
reated or annihilated, theother parti
les do not move. The pro
ess that we 
onsidered in [11℄ 
onsists of pie
es ofBohmian traje
tories interrupted by jumps with rates (62); the pro
ess is thus an ex-ample of the jump rate formula (1), and an example of 
ombining jumps and Bohmianmotion by means of pro
ess additivity.The example shows how, for other QFTs, the jump rates (1) 
an be applied torelevant intera
tion Hamiltonians: If HI is, in the position representation, a polynomialin the 
reation and annihilation operators, then it possesses a kernel on the relevant
on�guration spa
e. A 
ut-o� (implemented here by smearing out the 
reation andannihilation operators) needs to be introdu
ed to make HI a well-de�ned operator onL2. If, in some QFT, the parti
le number operator is not 
onserved, jumps between these
tors of 
on�guration spa
e are inevitable for an equivariant pro
ess. And, indeed,when HI does not 
ommute with the parti
le number operator (as is usually the 
ase),jumps 
an o

ur that 
hange the number of parti
les. Often, HI 
ontains only o�-diagonal terms with respe
t to the parti
le number; then every jump will 
hange theparti
le number. This is pre
isely what happens in the model of [11℄.4 Existen
e ResultsThe 
on�guration spa
e Q is assumed in this paper to be a measurable spa
e, equippedwith a �-algebra A. Every set we 
onsider is assumed to belong to the appropriate�-algebra: A on Q or the produ
t �-algebra A
A on Q�Q. If F is a quadrati
 form,we will usually use the notation h�jF j	i rather than F (�;	). If P (B)	 and P (C)	lie in the form domain of H, we write h	jP (B)HP (C)j	i for hP (B)	jHjP (C)	i.4.1 Condition for Finite RatesFor the argument of Se
tion 2.5 to work, it is ne
essary that (a) the bra
ket in thenumerator of (1) exist as a �nite signed measure on Q�Q, and (b) the Radon{Nikod�ymderivative of the numerator with respe
t to the denominator also be well de�ned. It turnsout that, given (a), (b) is straightforward. However, 
ontrary to what a super�
ialinspe
tion might suggest, (a) is problemati
al even when H is bounded. To see this,
onsider the 
ase H = L2(R) with the natural PVM (
orresponding to position) onQ = R, and with H the sum of the Fourier transform on H and its adjoint, given bythe kernel hqjHjq0i =r 2� 
os(qq0) :23



Then, for 	 real, the bra
ket in (1) would have to be understood as proportional to	(q) 
os(qq0)	(q0) ;and 	 2 H 
ould be so 
hosen that this does not de�ne a signed measure on R � Rbe
ause both its positive and negative part have in�nite total weight. In fa
t, 	 
anbe so 
hosen that the resulting �( � jq0) is an in�nite measure, �(Qjq0) = 1, for all q0,and thus does not de�ne a jump pro
ess. Note, however, that for 	 2 L1(R) \ L2(R),�( � jq0) is �nite for this H.The following theorem provides a 
ondition under whi
h the argument sket
hed inSe
tion 2.5 for the equivarian
e of the jump rates �, steps 1{5, 
an be made rigorous.Theorem 1 Let H be a Hilbert spa
e, 	 2H with k	k = 1, H a self-adjoint operatoron H , Q a standard Borel spa
e,7 and P a POVM on Q a
ting on H . Suppose thatfor all B � Q, P (B)	 lies in the form domain of H, and there exists a 
omplex measure� on Q�Q su
h that for all B;C � Q,�(B � C) = h	jP (B)HP (C)j	i : (64)Then the jump rates (1) are well-de�ned and �nite for P-almost every q0, and they areequivariant if, in addition, 	 2 domain(H).Proof. We �rst show that under the hypotheses of the theorem, the jump rates (1) arewell-de�ned and �nite. Then we show that they are equivariant.To begin with, the measure � whose existen
e was assumed in the theorem is 
on-jugate symmetri
 under the transposition mapping (q; q0)tr = (q0; q) on Q � Q, i.e.,�(Atr) = �(A)�. To see this, note that a 
omplex measure on Q � Q is uniquelydetermined by its values on produ
t sets. �( � tr) and �( � )� must thus be the samemeasure sin
e, by the self-adjointness of H, for A = B � C, �(Atr) = �(C � B) (64)=h	jP (C)HP (B)j	i = h	jP (B)HP (C)j	i� = �(A)�.We de�ne a signed measure J on Q�Q by J = 2~ Im�. Let J+ be the positive part ofJ (de�ned by its Hahn{Jordan de
omposition, J = J+� J�, see e.g. [21, p. 120℄). Sin
e� is a 
omplex measure (and thus assumes only �nite values), J has �nite positive andnegative parts. Sin
e � is 
onjugate symmetri
, J is anti-symmetri
.We now show that for every B � Q, the measure J(B � � ) on Q is absolutely
ontinuous with respe
t to P( � ), the \j	j2" measure de�ned in (21). If C is a P-null set,that is h	jP (C)j	i = 0, then P (C)j	i = 0: if P (C) is a proje
tion, this is immediate,and if P (C) is just any positive operator, it follows from the spe
tral theorem|any
omponent of 	 orthogonal to the eigenspa
e of P (C) with eigenvalue zero would lie inthe positive spe
tral subspa
e of P (C) and give a positive 
ontribution to h	jP (C)j	i.7A standard Borel spa
e is a measurable spa
e isomorphi
 to a 
omplete separable metri
 spa
e withits Borel �-algebra. Basi
ally all spa
es that arise in pra
ti
e are in fa
t standard Borel spa
es, andso are in parti
ular all spa
es that we have in mind for Q (whi
h are 
ountable unions of (separable)Riemannian manifolds). Thus, the 
ondition of being a standard Borel spa
e is not mu
h of a restri
tion.24



