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referene to observers or measurements, while implying that observers, when makingmeasurements, will arrive at preisely the results that QFT is known to predit. Speialases of formula (1) have been utilized before [3, 11, 31℄. Part of what we explain in thispaper is what this formula means, how to arrive at it, when it an be applied, and whatits onsequenes are. Suh a formulation of QFT takes up ideas from the seminal paperof John S. Bell [3℄, and we will often refer to theories similar to the model suggested byBell in [3℄ as \Bell-type QFTs". (What similar means here will be eshed out in theourse of this paper.)The aim of this paper is to de�ne a anonial Bell-type model for more or less anyregularized QFT. We assume a well-de�ned Hamiltonian as given; to ahieve this, it isoften neessary to introdue ut-o�s. We shall assume this has been done where needed.In ases in whih one has to hoose between several possible position observables, forexample beause of issues related to the Newton{Wigner operator [26, 19℄, we shall alsoassume that a hoie has been made.The primary variables of Bell-type QFTs are the positions of the partiles. Bell sug-gested a dynamial law, governing the motion of the partiles, in whih the HamiltonianH and the state vetor 	 determine the jump rates �. We point out how Bell's rates�t naturally into a more general sheme summarized by (1). Sine these rates are in asense the smallest hoie possible (as explained in Setion 5), we all them the minimaljump rates. By onstrution, they preserve the j	j2 distribution. Most of this paperonerns the properties and mathematial foundations of minimal jump rates. In Bell-type QFTs, whih an be regarded as extensions of Bohmian mehanis, the stohastijumps often orrespond to the reation and annihilation of partiles. We will disussfurther aspets of Bell-type QFTs and their onstrution in our forthoming work [12℄.The paper is organized as follows. In Setion 2 we introdue all the main ideasand reasonings; a super�ial reading should fous on this setion. Some examples ofproesses de�ned by minimal jump rates are presented in Setion 3. In Setion 4 weprovide onditions for the rigorous existene and �niteness of the minimal jump rates. InSetion 5 we explain in what sense the rates (1) are minimal. Setion 6 onerns furtherproperties of proesses de�ned by minimal jump rates. In Setion 7 we onlude.2 The Jump Rate Formula2.1 Review of Bohmian Mehanis and EquivarianeBohmian mehanis [4, 14, 16℄ is a non-relativisti theory aboutN point partiles movingin 3-spae, aording to whih the on�guration Q = (Q1; : : : ;QN) evolves aordingto1 dQdt = v(Q) ; v = ~ Im 	�r		�	 : (2)1The masses mk of the partiles have been absorbed in the Riemann metri g�� on on�gurationspae R3N , gia;jb = mi Æij Æab, i; j = 1 : : :N; a; b = 1; 2; 3, and r is the gradient assoiated with g�� ,i.e., r = (m�11 rq1 ; : : : ;m�1N rqN ). 3



	 = 	t(q) is the wave funtion, whih evolves aording to the Shr�odinger equationi~�	�t = H	 ; (3)with H = �~22 � + V (4)for spinless partiles, with � = divr. For partiles with spin, 	 takes values in theappropriate spin spae C k , V may be matrix valued, and numerator and denominatorof (2) have to be understood as involving inner produts in spin spae. The seretof the suess of Bohmian mehanis in yielding the preditions of standard quantummehanis is the fat that the on�guration Qt is j	tj2-distributed in on�guration spaeat all times t, provided that the initial on�guration Q0 (part of the Cauhy data of thetheory) is so distributed. This property, alled equivariane in [14℄, suÆes for empirialagreement between any quantum theory (suh as a QFT) and any version thereof withadditional (often alled \hidden") variables Q, provided the outomes of all experimentsare registered or reorded in these variables. That is why equivariane will be our guidefor obtaining the dynamis of the partiles.The equivariane of Bohmian mehanis follows immediately from omparing theontinuity equation for a probability distribution � assoiated with (2),���t = � div (�v) ; (5)with the equation satis�ed by j	j2 whih follows from (3),�j	j2�t (q; t) = 2~ Im h	�(q; t) (H	)(q; t)i : (6)In fat, it follows from (4) that2~ Im h	�(q; t) (H	)(q; t)i = � div h~ Im	�(q; t)r	(q; t)i (7)so, realling (2), one obtains that�j	j2�t = � div (j	j2v) ; (8)and hene that if �t = j	tj2 at some time t then �t = j	tj2 for all times. Equivarianeis an expression of the ompatibility between the Shr�odinger evolution for the wavefuntion and the law, suh as (2), governing the motion of the atual on�guration. In[14℄, in whih we were onerned only with the Bohmian dynamis (2), we spoke of thedistribution j	j2 as being equivariant. Here we wish to �nd proesses for whih we haveequivariane, and we shall therefore speak of equivariant proesses and motions.4



2.2 Equivariant Markov ProessesThe study of example QFTs like that of [11℄ has lead us to the onsideration of Markovproesses as andidates for the equivariant motion of the on�guration Q for Hamilto-nians H more general than those of the form (4).Consider a Markov proess Qt on on�guration spae. The transition probabilitiesare haraterized by the bakward generator Lt, a (time-dependent) linear operatorating on funtions f on on�guration spae:Ltf(q) = ddsE (f(Qt+s)jQt = q) (9)where d=ds means the right derivative at s = 0 and E ( � j � ) denotes the onditionalexpetation. Equivalently, the transition probabilities are haraterized by the forwardgenerator Lt (or, as we shall simply say, generator), whih is also a linear operator butats on (signed) measures on the on�guration spae. Its de�ning property is that forevery proess Qt with the given transition probabilities, the distribution �t of Qt evolvesaording to ��t�t = Lt�t : (10)Lt is the dual of Lt in the sense thatZ f(q)Lt�(dq) = Z Ltf(q) �(dq) : (11)We will use both Lt and Lt, whihever is more onvenient. We will enounter severalexamples of generators in the subsequent setions.We an easily extend the notion of equivariane from deterministi to Markov pro-esses. Given the Markov transition probabilities, we say that the j	j2 distribution isequivariant if and only if for all times t and t0 with t < t0, a on�guration Qt with dis-tribution j	tj2 evolves, aording to the transition probabilities, into a on�guration Qt0with distribution j	t0j2. In this ase, we also simply say that the transition probabilitiesare equivariant, without expliitly mentioning j	j2. Equivariane is equivalent toLtj	tj2 = �j	tj2�t (12)for all t. When (12) holds (for a �xed t) we also say that Lt is an equivariant generator(with respet to 	t and H). Note that this de�nition of equivariane agrees with theprevious meaning for deterministi proesses.We all a Markov proess Q equivariant if and only if for every t the distribution �tof Qt equals j	tj2. For this to be the ase, equivariant transition probabilities are ne-essary but not suÆient. (While for a Markov proess Q to have equivariant transitionprobabilities amounts to the property that if �t = j	tj2 for one time t, where �t denotesthe distribution of Qt, then �t0 = j	t0j2 for every t0 > t, aording to our de�nition ofan equivariant Markov proess, in fat �t = j	tj2 for all t.) However, for equivarianttransition probabilities there exists a unique equivariant Markov proess.5