From P (C)	 = 0 it follows that h	jP (B)HP (C)j	i = 0, so that J(B � C) = 0, whi
his what we wanted to show.Next we show that for every B � Q, the measure J+(B� � ) is absolutely 
ontinuouswith respe
t to P( � ). Suppose again that P(C) = 0. We have thatJ+(B � C) � J+(B � C) + J�(B � C) == jJj(B� C) = supXi;j jJ(Bi� Cj)jwhere the sup is taken over all �nite partitions SiBi = B of B and Sj Cj = C of C.Now ea
h J(Bi � Cj) = 0 be
ause J(Bi � � ) � P( � ) and P(Cj) � P(C) = 0. ThusJ+(B � C) = 0.It follows from the Radon{Nikod�ym theorem that for every B, J+(B � � ) possessesa density with respe
t to P( � ). The density is unique up to 
hanges on P-null sets,and one version of this density is what we will take as �(Bjq0). We have to make sure,though, that � is a measure in its dependen
e on B, and from the Radon{Nikod�ymtheorem alone we do not obtain additivity in B. For this reason, we utilize a standardtheorem [27, p. 147℄ on the existen
e of regular 
onditional probabilities, asserting thatif Q (and thus also Q�Q) is a standard Borel spa
e, then every probability measure �on Q �Q possesses regular 
onditional probabilities, i.e., a fun
tion p( � jq0) on Q withvalues in the probability measures on Q � Q su
h that for almost every q0, p( � jq0) is
on
entrated on the set Q � fq0g � Q � Q, and for every A � Q � Q, p(Ajq0) is ameasurable fun
tion of q0 withZq02Q p(Ajq0) �(Q� dq0) = �(A): (65)We set �( � ) = J+( � )=J+(Q�Q) and de�ne � as the 
orresponding regular 
onditionalprobability times a fa
tor that takes into a

ount that (1) involves the density of J+relative to P (rather than to �(Q� � ) or J+(Q� � )):�(Bjq0) := p(B �Qjq0) dJ+(Q� � )dP( � ) (q0) : (66)The last fa
tor exists be
ause we have shown above that J+(Q� � )� P( � ). �( � jq0) isa (�nite) measure be
ause p( � jq0) is. For �xed B, �(Bjq0) as a fun
tion of q0 is a versionof the Radon{Nikod�ym derivative dJ+(B � � )=dP( � ) be
auseZq02C �(Bjq0)P(dq0) (66)= Zq02C p(B �Qjq0) dJ+(Q� � )dP( � ) (q0)P(dq0) == J+(Q�Q) Zq02Q p(B � Cjq0) J+(Q� dq0)J+(Q�Q) (65)= J+(B � C):25



A

ording to the theorem on regular 
onditional probabilities that we used, � is de�neduniquely up to 
hanges on a P-null set of q0s.Now we 
he
k the equivarian
e of the jump rates �: for any B � Q,L�P(B) (16)= Zq02Q �(Bjq0)P(dq0)� Zq2B �(Qjq)P(dq) = J+(B �Q)� J+(Q� B) ;using that � is a version of the Radon{Nikod�ym derivative of J+ relative to P. Sin
e Jis anti-symmetri
 with respe
t to the permutation mapping (q; q0) 7! (q0; q) on Q�Q,we have that J+(C � B) = J�(B � C), and thereforeL�P(B) = J+(B �Q)� J�(B �Q) = J(B �Q) == 2~ Im�(B �Q) (64)= 2~ Im h	jP (B)Hj	i:It remains to be shown that Pt(B) = he�iHt=~	jP (B) e�iHt=~	i is di�erentiable withrespe
t to time at t = 0 and has derivativedPt(B)dt ���t=0 = 2~ Im h	jP (B)Hj	i: (67)If 	 lies in the domain of H, 	t = e�iHt=~	 is di�erentiable with respe
t to t at t = 0[28, p. 265℄ and has derivative _	 = � i~H	. Hen
e1t�h	tjP (B)	ti � h	0jP (B)	0i�=h	tjP (B)j(	t �	0)= t i+ h(	t � 	0)= t jP (B)	0i
onverges, as t! 0, toh	jP (B) _	i+ h _	jP (B)	i = � i~h	jP (B)H	i+ i~hH	jP (B)	i = 2~Imh	jP (B)H	i:It now follows that L�P = dP=dt, whi
h 
ompletes the proof. �We remark that if, as supposed in Theorem 1, the measure � exists, it is also unique.This follows from the fa
t, whi
h we have already mentioned, that a (
omplex) measureon Q�Q is uniquely determined by its values on the produ
t sets B � C.Another remark 
on
erns how the (existen
e) assumption of Theorem 1 
an be vi-olated. Sin
e the example Hamiltonian of Se
tion 3.5 leads to in�nite jump rates, italso provides an example for whi
h the assumption of Theorem 1 is violated, in fa
t forevery nonzero 	 2 H . To see this dire
tly, note that, while P (B)	 lies indeed in theform domain of H (whi
h is H sin
e H is bounded),h	jP (B)HP (C)j	i = i ZB dq P-ZC dq0 	�(q)	(q0)q � q026



where P- R denotes a prin
ipal value integral. For B \ C = ;, P- R 
an be repla
ed bya Lebesgue integral. This, together with (64), would leave for � only one possibility(up to addition of a 
omplex measure 
on
entrated on the diagonal f(q; q) : q 2 Qg),namely �(dq � dq0) = i	�(q)	(q0)q � q0 dq dq0:But this is not a 
omplex measure for any 	 sin
e i	�(q)	(q0)=(q� q0) is not absolutelyintegrable. This example also ni
ely illustrates the di�eren
e between a 
omplex bi-measure �(B;C), i.e., a 
omplex measure in ea
h variable, and a 
omplex measure �( � )on Q � Q: h	jP (B)HP (C)j	i is here a 
omplex bi-measure and thus de�nes a �nite-valued additive set fun
tion on the family of �nite unions of produ
t sets B�C � Q�Q,whi
h, however, 
annot be suitably extended to all sets A � Q�Q. The essential reasonis that the positive and the negative singularity in 1=(q � q0) 
an
el (thanks to the useof prin
ipal value integrals) for every produ
t set but do not for some nonprodu
t setssu
h as f(q; q0) : q > q0g. In 
ontrast, a (�nite) non-negative bi-measure 
an always beextended to a (�nite) measure on the produ
t spa
e; see Se
tion 4.4.A related remark on the need for the existen
e assumption of Theorem 1. One mightwell have imagined that the 
omplex measure � on Q�Q, extending (64) from produ
tsets, 
an always be 
onstru
ted, at least when H is bounded, as the quantum expe
tedvalue of the bounded-operator-valued measure (BOVM) P �H P on Q � Q, the \H-twisted produ
t measure" P (dq)HP (dq0) of the POVM P with itself|or, equivalently,the produ
t of the POVM P (dq) and the BOVM HP (dq0). Indeed, the nonexisten
eof � for the Hamiltonian in the prin
ipal-value example that we have just dis
ussed, aswell as for the Hamiltonian in the Fourier-transform example at the beginning of thisse
tion, implies that P �H P does not exist as a BOVM in these 
ases; if it did, so would�, for all 	. The Fourier-transform example 
an also easily be adapted to show that theprodu
t P1 � P2 of two POVMs need not exist as a BOVM, and in fa
t does not existwhen P1 and P2 are the most familiar PVMs for quantum me
hani
s, 
orrespondingrespe
tively to position and momentum. There is, however, an important spe
ial 
asefor whi
h the produ
t P1 � P2 of two POVMs does exist, in fa
t as a POVM, namelywhen P1 and P2 mutually 
ommute, i.e., when [P1(B); P2(C)℄ = 0 for all B and C. Thiswill be dis
ussed in Se
tion 4.4.4.2 Integral OperatorsIn this se
tion we make pre
ise the statement that Hamiltonians with (suÆ
iently reg-ular) kernels lead to �nite jump rates. In parti
ular, we spe
ify a set of wave fun
tions,depending on H; that lead to �nite jump rates.4.2.1 Hilbert{S
hmidt OperatorsWe begin with the simple 
ase in whi
h 	 is a 
omplex-valued wave fun
tion on Q, sothat the natural 
on�guration POVM P ( � ) is a \nondegenerate" PVM. What �rst 
omes27