The ruial idea for our onstrution of an equivariant Markov proess is to notethat (6) is ompletely general, and to �nd a generator Lt suh that the right hand sideof (6) an be read as the ation of L on � = j	j2,2~ Im	�H	 = L j	j2 : (13)We shall implement this idea beginning in Setion 2.4, after a review of jump proessesand some general onsiderations. But �rst we shall illustrate the idea with the familiarase of Bohmian mehanis.For H of the form (4), we have (7) and hene that2~ Im	�H	 = � div (~ Im	�r	) = � div �j	j2~ Im 	�r	j	j2 � : (14)Sine the generator of the (deterministi) Markov proess orresponding to the dynam-ial system dQ=dt = v(Q) given by a veloity vetor �eld v isL � = � div (�v) ; (15)we may reognize the last term of (14) as L j	j2 with L the generator of the determin-isti proess de�ned by (2). Thus, as is well known, Bohmian mehanis arises as thenatural equivariant proess on on�guration spae assoiated with H and 	.To be sure, Bohmian mehanis is not the only solution of (13) for H given by(4). Among the alternatives are Nelson's stohasti mehanis [25℄ and other veloityformulas [8℄. However, Bohmian mehanis is the most natural hoie, the one mostlikely to be relevant to physis. (It is, in fat, the anonial hoie, in the sense ofminimal proess whih we shall explain in [12, Se. 5.2℄.)An important lass of equivariant Markov proesses are equivariant jump proesses,whih we disuss in the next three setions. They arise naturally in QFT, as we shallexplain in Setion 2.6.2.3 Equivariant Jump ProessesLet Q denote the on�guration spae of the proess, whatever sort of spae that maybe (vetor spae, lattie, manifold, et.); mathematially speaking, we need that Q be ameasurable spae. A (pure) jump proess is a Markov proess on Q for whih the onlymotion that ours is via jumps. Given that Qt = q, the probability for a jump to q0,i.e., into the in�nitesimal volume dq0 about q0, by time t + dt is �t(dq0jq) dt, where � isalled the jump rate. In this notation, � is a �nite measure in the �rst variable; �(Bjq)is the rate (the probability per unit time) of jumping to somewhere in the set B � Q,given that the present loation is q. The overall jump rate is �(Qjq).It is often the ase that Q is equipped with a distinguished measure, whih we shalldenote by dq or dq0, slightly abusing notation. For example, if Q = Rd , dq may be theLebesgue measure, or if Q is a Riemannian manifold, dq may be the Riemannian volumeelement. When �( � jq) is absolutely ontinuous relative to the distinguished measure,6



we also write �(q0jq) dq0 instead of �(dq0jq). Similarly, we sometimes use the letter � fordenoting a measure and sometimes the density of a measure, �(dq) = �(q) dq.A jump �rst ours when a random waiting time T has elapsed, after the time t0 atwhih the proess was started or at whih the most reent previous jump has ourred.For purposes of simulating or onstruting the proess, the destination q0 an be hosenat the time of jumping, t0 + T , with probability distribution �t0+T (Qjq)�1 �t0+T ( � jq).In ase the overall jump rate is time-independent, T is exponentially distributed withmean �(Qjq)�1. When the rates are time-dependent|as they will typially be in whatfollows|the waiting time remains suh thatZ t0+Tt0 �t(Qjq) dtis exponentially distributed with mean 1, i.e., T beomes exponential after a suitable(time-dependent) resaling of time. For more details about jump proesses, see [6℄.The generator of a pure jump proess an be expressed in terms of the rates:L��(dq) = Zq02Q ��(dqjq0)�(dq0)� �(dq0jq)�(dq)� ; (16)a \balane" or \master" equation expressing ��=�t as the gain due to jumps to dq minusthe loss due to jumps away from q.We shall say that jump rates � are equivariant if L� is an equivariant generator. Itis one of our goals in this paper to desribe a general sheme for obtaining equivariantjump rates. In Setions 2.4 and 2.5 we will explain how this leads us to formula (1).2.4 Integral Operators Correspond to Jump ProessesWhat haraterizes jump proesses versus ontinuous proesses is that some amountof probability that vanishes at q 2 Q an reappear in an entirely di�erent region ofon�guration spae, say at q0 2 Q. This is manifest in the equation for ��=�t, (16):the �rst term in the integrand is the probability inrease due to arriving jumps, theseond the derease due to departing jumps, and the integration over q0 reets that q0an be anywhere in Q. This suggests that Hamiltonians for whih the expression (6)for �j	j2=�t is naturally an integral over dq0 orrespond to pure jump proesses. Sowhen is the left hand side of (13) an integral over dq0? When H is an integral operator,i.e., when hqjHjq0i is not merely a formal symbol, but represents an integral kernel thatexists as a funtion or a measure and satis�es(H	)(q) = Z dq0 hqjHjq0i	(q0) : (17)(For the time being, think of Q as Rd and of wave funtions as omplex valued.) In thisase, we should hoose the jump rates in suh a way that, when � = j	j2,�(qjq0) �(q0)� �(q0jq) �(q) = 2~ Im	�(q) hqjHjq0i	(q0) ; (18)7



and this suggests, sine jump rates must be nonnegative (and the right hand side of (18)is anti-symmetri), that�(qjq0) �(q0) = h2~ Im	�(q) hqjHjq0i	(q0)i+(where x+ denotes the positive part of x 2 R, that is, x+ is equal to x for x > 0 and iszero otherwise), or �(qjq0) = �(2=~) Im	�(q) hqjHjq0i	(q0)�+	�(q0)	(q0) : (19)These rates are an instane of what we all the minimal jump rates assoiated with H(and 	). They are also an instane of formula (1), as will beome lear in the followingsetion. The name omes from the fat that they are atually the minimal possiblevalues given (18), as is expressed by the inequality (96) and will be explained in detailin Setion 5. Minimality entails that at any time t, one of the transitions q1 ! q2 orq2 ! q1 is forbidden. We will all the proess de�ned by the minimal jump rates theminimal jump proess (assoiated with H).In ontrast to jump proesses, ontinuous motion, as in Bohmian mehanis, or-responds to suh Hamiltonians that the formal matrix elements hqjHjq0i are nonzeroonly in�nitesimally lose to the diagonal, and in partiular to di�erential opera-tors like the Shr�odinger Hamiltonian (4), whih has matrix elements of the typeÆ00(q � q0) + V (q) Æ(q � q0).The minimal jump rates as given by (19) have some nie features. The possiblejumps for this proess orrespond to the nonvanishing matrix elements of H (though,depending on the state 	, even some of the jump rates orresponding to nonvanishingmatrix elements of H might happen to vanish). Moreover, in their dependene on thestate 	, the jump rates � depend only \loally" upon 	: the jump rate for a given jumpq0 ! q depends only on the values 	(q0) and 	(q) orresponding to the on�gurationslinked by that jump. Disretizing R3 to a lattie "Z3, one an obtain Bohmian mehanisas a limit "! 0 of minimal jump proesses [31, 32℄, whereas greater-than-minimal jumprates lead to Nelson's stohasti mehanis [25℄ and similar di�usions; see [32, 17℄. Ifthe Shr�odinger operator (4) is approximated in other ways by operators orrespondingto jump proesses, e.g., by H" = e�"HHe�"H, the minimal jump proesses presumablyalso onverge to Bohmian mehanis.We have reason to believe that there are lots of self-adjoint operators whih do notorrespond to any stohasti proess that an be regarded as de�ned, in any reasonablesense, by (19).2 But suh operators seem never to our in QFT. (The Klein{Gordonoperator pm24 � ~22� does seem to have a proess, but it requires a more detaileddisussion whih will be provided in a forthoming work [13℄.)2Consider, for example, H = p os p where p is the one-dimensional momentum operator �i~�=�q.Its formal kernel hqjH jq0i is the distribution � i2Æ0(q� q0� 1)� i2Æ0(q� q0+1), for whih (19) would nothave a meaning. From a sequene of smooth funtions onverging to this distribution, one an obtaina sequene of jump proesses with rates (19): the jumps our very frequently, and are by amounts ofapproximately �1. A limiting proess, however, does not exist.8



2.5 Minimal Jump RatesThe reasoning of the previous setion applies to a far more general setting than just on-sidered: to arbitrary on�guration spaes Q and \generalized observables"|POVMs|de�ning, for our purposes, what the \position representation" is. We now present thismore general reasoning, whih leads to formula (1).The proess we onstrut relies on the following ingredients from QFT:1. A Hilbert spae H with salar produt h	j�i.2. A unitary one-parameter group Ut in H with Hamiltonian H,Ut = e� i~ tH ;so that in the Shr�odinger piture the state 	 evolves aording toi~d	tdt = H	t : (20)Ut ould be part of a representation of the Poinar�e group.3. A positive-operator-valued measure (POVM) P (dq) on Q ating on H , so thatthe probability that the system in the state 	 is loalized in dq at time t isPt(dq) = h	tjP (dq)j	ti : (21)Mathematially, a POVM P on Q is a ountably additive set funtion (\measure"),de�ned on measurable subsets of Q, with values in the positive (bounded self-adjoint)operators on (a Hilbert spae) H , suh that P (Q) is the identity operator.3 Physially,for our purposes, P ( � ) represents the (generalized) position observable, with values inQ. The notion of POVM generalizes the more familiar situation of observables givenby a set of ommuting self-adjoint operators, orresponding, by means of the spetraltheorem, to a projetion-valued measure (PVM): the ase where the positive operatorsare projetion operators. A typial example is the single Dira partile: the positionoperators on L2(R3 ; C 4) indue there a natural PVM P0( � ): for any Borel set B �R3 , P0(B) is the projetion to the subspae of funtions that vanish outside B, or,equivalently, P0(B)	(q) = 1B(q)	(q) with 1B the indiator funtion of the set B.Thus, h	jP0(dq)j	i = j	(q)j2dq. When one onsiders as Hilbert spae H only thesubspae of positive energy states, however, the loalization probability is given byP ( � ) = P+P0( � )I with P+ : L2(R3 ; C 4) ! H the projetion and I : H ! L2(R3 ; C 4)the inlusion mapping. Sine P+ does not ommute with most of the operators P0(B),P ( � ) is no longer a PVM but a genuine POVM4 and onsequently does not orrespond to3The ountable additivity is to be understood as in the sense of the weak operator topology. Thisin fat implies that ountable additivity also holds in the strong topology.4This situation is indeed more general than it may seem. By a theorem of Naimark [7, p. 142℄, everyPOVM P ( � ) ating on H is of the form P ( � ) = P+P0( � )P+ where P0 is a PVM on a larger Hilbertspae, and P+ the projetion to H . 9



any position operator|although it remains true (for 	 in the positive energy subspae)that h	jP (dq)j	i = j	(q)j2dq. That is why in QFT, the position observable is indeedmore often a POVM than a PVM. POVMs are also relevant to photons [1, 22℄. In oneapproah, the photon wave funtion 	 : R3 ! C 3 is subjet to the onstraint onditionr � 	 = �1	1 + �2	2 + �3	3 = 0. Thus, the physial Hilbert spae H is the (losureof the) subspae of L2(R3 ; C 3) de�ned by this onstraint, and the natural PVM onL2(R3 ; C 3) gives rise, by projetion, to a POVM on H . So muh for POVMs. Let usget bak to the onstrution of a jump proess.The goal is to speify equivariant jump rates � = �	;H;P , i.e., suh rates thatL�P = dPdt : (22)To this end, one may take the following steps:1. Note that dPt(dq)dt = 2~ Im h	tjP (dq)Hj	ti : (23)2. Insert the resolution of the identity I = Rq02Q P (dq0) and obtaindPt(dq)dt = Zq02Q Jt(dq; dq0) ; (24)where Jt(dq; dq0) = 2~ Im h	tjP (dq)HP (dq0)j	ti : (25)3. Observe that J is anti-symmetri, J(dq0; dq) = �J(dq; dq0). Thus, sine x = x+ �(�x)+,J(dq; dq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+ � [(2=~) Im h	jP (dq0)HP (dq)j	i℄+ :4. Multiply and divide both terms by P( � ), obtaining thatZq02Q J(dq; dq0) = Zq02Q � [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i P(dq0)�� [(2=~) Im h	jP (dq0)HP (dq)j	i℄+h	jP (dq)j	i P(dq)� :5. By omparison with (16), reognize the right hand side of the above equation asL�P, with L� the generator of a Markov jump proess with jump rates (1), whihwe all the minimal jump rates. We repeat the formula for onveniene:�(dqjq0) = [(2=~) Im h	jP (dq)HP (dq0)j	i℄+h	jP (dq0)j	i :10