to mind as a 
lass of Hamiltonians possessing a kernel is the 
lass of Hilbert{S
hmidtoperators; for these, the kernels are in fa
t square-integrable fun
tions on Q�Q.Corollary 1 Let Q be a standard Borel spa
e, H = L2(Q; C ; dq) with respe
t to a �-�nite nonnegative measure on Q that we simply denote dq, let 	 2H with k	k = 1, letH be a self-adjoint operator on H , and let P be the natural PVM on Q (multipli
ationby indi
ator fun
tions) a
ting on L2(Q; C ; dq). Suppose that H is a Hilbert{S
hmidtoperator. Then, by virtue of Theorem 1, the jump rates given by (1) are well-de�nedand �nite P-almost everywhere, and equivariant. In fa
t, the jump rates are given by(19) with hqjHjq0i the kernel fun
tion of H.Proof. Sin
e H is a Hilbert{S
hmidt operator, it possesses an integral kernel K(q; q0)that is a square-integrable fun
tion [28, p. 210℄, i.e., there is a fun
tion K 2 L2(Q �Q; C ; dq dq0) su
h that for all � 2H ,H�(q) = ZQ K(q; q0) �(q0) dq0 :Thus, for all �;�0 2H ,h�jHj�0i = ZQ dq ZQ dq0��(q)K(q; q0) �0(q0) =(by Fubini's theorem, be
ause the integrand is absolutely integrable)= ZQ�Q dq dq0��(q)K(q; q0) �0(q0):It follows thath	jP (B)HP (C)j	i = ZQ�Q dq dq0 1B(q)	�(q)K(q; q0) 1C(q0)	(q0) = (68a)= ZB�C dq dq0	�(q)K(q; q0)	(q0): (68b)Note that sin
e H is bounded, its form domain is H and thus 
ontains all P (B)	. ForA � Q�Q, de�ne �(A) = ZA 	�(q)K(q; q0)	(q0) dq dq0 :Sin
e ZQ�Q j	(q)j jK(q; q0)j j	(q0)j dq dq0 <1 ;28



�(A) is always �nite, and thus a 
omplex measure. (68) entails that (64) is satis�ed, sothat Theorem 1 applies. �We have already remarked that every Hamiltonian H 
an be approximated byHilbert{S
hmidt operators Hn. In this 
ontext, it is interesting to note that if H isitself a Hilbert{S
hmidt operator, and if the Hn 
onverge to H in the Hilbert{S
hmidtnorm, then the rates �	;Hn 
onverge to �	;H in the sense thatZQ�Q ���	;Hn(dqjq0)� �	;H(dqjq0)�� j	(q0)j2 dq0 n!1�! 0:4.2.2 Complex-Valued Wave Fun
tionsIn addition to the 
ase of Hilbert{S
hmidt operators, Theorem 1 applies in many other
ases, in whi
h the kernel K(q; q0) is not square-integrable, nor even a fun
tion butinstead a measure K(dq�dq0). More pre
isely, K(dq�dq0) should be a �-�nite 
omplexmeasure, i.e., a produ
t of a 
omplex-valued measurable fun
tion Q � Q ! C and a�-�nite nonnegative measure on Q � Q. (Note that this terminology involves a slightabuse of language sin
e a �-�nite 
omplex measure need not be a 
omplex measure.)The 
omplex measure � assumed to exist in Theorem 1 is then�(dq � dq0) = 	�(q)K(dq � dq0)	(q0) : (69)This equation suggests that the minimal amount of regularity that we need to assume onthe kernel of H is that it be a �-�nite 
omplex measure. Otherwise, there would be nohope that (69) 
ould be a 
omplex measure for a generi
 wave fun
tion 	, that vanishesat most on a set of measure 0. The exa
t 
onditions that we need for applying Theorem1 to a Hamiltonian H with kernel K(dq � dq0) are listed in the following statement:Corollary 2 Let Q be a standard Borel spa
e, H = L2(Q; C ; dq) with respe
t to a �-�nite nonnegative measure on Q that we simply denote dq, let 	 2 H with k	k = 1,let H be a self-adjoint operator on H , and let P be the natural PVM on Q a
tingon L2(Q; C ; dq). Suppose that H has a kernel K(dq � dq0) for 	; i.e., suppose thatK(dq� dq0) is a �-�nite 
omplex measure on Q�Q, and that some everywhere-de�nedversion 	 : Q ! C of the almost-everywhere-de�ned fun
tion 	 2 L2(Q; C ; dq) satis�esZQ�Q j	(q)j jK(dq � dq0)j j	(q0)j <1 (70a)P (B)	 2 form domain(H) 8B � Q (70b)h	jP (B)HP (C)j	i = ZB�C 	�(q)K(dq � dq0)	(q0) 8B;C � Q: (70
)Then, by virtue of Theorem 1, the jump rates given by (1) are well-de�ned and �niteP-almost everywhere, and they are equivariant if 	 2 domain(H).29



Proof. Set �(A) = ZA 	�(q)K(dq � dq0)	(q0) : (71)The integral exists be
ause of (70a) and de�nes a 
omplex measure �, whi
h satis�es(64) be
ause of (70
). �We remark that the 
hoi
e of the everywhere-de�ned version 	 : Q ! C of thealmost-everywhere-de�ned fun
tion 	 2 L2(Q; C ; dq) does not a�e
t the jump rates,sin
e the measure � is uniquely determined by its values on produ
t sets, whi
h aregiven in (64) in terms of the almost-everywhere-de�ned fun
tion 	 2H .The reader may be surprised that our notion of H having a kernel K seems todepend on 	, whereas one may expe
t that H either has a kernel or does not, inde-pendent of 	. The reason for our putting it this way is that domain questions are verydeli
ate for su
h general kernels, and it is a tri
ky question for whi
h 	's the expres-sion h	jP (B)HP (C)j	i is a
tually given by the integral (70
). A dis
ussion of domainquestions would only obs
ure what is a
tually relevant for having a situation in whi
hTheorem 1 applies, whi
h is (70). Note, though, that if H has kernel K(dq � dq0) for	, then it has kernel K also for every 	0 from the subspa
e spanned by P (B)	 for allB � Q.The 
onditions (70) be
ome very transparent in the following 
ase: Suppose H is aself-adjoint extension of the integral operator K arising from a kernel K(q; dq0) that isa �-�nite 
omplex measure on Q for every q 2 Q and is su
h that for every B � Q,K(q; B) is a measurable fun
tion of q. K is de�ned byK�(q) = Zq02Q K(q; dq0) �(q0) (72)on the domain D 
ontaining the �'s satisfyingZq02Q jK(q; dq0)j j�(q0)j <1 for almost every q (73)and ZQ K(q; dq0) �(q0) is an L2 fun
tion of q: (74)That H is an extension of K means that the domain of H 
ontains D , and H� = K�for all � 2 D . Then, for a 	 2 D satisfyingZq02B K(q; dq0)	(q0) 2 L2(Q; C ; dq) 8B � Q (75)and ZQ�Q j	(q)j jK(q; dq0)j j	(q0)j dq <1; (76)30




onditions (70) are satis�ed with K(dq � dq0) = K(q; dq0) dq, and thus Corollary 2applies. The jump rates (1) 
an still be written as in (19), understood as a measure inq. Corollary 2 de�nes a set of good 	's, for whi
h the jump rates are �nite, for theexamples of Se
tions 3.1, 3.4, and for (38a).4.2.3 Ve
tor-Valued Wave Fun
tionsWe now 
onsider wave fun
tions with spin, i.e., with values in C k . In this 
ase, let	�(q) denote, as before, the adjoint spinor, and ��(q)	(q) the inner produ
t in C k .Corollary 2 remains true if we repla
e C by C k everywhere and understand K(dq�dq0) asmatrix-valued, i.e., as the produ
t of a matrix-valued fun
tion and a �-�nite nonnegativemeasure. The proof goes through without 
hanges.Let us now be a bit more general and allow the value spa
e of the wave fun
tion tovary with q; we reformulate Corollary 2 for wave fun
tions that are 
ross-se
tions of ave
tor bundle E over Q. The kernel is then matrix valued in the sense that hqjHjq0i isa linear mapping Eq0 ! Eq.Corollary 3 Let Q = SnQ(n) be an (at most) 
ountable union of (separable) Rieman-nian manifolds, and E = SnE(n) the union of ve
tor bundles E(n) over Q(n), wherethe �ber spa
es Eq are endowed with Hermitian inner produ
ts, whi
h we denote by��(q)	(q). Let H = L2(E; dq) be the spa
e of square-integrable (with respe
t to theRiemannian volume measure that we denote dq) 
ross-se
tions of E, let 	 2 H withk	k = 1, let H be a self-adjoint operator on H , and let P be the natural PVM on Qa
ting on H . Suppose that K(dq � dq0), the produ
t of a �-�nite nonnegative measureon Q�Q and a se
tion of the bundle Sq;q0 Eq
E�q0 over Q�Q, is a kernel of H for 	;i.e., suppose that some everywhere-de�ned version 	 of the almost-everywhere-de�ned
ross-se
tion 	 2 L2(E; dq) satis�es (70a)-(70
) (where the integrand on the right handside of (70
) should now be understood as involving the Hermitian inner produ
t of Eq,and (70a) as involving the operator norm of K(dq � dq0)). Then, by virtue of Theorem1, the jump rates given by (1) are well-de�ned and �nite P-almost everywhere, and theyare equivariant if 	 2 domain(H).The proof of Corollary 2 applies here without 
hanges. (19) remains valid if suitablyinterpreted. Corollary 3 de�nes a set of good 	's, for whi
h the jump rates are �nite,for the examples of Se
tions 3.2, 3.3, 3.10, 3.12, and for (39) in 
ase the sum over i isalways �nite.4.2.4 POVMsWe now pro
eed to the fully general 
ase of an arbitrary POVM. First, we provide twoimportant mathemati
al tools for dealing with POVMs.� Any POVM 
orresponds to a PVM on a larger Hilbert spa
e, a

ording to thefollowing theorem of Naimark [7, p. 142℄: If P is a POVM on the standard Borel31