Mathematially, the right hand side of this formula as a funtion of q0 must be understoodas a density (Radon{Nikod�ym derivative) of one measure relative to another. The plussymbol denotes the positive part of a signed measure; it an also be understood asapplying the plus funtion, x+ = max(x; 0), to the density, if it exists, of the numerator.To sum up, we have argued that with H and 	 is naturally assoiated a Markovjump proess Qt whose marginal distributions oinide at all times by onstrution withthe quantum probability measure, �t( � ) = Pt( � ), so that Qt is an equivariant Markovproess.In Setion 4, we establish preise onditions on H;P , and 	 under whih the jumprates (1) are well-de�ned and �nite P-almost everywhere, and prove that in this asethe rates are equivariant, as suggested by the steps 1-5 above. It is perhaps worthremarking at this point that any H an be approximated by Hamiltonians Hn (namelyHilbert{Shmidt operators) for whih the rates (1) are always (for all 	) well-de�nedand equivariant, as we shall prove in Setion 4.2.1.2.6 Bell-Type QFTA Bell-type QFT is about partiles moving in physial 3-spae; their number and posi-tions are represented by a point Qt in on�guration spae Q, with Q de�ned as follows.Let �R3 denote the on�guration spae of a variable (but �nite) number of identialpartiles in R3 , i.e., the union of (R3)n modulo permutations,�R3 = 1[n=0(R3)n=Sn : (26)Q is the Cartesian produt of several opies of �R3 , one for eah speies of partiles.For a disussion of the spae �R3 , and indeed of �S for any other measurable spae Splaying the role of physial spae, see [12, Se. 2.8℄.A related spae, for whih we write �6=R3 , is the spae of all �nite subsets of R3 ;it is ontained in �R3 , after obvious identi�ations. In fat, �6=R3 = �R3 n �, where� is the set of oinidene on�gurations, i.e., those having two or more partiles atthe same position. �6=R3 is the union of the spaes Q(n)6= for n = 0; 1; 2; : : :, where Q(n)6=is the spae of subsets of R3 with n elements, a manifold of dimension 3n (see [10℄for a disussion of Bohmian mehanis on this manifold). The set � of oinideneon�gurations has odimension 3 and thus an usually be ignored. We an thus replae�R3 by the somewhat simpler spae �6=R3 .Qt follows a Markov proess in Q, whih is governed by a state vetor 	 in a suitableHilbert spae H . H is related to Q by means of a PVM or POVM P .The Hamiltonian of a QFT usually omes as a sum, suh asH = H0 +HI (27)with H0 the free Hamiltonian and HI the interation Hamiltonian. If several partilespeies are involved, H0 is itself a sum ontaining one free Hamiltonian for eah speies.11



The left hand side of (13), whih should govern our hoie of the generator, is then alsoa sum, 2~ Im	�H0	+ 2~ Im	�HI	 = L j	j2 : (28)This opens the possibility of �nding a generator L by setting L = L0 +LI , providedwe have generators L0 and LI orresponding to H0 and HI in the sense that2~ Im	�H0	 = L0j	j2 (29a)2~ Im	�HI	 = LI j	j2 : (29b)This feature of (13) we all proess additivity ; it is based on the fat that the left handside of (13) is linear in H.In a Bell-type QFT, the generatorL is of the formL = L0+LI, whereL0 is usuallythe generator of a deterministi proess, usually de�ned by the Bohmian or Bohm{Diralaw of motion, see below, and LI is the generator of a pure jump proess, whih is ourmain fous in this paper. The proess generated by L is then given by deterministimotion determined by L0, randomly interrupted by jumps at a rate determined by LI .We thus need to de�ne two equivariant proesses, one (the \free proess") assoiatedwith H0 and the other (the \interation proess") with HI. The interation proess isthe pure jump proess with rates given by (1) with HI in plae of H. We now give adesription of the free proess for the two most relevant free Hamiltonians: the seond-quantized Shr�odinger operator and the seond-quantized Dira operator. We give amore general and more detailed disussion of free proesses in [12℄; there we provide aformula, roughly analogous to (1), forL0 in terms of H0, and an algorithm for obtainingthe free proess from a one-partile proess that is roughly analogous to the \seondquantization" proedure for obtaining H0 from a one-partile Hamiltonian.The free proess assoiated with a seond-quantized Shr�odinger operator arises fromBohmian mehanis. Fok spae H = F is a diret sumF = 1Mn=0F (n); (30)where F (n) is the n-partile Hilbert spae. F (n) is the subspae of symmetri (forbosons) or anti-symmetri (for fermions) funtions in L2(R3n ; (C 2s+1)
n) for spin-s par-tiles. Thus, 	 2 F an be deomposed into a sequene 	 = �	(0);	(1); : : : ;	(n); : : :�,the n-th member 	(n) being an n-partile wave funtion, the wave funtion represent-ing the n-partile setor of the quantum state vetor. The obvious way to obtain aproess on Q = �R3 is to let the on�guration Q(t), ontaining N = #Q(t) partiles,move aording to the N -partile version of Bohm's law (2), guided by 	(N).5 This is5As de�ned, on�gurations are unordered, whereas we have written Bohm's law (2) for orderedon�gurations. Thanks to the (anti-)symmetry of the wave funtion, however, all orderings will lead tothe same partile motion. For more about suh onsiderations, see our forthoming work [10℄.12