spa
e Q a
ting on the Hilbert spa
e H , then there is a Hilbert spa
e Hext � Hand a PVM Pext on Q a
ting on Hext su
h that P ( � ) = P+Pext( � )I with P+ :Hext !H the proje
tion and I :H !Hext the in
lusion, and Hext is the 
losedlinear hull of fPext(B)H : B � Qg. The pair Hext; Pext is unique in the sensethat if H 0ext, P 0ext is another su
h pair then there is a unitary isomorphism betweenHext and H 0ext �xing H and 
arrying Pext to P 0ext.We 
all Hext and Pext the Naimark extension of H and P . We re
all that forthe Hilbert spa
e of positive energy solutions of the Dira
 equation and the 
orre-sponding POVM introdu
ed earlier, the Naimark extension is given by L2(R3 ; C 4)and its natural PVM; this example indi
ates that the Naimark extension may be,in pra
ti
e, something natural to 
onsider.� In Corollaries 2 and 3, we were 
onsidering, for H and P , L2 spa
es with theirnatural PVMs. But when we are given an arbitrary PVM on a Hilbert spa
e, thesituation is not genuinely more general, sin
e it 
an be viewed as the natural PVMof an L2 spa
e. We 
all this the naturalization of the PVM. It is based on thefollowing version of the spe
tral theorem (whi
h 
an be obtained from the repre-sentation theory of abelian operator algebras, see, e.g., [9℄): If P is a PVM on thestandard Borel spa
e Q a
ting on the Hilbert spa
e H , then there is a measurable�eld of Hilbert spa
es8 Hq over Q, a �-�nite nonnegative measure dq on Q, and aunitary isomorphism U :H ! R �Hq dq to the dire
t integral9 of Hq that 
arriesP to the natural PVM on Q a
ting on R �Hq dq. The naturalization is uniquein the sense that if fH 0q g; (dq)0; U 0 is another su
h triple, then there is a measur-able fun
tion f : Q ! (0;1) su
h that (dq)0 = f(q) dq and a measurable �eld ofunitary isomorphisms Uq :Hq !H 0q su
h that U 0	(q) = f(q)�1=2UqU	(q).A naturalized PVM is similar to a ve
tor bundle in that with every q 2 Q thereis asso
iated a value spa
e Hq, whi
h however may be in�nite-dimensional, and	 2 H 
an be understood as a fun
tion on Q su
h that 	(q) 2 Hq. Of 
ourse,instead of the di�erentiable stru
ture of a ve
tor bundle the naturalization of aPVM leads merely to a measurable stru
ture.Thus, the situation with a general POVM is not mu
h di�erent from the situationwith a ve
tor bundle, as treated in Corollary 3.For Hilbert{S
hmidt operators, the kernel is so well-behaved that no further 
ondi-tions on 	 are ne
essary:8A measurable �eld of Hilbert spa
es on Q is a family of Hilbert spa
es Hq with s
alar produ
tshh � j � iiq , endowed with a measurable stru
ture that 
an be de�ned by spe
ifying a family of 
ross-se
tions �i(q) su
h that for all i; i0 the fun
tions q 7! hh�i(q)j�i0 (q)iiq are measurable and for every qthe family �i(q) is total in Hq [18℄.9This is the Hilbert spa
e of square-integrable measurable 
ross-se
tions of the �eld fHqg, i.e., 
ross-se
tions �(q) su
h that all fun
tions q 7! hh�i(q)j�(q)iiq are measurable and R hh�(q)j�(q)iiq dq < 1[18℄. 32



Corollary 4 LetH be a Hilbert spa
e, 	 2H with k	k = 1, H a self-adjoint operatoron H , Q a standard Borel spa
e, and let P be a POVM on Q a
ting on H . Supposethat H is a Hilbert{S
hmidt operator. Then, by virtue of Theorem 1, the jump ratesgiven by (1) are well-de�ned and �nite P-almost everywhere, and they are equivariant.Proof. Let Pext be the Naimark extension PVM of P a
ting on Hext � H with P+the proje
tion Hext ! H , and let U : Hext ! R �Hq dq be a naturalization of Pext.For every q 2 Q, pi
k an orthonormal basis Iq = fjq; iig of Hq, with measurabledependen
e on q. When ea
h set Iq is thought of as equipped with the 
ountingmeasure, then from dq we obtain a measure on I = SqIq, and R �Hq dq is naturallyidenti�ed with L2(I ; C ). Sin
e H is a Hilbert{S
hmidt operator, so is Hext = IHP+,whi
h thus possesses a kernel fun
tion K 2 L2(I �I ; C ) su
h that for all � 2HextUHext�(q; i) = ZQ dq0 Xi02Iq0 K(q; i; q0; i0)U�(q0; i0):Sin
e h	jP (B)HP (C)j	i = h	jPext(B)HextPext(C)j	i ;we have, for the same reasons as in the proof of Corollary 1, thath	jP (B)HP (C)j	i = ZB�C dq dq0Xi2Iq Xi02Iq0 U	�(q; i)K(q; i; q0; i0)U	(q0; i0) : (77)For A � Q�Q, set�(A) = ZA dq dq0Xi2Iq Xi02Iq0 U	�(q; i)K(q; i; q0; i0)U	(q0; i0):Sin
e U	�(q; i)K(q; i; q0; i0)U	(q0; i0) is absolutely summable and integrable over q; i; q0,and i0, �(A) is �nite, and thus a 
omplex measure. (77) entails that (64) is satis�ed.Thus Theorem 1 applies. �We now provide the most general version of our statement about jump rates forHamiltonians with kernel measures. LetB(Hq0;Hq) denote the spa
e of bounded linearoperators Hq0 !Hq with the operator normjOj = sup�2Hq0 ;�6=0 kO�kk�k :For the norm of 	(q) in Hq, hh	(q)j	(q)ii1=2q , we also write j	(q)j.Corollary 5 LetH be a Hilbert spa
e, 	 2H with k	k = 1, H a self-adjoint operatoron H , Q a standard Borel spa
e, and P a POVM on Q a
ting on H . Let Pext be theNaimark extension PVM of P a
ting on Hext � H , and U : Hext ! R �Hq dq the33



naturalization of Pext. Suppose that H has a kernel K(dq � dq0) for 	 in the positionrepresentation de�ned by P ; i.e., suppose that K(dq � dq0) is the produ
t of a �-�nitenonnegative measure on Q�Q and a measurable 
ross-se
tion of the �eld B(Hq0 ;Hq)over Q � Q, that 	 satis�es (70b), and that some everywhere-de�ned version 	(q) ofthe almost-everywhere-de�ned 
ross-se
tion U	 2 R �Hq dq satis�es (70a) and (70
)(where the integrand on the right hand side of (70
) is understood as involving theinner produ
t of Hq). Then, by virtue of Theorem 1, the jump rates given by (1) arewell-de�ned and �nite P-almost everywhere, and they are equivariant if 	 2 domain(H).The proof of Corollary 2 applies here without 
hanges if one understands	�(q)K(dq � dq0)	(q) as meaning hh	(q)jK(dq � dq0)	(q0)iiq. Corollary 5 de�nes aset of good 	's, for whi
h the jump rates are �nite, for the examples of Se
tions 3.7,3.8, and 3.9.4.3 Global Existen
e QuestionThe rates �t and velo
ities vt, together with Pt, de�ne the pro
ess Qt asso
iated withH;P , and 	, whi
h 
an be 
onstru
ted along the lines of Se
tion 2.3. However, therigorous existen
e of this pro
ess, like the global existen
e of solutions for an ordinarydi�erential equation, is no trivial matter. In order to establish the global existen
e ofthe pro
ess (see [15℄ for an example), a variety of aspe
ts must be 
ontrolled, in
ludingthe following: (i) One has to show that for a suÆ
iently large set of initial state ve
tors,the relevant 
onditions for �niteness of the jump rates, see Se
tions 4.1 and 4.2, aresatis�ed at all times. (ii) One has to show that there is probability zero that in�nitelymany jumps a