indeed an equivariant proess sine H0 has a blok diagonal form with respet to thedeomposition (30), H0 = 1Mn=0 H(n)0 ;and H(n)0 is just a Shr�odinger operator for n noninterating partiles, for whih, as wealready know, Bohmian mehanis is equivariant. We used a very similar proess in [11℄(the only di�erene being that partiles were numbered in [11℄).Similarly, if H0 is the seond quantized Dira operator, we let a on�guration Q withN partiles move aording to the usual N -partile Bohm{Dira law [5, p. 274℄dQdt = 	�(Q)�N 	(Q)	�(Q)	(Q) (31)where  denotes the speed of light and �N = (�(1); : : : ;�(N)) with �(k) ating on thespin index of the k-th partile.This ompletes the onstrution of the Bell-type QFT. An expliit example of aBell-type proess for a simple QFT is desribed in [11℄, whih we take up again inSetion 3.12 below to point out how its jump rates �t into the sheme (1). Anothersuh example, onerning eletron{positron pair reation in an external eletromagneti�eld, is desribed in [12, Se. 3.3.℄.3 ExamplesIn this setion, we present various speial ases of the jump rate formula (1) and examplesof its appliation. We also point out how the jump rates of the models in [11℄ and [3℄are ontained in (1).3.1 A First ExampleTo begin with, we onsider Q = Rd , H = L2(Rd ; C ), and P the natural PVM, whihmay be written P (dq) = jqihqj dq. Then, P(dq) = h	jP (dq)j	i = j	(q)j2dq, and thejump rate formula (1) reads�(qjq0) = [(2=~) Im	�(q) hqjHjq0i	(q0)℄+	�(q0)	(q0) (32a)= h2~ Im 	�(q) hqjHjq0i	�(q0) i+: (32b)Note that (32a) is the same expression as (19). As a simple example of an operator HIwith a kernel, onsider a onvolution operator, HI = V ?, where V may be omplex-valued and V (�q) = V �(q),(HI	)(q) = Z V (q � q0)	(q0) dq0 :13



The kernel is hqjHIjq0i = V (q � q0). Together with H0 = �~22 �, we obtain a babyexample of a Hamiltonian H = H0 +HI that goes beyond the form (4) of Shr�odingeroperators, in partiular in that it is no longer loal in on�guration spae. Reall thatH0 is assoiated with the Bohmian motion (2). Combining the two generators on thebasis of proess additivity, we obtain a proess that is pieewise deterministi, withjump rates (19) and Bohmian trajetories between suessive jumps.3.2 Wave Funtions with SpinLet us next beome a bit more general and onsider wave funtions with spin, i.e.,with values in C k . We have Q = Rd ;H = L2(Rd ; C k) and P the natural PVM, whihmay be written P (dq) = Pki=1 jq; iihq; ij dq, where i indexes the standard basis of C k .Another way of viewing P is to understand H as the tensor produt L2(Rd ; C ) 
 C k ,and P (dq) = P0(dq)
 ICk with P0 the natural PVM on L2(Rd ; C ) and ICk the identityoperator on C k . Using the notation hh�(q)j	(q)ii for the salar produt in C k , we anwrite P(dq) = h	jP (dq)j	i = hh	(q)j	(q)ii dq, and the jump rate formula (1) reads�(qjq0) = [(2=~) Im hh	(q)jK(q; q0)j	(q0)ii℄+hh	(q0)j	(q0)ii (33)with K(q; q0), the kernel of H, a k � k matrix. If we write ��(q)	(q) for hh�(q)j	(q)ii,as we did in (2) and (31), and hqjHjq0i for K(q; q0), (33) reads�(qjq0) = [(2=~) Im	�(q) hqjHjq0i	(q0)℄+	�(q0)	(q0) ;whih is (19) again, interpreted in a di�erent way.3.3 Vetor BundlesNext onsider, instead of the �xed value spae C k , a vetor bundle E over a RiemannianmanifoldQ, and ross-setions of E as wave funtions. In order to have a salar produtof wave funtions, we need that every bundle �ber Eq be equipped with a Hermitianinner produt hh � j � iiq. We onsider H = L2(E) (the spae of square-integrable ross-setions) and P the natural PVM. For any q and q0, K(q; q0) then has to be a C -linearmapping Eq0 ! Eq, so that the kernel of H is a ross-setion of the bundle Sq;q0 Eq
E�q0over Q�Q. (1) then reads�(qjq0) = [(2=~) Im hh	(q)jK(q; q0)	(q0)iiq℄+hh	(q0)j	(q0)iiq0 : (34)In the following we will use the notation ��(q)	(q) for hh�(q)j	(q)iiq and hqjHjq0i forK(q; q0), so that �(qjq0) = [(2=~) Im	�(q) hqjHjq0i	(q0)℄+	�(q0)	(q0) ;whih looks like (19) again. 14



3.4 Kernels of the Measure TypeThe kernel hqjHjq0i an be less regular than a funtion. Sine the numerator of (1) isa measure in q and q0, the formula still makes sense (for P the natural PVM) whenthe kernel hqjHjq0i is a omplex measure in q and q0. The mathematial details willbe disussed in Setion 4.2. For instane, the kernel an have singularities like a DiraÆ, but it annot have singularities worse than Æ, suh as derivatives of Æ (as wouldarise from an operator whose position representation is a di�erential operator). It anhappen that the kernel is not a funtion but a measure even for a very well-behaved(even bounded) operator. For example, this is the ase for H a multipliation operator(i.e., a funtion V (q̂) of the position operator), hqjHjq0i = V (q) Æ(q� q0). Note, though,that multipliation operators orrespond to zero jump rates.A nontrivial example of an operator with Æ singularities in the kernel is H = 1 �os(p=p0) where p = �i~�=�q is the momentum operator in one dimension, H =L2(R; C ), and p0 is a onstant. The dispersion relation E = 1�os(p=p0) begins at p = 0like 12(p=p0)2 but deviates from the parabola for large p. In the position representation,H is the onvolution with ((2�)�1=2 times) the inverse Fourier transform of the funtion1� os(~k=p0), and thus hqjHjq0i = Æ(q� q0)� 12 Æ(q� q0+ ~p0 )� 12 Æ(q� q0� ~p0 ). In thisase, (1) leads to�(qjq0) = [(�1=~) Im	�(q)	(q0)℄+	�(q0)	(q0) �Æ(q � q0 + ~p0 ) + Æ(q � q0 � ~p0 )�: (35)(Note that nonnegative fators an be drawn out of the plus funtion.) This formulamay be viewed as ontained in (19) as well, in a formal sense. As a onsequene of (35),only jumps by an amount of � ~p0 an our in this ase.3.5 In�nite RatesThere also exist Markov proesses that perform in�nitely many jumps in every �nitetime interval (e.g., Glauber dynamis for in�nitely many spins). These proesses, whihwe do not ount among the jump proesses, may appear pathologial, and we will notinvestigate them in this paper, but we note that some Hamiltonians may orrespond tosuh proesses. They ould arise from jump rates �( � jq0) given by (1) that form not a�nite but merely a �-�nite measure, so that �(Qjq0) =1. Here is an (arti�ial) exampleof �-�nite (but not �nite) rates, arising from an operator H that is even bounded.Let Q = R, H = L2(R) with P ( � ) the position PVM, and let H, in Fourierrepresentation, be multipliation by f(k) = p�=2 sign(k). H is bounded sine f is. fis the Fourier transform of i=x, understood as the distribution de�ned by the prinipalvalue integral. As a onsequene, H has, in position representation, the kernel hqjHjq0i =i=(q � q0). From (19) we obtain the jump rates�(qjq0) = 2~ 1	�(q0)	(q0)hRe	�(q)	(q0)q � q0 i+ ; (36)15



whih entails that �(Rjq0) = R �(qjq0) dq = 1 at least whenever 	 is ontinuous (andnonvanishing) at q0. Nonetheless, sine the rate for jumping anywhere outside the inter-val [q0� "; q0+ "℄ is �nite for every " > 0 and sine R q0+"q0�" jq� q0j�(qjq0) dq <1, a proesswith these rates should exist: among the jumps that the proess would have to makeper unit time, the large ones would be few and the frequent ones would be tiny|tootiny to signi�antly ontribute.3.6 Disrete Con�guration SpaeNow onsider a disrete on�guration spae Q. Mathematially, this means Q is aountable set. In this ase, measures are determined by their values on singletons fqg,and we an speify all jump rates by speifying the rate �(qjq0) for eah transition q0 ! q.(1) then reads �(qjq0) = �(2=~) Im h	jPfqgHPfq0gj	i�+h	jPfq0gj	i : (37)We begin with the partiularly simple ase that there is an orthonormal basis of Hlabeled by Q, fjqi : q 2 Qg, and P is the PVM orresponding to this basis, Pfqg =jqihqj. In this ase, the notation hqjHjq0i and the name \matrix element" an be takenliterally. The rates (1) then simplify to�(qjq0) = [(2=~) Im h	jqihqjHjq0ihq0j	i℄+h	jq0ihq0j	i (38a)= h2~ Im h	jqihqjHjq0ih	jq0i i+: (38b)Note that (38a) is the obvious disrete analogue of (19); in fat, one an regard (19) asanother way of writing (38a) in this ase.Consider now the more general ase that a basis of Hilbert spae is indexed by two\quantum numbers," the on�guration q and another index i. Then the POVM is givenby the PVM Pfqg = Pi jq; iihq; ij, the projetion onto the subspae assoiated with q(whose dimension might depend on q); suh a PVM may be alled \degenerate." Wehave P(q) = h	jPfqgj	i =Pi h	jq; iihq; ij	i, and (1) beomes�(qjq0) = h 2~ Im Pi;i0 h	jq; iihq; ijHjq0; i0ihq0; i0j	ii+Pi0 h	jq0; i0ihq0; i0j	i : (39)We may also write (39) as (38a), understanding h	jqi and hq0j	i as multi-omponent,hqjHjq0i as a matrix, and produts as inner produts. In ase that the dimension of thesubspae assoiated with q is always k, independent of q, (39) is a disrete analogue ofthe rate formula (33) for spinor-valued wave funtions.Apart from serving as mathematial examples, disrete on�guration spaes are rel-evant for several reasons: First, they provide partiularly simple ases of jump proesses16



with minimal rates that are easy to study. Seond, any numerial omputation is dis-rete by nature. Third, one may onsider approximating or replaing the R3 that issupposed to model physial spae by a lattie Z3; after all, lattie approahes have oftenbeen employed in QFT, for various reasons. Moreover, Bell-type QFTs will usually haveas on�gurations the positions of a variable number of partiles; so the on�gurationhas a ertain ontinuous aspet, the positions, and a ertain disrete aspet, the numberof partiles. Sometimes one wishes to study simpli�ed models, and in this vein it maybe interesting to have only the partile number as a state variable, and thus the set ofnonnegative integers as on�guration spae.3.7 Bell's ProessThe model Bell spei�ed in [3℄ is a ase of a minimal jump proess on a disrete set. \Forsimpliity," Bell onsiders a lattie � instead of ontinuous 3-spae, and a Hamiltonianof a lattie QFT. As a onsequene, the on�guration spae Q = �(�) is ountable.(Bell even makes Q �nite, but this is not relevant here. We also remark that aordingto Bell's formulation, even distinguishable partiles have on�guration spae �(�).)Bell hooses as the on�guration the number of fermions at every lattie site, ratherthan the total partile number (i.e., in our terminology he takes Pfqg to be the pro-jetion to the joint eigenspae of the fermion number operators for all lattie sites witheigenvalues the oupation numbers orresponding to q 2 �(�)). He thus gives thefermioni degrees of freedom a status di�erent from the bosoni ones. That is to say,boson partiles do not exist in Bell's model, despite the fat thatH =Hfermions
Hbosonsand the presene of bosoni terms in the Hamiltonian.Thus the PVM Pfqg = Pfermionsfqg 
 1bosons is \doubly" degenerate: the fermionioupation number operators do not form a omplete set of ommuting operators, be-ause of both the spin and the bosoni degrees of freedom. Di�erent spin states anddi�erent quantum states of the bosoni �elds are ompatible with the same fermionoupation numbers. So a further index i is neessary to label a basis fjq; iig of H .The jump rates Bell presribes are then (39), and are thus a speial ase of (1). Weemphasize that here the index i does not merely label di�erent spin states, but statesof the quantized radiation as well.3.8 A Case of POVMConsider for H the spae of Dira wave funtions of positive energy. The POVM P ( � )we de�ned on it in Setion 2.5 is, as we have already remarked, not a PVM but a genuinePOVM and arises from the natural PVM P0( � ) on L2(R3 ; C 4) by P ( � ) = P+P0( � )I withP+ : L2(R3 ; C 4) ! H the projetion and I : H ! L2(R3 ; C 4) the inlusion mapping.We an extend any given interation HamiltonianH onH to an operator on L2(R3 ; C 4),Hext = IHP+. If Hext possesses a kernel hqjHextjq0i, then H orresponds to a jumpproess, and the rates (1) an be expressed in terms of this kernel, sine for 	 2 H ,h	jP (dq)HP (dq0)j	i = h	jP+P0(dq)IHP+P0(dq0)Ij	i = h	jP0(dq)HextP0(dq0)j	i =17