umulate in �nite time. (iii) One has to show that there is probabilityzero that the pro
ess runs into a 
on�guration where � is ill de�ned (e.g., where thedenominator of (19) vanishes, if that equation is appropriate).4.4 Extensions of Bi-MeasuresWe have pointed out in the next-to-last paragraph of Se
tion 4.1 that a 
omplex bi-measure need not possess an extension to a 
omplex measure on the produ
t spa
e, afa
t relevant to the 
onditions for �nite rates. In this se
tion we show, see Theorem 2below, that nonnegative real bi-measures always possess su
h an extension.A useful 
orollary of Theorem 2, see Corollary 7 below, asserts that one 
an form thetensor produ
t of any two POVMs. This is a spe
ial 
ase of the more general statement,see Corollary 6 below, asserting that one 
an form the produ
t of any two POVMsthat 
ommute with ea
h other; this statement 
an be regarded as the generalizationfrom PVMs to POVMs of the fa
t that two 
ommuting observables 
an be measuredsimultaneously; it is also related to the dis
ussion in the last paragraph of Se
tion 4.1.Though we 
ould not �nd the expli
it statement of Corollary 6 in this form in theliterature, it does follow from a part of a proof given by Halmos [20, p. 72℄. Below,however, we give a somewhat di�erent proof, using Theorem 2 instead of the lemma of34



von Neumann [33, p. 167℄ that Halmos uses. It is also presumably possible to deriveCorollary 6 from Lemma 2.1 or Theorem 2.2 of [7℄.Theorem 2 Let Q1 and Q2 be standard Borel spa
es with �-algebras A1 and A2, andlet �( � ; � ) be a �nite nonnegative bi-measure, i.e., a mapping � : A1 � A2 ! [0; a℄,a > 0, that is a measure in ea
h variable when the other variable is a �xed set. Then� 
an be extended to a measure � on Q1 �Q2: there exists a unique �nite nonnegativemeasure � : A1 
A2 ! [0; a℄ su
h that for all B1 2 A1 and B2 2 A2,�(B1 �B2) = �(B1; B2): (78)Proof. Suppose �rst that Q1 is �nite or 
ountably in�nite. Then every set A 2 A1
A2is an (at most) 
ountable union of produ
t sets,A = [q12Q1fq1g � Bq1;where every Bq1 2 A2. Therefore, the unique way of extending � is by setting�(A) := Xq12Q1 �(fq1g; Bq1): (79)One easily 
he
ks that (79) indeed de�nes a �nite measure satisfying (78), noting �rstthat the sum is always �nite be
auseP �(fq1g; Bq1) �P �(fq1g;Q2) = �(Q1;Q2). Thesame argument 
an of 
ourse be applied if Q2 is �nite or 
ountably in�nite.Suppose now that neither Q1 nor Q2 is �nite or 
ountable. Every un
ountablestandard Borel spa
e Q is isomorphi
, as a measurable spa
e, to the spa
e of binarysequen
es f0; 1gN (equipped with the �-algebra generated by the family B of sets thatdepend on only �nitely many terms of the sequen
e), i.e., there exists a bije
tion ' :Q ! f0; 1gN that is measurable in both dire
tions, see [24, p. 138℄ and [23, p. 358℄.We may thus assume, without loss of generality, that Q1 = f0; 1gf�1;�2;�3;:::g and Q2 =f0; 1gf0;1;2;:::g, with Bi de�ned a

ordingly. Q1 � Q2 
an then be 
anoni
ally identi�edwith f0; 1gZ.From the restri
tion of � to sets B1 2 B1 and B2 2 B2, one easily obtains a 
onsis-tent family of �nite-dimensional distributions, and hen
e, by the Kolmogorov extensiontheorem, e.g. [6, p. 24℄, a unique measure � on Q1 � Q2 obeying (78) for all B1 2 B1and B2 2 B2.It remains to establish (78) for all B1 2 A1 and B2 2 A2. First �x B2 in B2. Then�( � �B2) and �( � ; B2) are measures on A1 that agree on B1. Hen
e they agree on A1.Thus, �xing B1 in A1, we have that �(B1 � � ) and �(B1; � ) are measures on A2 thatagree on B2, and hen
e on all of A2, 
ompleting the proof. �In the following, we will again write B1 � Q1 instead of B1 2 A1.Corollary 6 Let H be a Hilbert spa
e, Q1 and Q2 standard Borel spa
es, and P1 andP2 POVMs on Q1 and Q2 respe
tively, a
ting on H . If [P1(B1); P2(B2)℄ = 0 for all35