	�(q) hqjHextjq0i	(q0) dq dq0. We thus obtain�(qjq0) = �(2=~) Im	�(q) hqjHextjq0i	(q0)�+	�(q0)	(q0) : (40)This POVM is used in the pair reation model of [12, Se. 3.3℄.3.9 Another Case of POVMLetH = L2(Rd) and let P0( � ) be the natural PVM. We obtain a POVM P by smearingout P0 with a pro�le funtion ' : Rd ! [0;1) with R '(q) dq = 1 and '(�q) = '(q),e.g., a Gaussian: P (B) = Zq2B dq Zq02Rd '(q0 � q)P0(dq0): (41)Whereas P0(B) is multipliation by 1B, P (B) is multipliation by ' ? 1B. It leads toP(dq) = (' ? j	j2)(q) dq.The jump rate formula (1) then yields�(qjq0) = �(2=~) Im R dq00 R dq000 '(q00 � q)	�(q00) hq00jHjq000i	(q000)'(q000 � q0)�+R dq00 '(q00 � q0)	�(q00)	(q00) ;i.e., the denominator gets smeared out with ', and the square braket in the numeratorgets smeared out with ' in eah variable.3.10 Idential PartilesThe n-partile setor of the on�guration spae (without oinidene on�gurations)of idential partiles �6=(R3) is the manifold of n-point subsets of R3 ; let Q be thismanifold. The most ommon way of desribing the quantum state of n fermions is byan anti-symmetri (square-integrable) wave funtion 	 on Q̂ := R3n ; let H be thespae of suh funtions. Whereas for bosons 	 ould be viewed as a funtion on Q, forfermions 	 is not a funtion on Q.Nonetheless, the on�guration observable still orresponds to a PVM P on Q: forB � Q, we set P (B)	(q1; : : : ; qn) = 	(q1; : : : ; qn) if fq1; : : : ; qng 2 B and zero oth-erwise. In other words, P (B) is multipliation by the indiator funtion of ��1(B)where � is the obvious projetion mapping Q̂ n� ! Q, with � the set of oinideneon�gurations.To obtain other useful expressions for this PVM, we introdue the formal kets jq̂ifor q̂ 2 Q̂ (to be treated like elements of L2(Q̂)), the anti-symmetrization operator S(i.e., the projetion L2(Q̂) ! H ), the normalized anti-symmetrizer6 s = pn!S, and6The name means this: sine S is a projetion, S	 is usually not a unit vetor when 	 is. Whenever	 2 L2(Q̂) is supported by a fundamental domain of the permutation group, i.e., by a set 
 � Q̂ onwhih (the restrition of) � is a bijetion to Q, the norm of S	 is 1=pn!, so that s	 is again a unitvetor. 18



the formal kets jsq̂i := sjq̂i (to be treated like elements of H ). The jq̂i and jsq̂i arenormalized in the sense thathq̂jq̂0i = Æ(q̂ � q̂0) and hsq̂jsq̂0i = (�1)%(q̂;q̂0) Æ(q � q0);where q = �(q̂), q0 = �(q̂0), %(q̂; q̂0) is the permutation that arries q̂ into q̂0 given thatq = q0, and (�1)% is the sign of the permutation %. Now we an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq; (42)where the sum is over the n! ways of numbering the n points in q; the last two termsatually do not depend on the hoie of q̂ 2 ��1(q), the numbering of q.The probability distribution arising from this PVM isP(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n! j	(q̂)j2 dq = jhsq̂j	ij2 dq (43)with arbitrary q̂ 2 ��1(q).If an operator Ĥ on L2(Q̂) is permutation invariant,U�1% ĤU% = Ĥ for every permutation %; (44)where U% is the unitary operator on L2(Q̂) performing the permutation %, then Ĥ mapsanti-symmetri funtions to anti-symmetri funtions, and thus de�nes an operator Hon H . If Ĥ has a kernel hq̂jĤjq̂0i then the kernel is permutation invariant in the sensethat h%(q̂)jĤj%(q̂0)i = hq̂jĤjq̂0i 8%; (45)where %(q1; : : : ; qn) := (q%(1); : : : ; q%(n)), and H also possesses a kernel,hsq̂jHjsq̂0i = n! hq̂jSĤSjq̂0i = 1n!X%;%0 h%(q̂)jĤj%0(q̂0)i:In this ase (1) yields �(qjq0) = h 2~ Im P̂q;q̂0	�(q̂) hq̂jĤjq̂0i	(q̂0)i+P̂q0 	�(q̂0)	(q̂0) (46a)= h 2~ Im h	jsq̂ihsq̂jHjsq̂0ihsq̂0j	ii+h	jsq̂0ihsq̂0j	i (46b)where q̂ 2 ��1(q) and q̂0 2 ��1(q0), as running variables in (46a) and as arbitrary but�xed in (46b). 19



3.11 Another View of FermionsThere is a way of viewing fermion wave funtions as being de�ned on Q, rather thanR3n , by regarding them as ross-setions of a partiular 1-dimensional vetor bundleover Q. To this end, de�ne an n!-dimensional vetor bundle E byEq := Mq̂2��1(q) C : (47)Every funtion 	 : R3n ! C naturally gives rise to a ross-setion � of E, de�ned by�(q) := Mq̂2��1(q)	(q̂) : (48)The anti-symmetri funtions form a 1-dimensional subbundle of E (see also [10℄ fora disussion of this bundle). The jump rate formula for vetor bundles (34) an beapplied to either the subbundle or E, depending on the way in whih the kernel of H isgiven. The kernel hq̂jĤjq̂0i above translates diretly into a kernel on Q�Q with valuesin Eq 
E�q0 , for whih the rate formula for bundles (34) is the same as the rate formulafor idential partiles (46a) derived in the previous setion.Another alternative view of a fermion wave funtion is to regard it as a omplexdi�erential form of full rank, a 3n-form, on Q. (See, e.g., [10℄. This would not workif the dimension of physial spae were even.) Of ourse, the omplex 3n-forms arenothing but the setions of a ertain 1-dimensional bundle, usually denoted C 
 �3nQ,whih is equivalent to the subbundle of E onsidered in the previous paragraph, andwhih is ontained in the bundle C 
 �Q of Grassmann numbers over Q.3.12 A Simple QFTWe presented a simple example of a Bell-type QFT in [11℄, and we will now briey pointto the aspets of this model that are relevant here. The model is based on one of thesimplest possible QFTs [30, p. 339℄.The relevant on�guration spae Q for a QFT (with a single partile speies) isthe on�guration spae of a variable number of idential partiles in R3 , whih is theset �(R3), or, ignoring the oinidene on�gurations (as they are exeptions), the set�6=(R3) of all �nite subsets of R3 . The n-partile setor of this is a manifold of dimension3n; this on�guration spae is thus a union of (disjoint) manifolds of di�erent dimensions.The relevant on�guration spae for a theory with several partile speies is the Cartesianprodut of several opies of �6=(R3). In the model of [11℄, there are two partile speies,a fermion and a boson, and thus the on�guration spae isQ = �6=(R3)� �6=(R3): (49)We will denote on�gurations by q = (x; y) with x the on�guration of the fermions andy the on�guration of the bosons. 20