B1 � Q1 and B2 � Q2, then there exists a unique POVM P on Q1 �Q2 a
ting on Hsu
h that for all B1 � Q1 and B2 � Q2,P (B1 � B2) = P1(B1)P2(B2): (80)Proof. (We largely follow [20, p. 72℄.) For 	 2H we de�ne a bi-measure �	 by setting�	(B1; B2) := h	jP1(B1)P2(B2)j	i. �	 is obviously a 
omplex bi-measure, and it takesvalues only in the nonnegative reals be
ause P1(B1)P2(B2) is a positive operator (sin
ethe two positive operators P1(B1) and P2(B2) 
an be simultaneously diagonalized). Thevalues of �	 are bounded by k	k2. By Lemma 2, �	 
an be extended to a measure �	on Q1 �Q2.We now de�ne 
omplex measures ��;	 on Q1 � Q2 by \polarization": for everyA � Q1 �Q2 and for every pair of ve
tors �;	 we write��;	(A) := � 12�+ 12	(A)� � 12�� 12	(A) + i� 12�� i2	(A)� i� 12�+ i2	(A): (81)We assert that ��;	(A) is, for ea
h �xed set A, a symmetri
 bilinear fun
tional. Thisassertion is proved by noting that (i) it is true if A = B1 � B2, and (ii) the 
lass ofall sets for whi
h it is true is 
losed under the formation of 
omplements and 
ountableunions. To see (ii), note that ��;	(A
) = ��;	(Q1�Q2)���;	(A) and ��;	(S1k=1Ak) =limn!1Pnk=1 ��;	(Ak).Sin
e �	;	(A) = �	(A) � k	k2 for every A � Q1 � Q2, the bilinear fun
tional��;	(A) is bounded and has, in fa
t, a norm � 1. Therefore, there is a boundedoperator P (A) su
h that ��;	(A) = h�jP (A)j	i. P (A) is positive sin
e �	;	(A) � 0for every 	. P ( � ) is 
ountably additive in the weak operator topology be
ause ��;	( � )is 
ountably additive. P ( � ) satis�es (80), and thus P (Q1 �Q2) = I. �Note that P1 need not be a 
ommuting POVM, i.e., possibly [P1(B1); P1(C1)℄ 6= 0,and 
orrespondingly for P2.An immediate 
onsequen
e of Corollary 6, whi
h we use in several pla
es of [12℄, isCorollary 7 Let H1 and H2 be Hilbert spa
es, Q1 and Q2 standard Borel spa
es, andP1 and P2 POVMs on Q1 and Q2 respe
tively, a
ting on H1 and H2 respe
tively. Thenthere exists a unique POVM P on Q1�Q2 a
ting onH1
H2 su
h that for all B1 � Q1and B2 � Q2, P (B1 � B2) = P1(B1)
 P2(B2): (82)5 MinimalityIn this se
tion we explain in what sense the minimal jump rates (1)|or (19) or (38a)|are minimal. In so doing, we will also explain the signi�
an
e of the quantity J de�nedin (25), and 
larify the meaning of the steps taken in Se
tions 2.4 and 2.5 to arrive atthe jump rate formulas. 36



Given a Markov pro
ess Qt on Q, we de�ne the net probability 
urrent jt at time tbetween sets B and B0 byjt(B;B0) = lim�t&0 1�t hProb�Qt 2 B0; Qt+�t 2 B	� (83)�Prob�Qt 2 B;Qt+�t 2 B0	i :This is the amount of probability that 
ows, per unit time, from B0 to B minus theamount from B to B0. For a pure jump pro
ess, we have thatjt(B;B0) = Zq02B0 �t(Bjq0) �t(dq0)� Zq2B �t(B0jq) �t(dq) ; (84)so that jt(B;B0) = j�;�(B � B0) (85)where j�;� is the signed measure, on Q�Q, given by the integrand of (16),j�;�(dq � dq0) = �(dqjq0) �(dq0)� �(dq0jq) �(dq) : (86)For minimal jump rates �, de�ned by (1) or (19) or (38a) (and with the probabilities �given by (21), � = P), this agrees with (25), as was noted earlier,j�;� = J	;H;P ; (87)where we have made expli
it the fa
t that J is de�ned in terms of the quantum entities	; H, and P . Note that both J and the net 
urrent j are anti-symmetri
, Jtr = �J andjtr = �j, the latter by 
onstru
tion and the former be
ause H is Hermitian. (Here trindi
ates the a
tion on measures of the transposition (q; q0) 7! (q0; q) on Q � Q.) Theproperty (87) is stronger than the equivarian
e of the rates �, L�Pt = dPt=dt: Sin
e,by (16), (L��)(dq) = j�;�(dq �Q); (88)and, by (25), dPdt (dq) = J(dq�Q); (89)the equivarian
e of the jump rates � amounts to the 
ondition that the marginals ofboth sides of (87) agree, j�;�(dq �Q) = J(dq�Q) : (90)In other words, what is spe
ial about pro
esses with rates satisfying (87) is that notonly the single-time distribution but also the 
urrent is given by a standard quantumtheoreti
al expression in terms of H;	, and P . That is why we 
all (87) the standard-
urrent property|de�ning standard-
urrent rates and standard-
urrent pro
esses.Though the standard-
urrent property is stronger than equivarian
e, it alone doesnot determine the jump rates, as already remarked in [2, 29℄. This 
an perhaps be best37



appre
iated as follows: Note that (86) expresses j�;� as twi
e the anti-symmetri
 part ofthe (nonnegative) measure C(dq � dq0) = �(dqjq0) �(dq0) (91)on Q� Q whose right marginal C(Q� dq0) is absolutely 
ontinuous with respe
t to �.Conversely, from any su
h measure C the jump rates � 
an be re
overed by forming theRadon{Nikod�ym derivative �(dqjq0) = C(dq � dq0)�(dq0) : (92)Thus, given �, spe
ifying � is equivalent to spe
ifying su
h a measure C.In terms of C, the standard-
urrent property be
omes (with � = P)2AntiC = J: (93)Sin
e (re
alling that J = J+� J� is anti-symmetri
)J = 2Anti J+; (94)an obvious solution to (93) is C = J+;
orresponding to the minimal jump rates. However, (87) �xes only the anti-symmetri
part of C. The general solution to (93) is of the formC = J+ + S (95)where S(dq � dq0) is symmetri
, sin
e any two solutions to (93) have the same anti-symmetri
 part, and S � 0, sin
e S = C ^ Ctr, be
ause J+ ^ (J+)tr = 0.In parti
ular, for any standard-
urrent rates, we have thatC � J+; or �(dqjq0) � J+(dq � dq0)P(dq0) : (96)Thus, among all jump rates 
onsistent with the standard-
urrent property, one 
hoi
e,distinguished by equality in (96), has the least frequent jumps, or the smallest amountof sto
hasti
ity: the minimal rates (1).6 Remarks6.1 SymmetriesQuantum theories, and in parti
ular QFTs, often have important symmetries. To name afew examples: spa
e translations, rotations and inversion, time translations and reversal,Galilean or Lorentz boosts, global 
hange of phase 	! ei�	, and gauge transformations.38



This gives rise to the question whether the pro
ess Qt of the 
orresponding Bell-type QFT respe
ts these symmetries as well. Ex
ept for Lorentz invarian
e, whi
h isdiÆ
ult in that Lorentz boosts fail to map equal-time 
on�gurations into equal-time
on�gurations, the answer is yes; a dis
ussion is given in [12, Se
. 6.1℄. An essentialingredient of this result is the manifest fa
t that the minimal jump rates (1) inherit thesymmetries of the Hamiltonian (under whi
h the POVM transforms 
ovariantly).6.2 Homogeneity of the RatesThe minimal jump rates (1) de�ne a homogeneous fun
tion of degree 0 in 	, i.e., ��	 =�	 for every � 2 C n f0g. This property is noteworthy sin
e it forms the essentialmathemati
al basis for a number of desirable properties of theories using su
h jump rates(su
h as that of [11℄): (i) that (when P is a produ
t PVM) unentangled and de
oupledsubsystems behave independently and follow the same laws as the entire system, (ii) that\
ollapsed-away," i.e., suÆ
iently distant, parts of the wave fun
tion do not in
uen
e thefuture behaviour of the 
on�guration Qt, (iii) invarian
e under a global 
hange of phase	 ! ei�	, (iv) invarian
e under the repla
ement 	 ! e�iEt=~	 for some 
onstant E,whi
h 
orresponds to adding E to the total Hamiltonian, (v) invarian
e under relabelingof the parti
les (whi
h may 
ause a repla
ement 	! �	 due to the Pauli prin
iple).6.3 H +EAdding a 
onstant E to the intera
tion Hamiltonian will not 
hange the jump rates (1)provided P is a PVM. This is be
ause h	jP (B)EP (C)j	i = E h	jP (B \ C)j	i hasvanishing imaginary part. For a POVM, however, this need not be true.6.4 Nondegenerate EigenstatesAs mentioned earlier, after (19), it is a 
onsequen
e of the minimal jump rate formula(1), in fa
t of the very minimality, that at ea
h time t either �(qjq0) or �(q0jq) is zero. Itfollows that for a time-reversible Hamiltonian H and POVM P , all jump rates vanishif 	 is a nondegenerate eigenstate of H. This is be
ause, in the simplest 
ases, hqjHjq0iis real, and the 
oeÆ
ients hqj	i 
an also be 
hosen real, or, more generally and moreto the point, be
ause in this 
ase the pro
ess must 
oin
ide with its time reverse, whi
himplies that the 
urrent from q to q0 is as large as the one from q0 to q, so that minimalityrequires both to vanish.6.5 Left or Right ContinuityFrom what we have said so far, there remains an ambiguity as to whether Qt at the jumptimes should be the point of departure or the destination, in other words, whether therealization t 7! Qt should be 
hosen to be left or to be right 
ontinuous. Although wethink there is not mu
h physi
al 
ontent to this question, we should point out that de-manding either left or right 
ontinuity will destroy time-reversal invarian
e (
f. Se
tion39



6.1). A pres
ription that preserves time-reversal invarian
e 
an, however, be devisedprovided the possible jumps 
an be divided into two 
lasses, A and B, in su
h a waythat the time reverse of a 
lass-A jump ne
essarily belongs to 
lass B and vi
e versa.Then 
lass-A jumps 
an be 
hosen left 
ontinuous and 
lass-B as right 
ontinuous. Anexample is provided by the model of [11℄: sin
e at every jump the number of parti
leseither in
reases or de
reases, the jumps naturally form two 
lasses (\
reation" and \an-nihilation"), and the time reverse of a 
reation is an annihilation. The pres
ription 
ouldbe that if a parti
le is 
reated (annihilated) at time t, then Qt already (still) 
ontains theadditional parti
le. But the opposite rule would be just as 
onsistent with time-reversalsymmetry, and we 
an see no 
ompelling reason to prefer one rule over the other.7 Con
lusionsWe have investigated the possibility of understanding QFT as a theory about movingparti
les, an idea pioneered, in the realm of nonrelativisti
 quantum me
hani
s, by deBroglie and Bohm. The models proposed by Bell [3℄ and ourselves [11℄ turn out to berather universal; that is, their 
onstru
tion 
an be transferred to a variety of situations,involving di�erent Hamiltonians and 
on�guration spa
es, and invoking formulas of a
anoni
al 
hara
ter.One ingredient of the 
onstru
tion is the use of sto
hasti
 jumps whose rates aredetermined by the quantum state ve
tor (and the Hamiltonian). These rates 
an bespe
i�ed through an expli
it formula (1) that has a status similar to the velo
ity for-mula in Bohmian me
hani
s. We have provided a version of this jump rate formulathat is more general than any previous one. Indeed, it seems to be the most generalversion possible: we need assume merely that the 
on�guration spa
e Q is a measurablespa
e (the weakest notion of \spa
e" available in mathemati
s), that the Hamiltonian iswell-de�ned, and that Q and the Hilbert spa
e are related through a generalized posi-tion observable (a positive-operator-valued measure, or POVM, the most general notionavailable in quantum theory of how a ve
tor in Hilbert spa
e may de�ne a probabilitydistribution). We have shown that these jump rates are well-de�ned and �nite if theintera
tion Hamiltonian possesses a suÆ
iently regular kernel in the position represen-tation de�ned by the POVM.We have also indi
ated that in a Bell-type QFT, the di�erent 
ontributions to theHamiltonian 
orrespond to di�erent 
ontributions to the motion of the 
on�guration Qt.The relevant fa
t is pro
ess additivity, i.e., that the generator of the Markov pro
ess Qt isadditive in the Hamiltonian. The free pro
ess usually 
onsists of 
ontinuous traje
tories,Bohmian or similar, an observation already made in [11℄ for the model 
onsidered there.Exploiting pro
ess additivity, we obtain that Qt is pie
ewise deterministi
, the pie
esbeing Bohm-type traje
tories, interrupted by sto
hasti
 jumps. Given a Hamiltonianand POVM, our pres
ription determines the Markov pro
ess Qt. As an example, wehave des
ribed the pro
ess expli
itly for a simple QFT.The essential point of this paper is that there is a dire
t and natural way|a 
anoni
alway|of devising a Bell-type version of any QFT.40
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