For simpliity, we replaed in [11℄ the setors of �6=(R3)��6=(R3), whih are manifolds,by vetor spaes of the same dimension (by arti�ially numbering the partiles), andobtained the union Q̂ = 1[n=0(R3)n � 1[m=0(R3)m ; (50)with n the number of fermions and m the number of bosons. Here, however, we willuse (49) as the on�guration spae. In omparison with (50), this amounts to (merely)ignoring the numbering of the partiles.H is the tensor produt of a fermion Fok spae and a boson Fok spae, and thus thesubspae of wave funtions in L2(Q̂) that are anti-symmetri in the fermion oordinatesand symmetri in the boson oordinates. Let S denote the appropriate symmetrizationoperator, i.e., the projetion operator L2(Q̂)!H , and s the normalized symmetrizers	(x1; : : : ;xn;y1; : : : ;ym) = pn!m!S	(x1; : : : ;xn;y1; : : : ;ym); (51)i.e., s = pN !M !S with N and M the fermion and boson number operators, whihommute with S and with eah other. As in Setion 3.10, we denote by � the projetionmapping Q̂ n � ! Q, �(x1; : : : ;xn;y1; : : : ;ym) = (fx1; : : : ;xng; fy1; : : : ;ymg). Theon�guration PVM P (B) on Q is multipliation by 1��1(B), whih an be understood asating on H , though it is de�ned on L2(Q̂), sine it is permutation invariant and thusmaps H to itself. We utilize again the formal kets jq̂i where q̂ 2 Q̂ n� is a numberedon�guration, for whih we also write q̂ = (x̂; ŷ) = (x1; : : : ;xn;y1; : : : ;ym). We also usethe symmetrized and normalized kets jsq̂i = sjq̂i. As in (42), we an writeP (dq) = Xq̂2��1(q) jq̂ihq̂j dq = n!m!Sjq̂ihq̂j dq = jsq̂ihsq̂j dq (52)with arbitrary q̂ 2 ��1(q). For the probability distribution, we thus have, as in (43),P(dq) = Xq̂2��1(q) j	(q̂)j2 dq = n!m! j	(q̂)j2 dq = jhsq̂j	ij2 dq (53)with arbitrary q̂ 2 ��1(q).The free Hamiltonian is the seond quantized Shr�odinger operator (with zero poten-tial), assoiated with the free proess desribed in Setion 2.6. The interation Hamil-tonian is de�ned by HI = Z d3x y(x) (ay'(x) + a'(x)) (x) (54)with  y(x) the reation operators (in position representation), ating on the fermionFok spae, and ay'(x) the reation operators (in position representation), ating on theboson Fok spae, regularized through onvolution with an L2 funtion ' : R3 ! R. HIhas a kernel; we will now obtain a formula for it, see (60) below. The jsq̂i are onnetedto the reation operators aording tojsq̂i =  y(xn) � � � y(x1)ay(ym) � � �ay(y1)j0i ; (55)21



where j0i 2H denotes the vauum state. A relevant fat is that the reation and annihi-lation operators  y;  ; ay and a possess kernels. Using the anonial (anti-)ommutationrelations for  and a, one obtains from (55) the following formulas for the kernels of (r) and a(r), r 2 R3 :hsq̂j (r)jsq̂0i = Æn;n0�1 Æm;m0 Æ3n0(x [ r � x0) (�1)%((x̂;r);x̂0) Æ3m(y � y0) (56)hsq̂ja(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Æ3m0(y [ r � y0) (57)where (x; y) = q = �(q̂), and %(x̂; x̂0) denotes the permutation that arries x̂ to x̂0 giventhat x = x0. The orresponding formulas for  y and ay an be obtained by exhangingq̂ and q̂0 on the right hand sides of (56) and (57). For the smeared-out operator a'(r),we obtainhsq̂ja'(r)jsq̂0i = Æn;n0 Æm;m0�1 Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)'(y0 � r) (58)We make use of the resolution of the identityI = ZQ dq jsq̂ihsq̂j : (59)Inserting (59) twie into (54) and exploiting (56) and (58), we �ndhsq̂jHI jsq̂0i = Æn;n0 Æm�1;m0 Æ3n(x� x0) (�1)%(x̂;x̂0)Xy2y Æ3m0(y n y � y0)Xx2x '(y � x)+ Æn;n0 Æm0�1;m Æ3n(x� x0) (�1)%(x̂;x̂0) Xy02y0 Æ3m(y � y0 n y0)Xx2x '(y0 � x) :(60)This is another ase of a kernel ontaining Æ funtions (see Setion 3.4).By (52), the jump rates (1) are�(qjq0) = h 2~ Im h	jsq̂ihsq̂jHI jsq̂0ihsq̂0j	ii+h	jsq̂0ihsq̂0j	i : (61)More expliitly, we obtain from (60) the rates�(qjq0) = Ænn0 Æm�1;m0 Æ3n(x� x0)Xy2y Æ3m0(y n y � y0) �rea(q0 [ yjq0)+ Ænn0 Æm;m0�1 Æ3n(x� x0)Xy02y0 Æ3m(y � y0 n y0) �ann(q0 n y0jq0) (62)with �rea(q0 [ yjq0) = 2pm0 + 1~ hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y � x0)	(q̂0)i+	�(q̂0)	(q̂0) (63a)�ann(q0 n y0jq0) = 2~pm0 hIm	�(q̂) (�1)%(x̂;x̂0) Px02x0 '(y0 � x0)	(q̂0)i+	�(q̂0)	(q̂0) ; (63b)22



for arbitrary q̂0 2 ��1(q0) and q̂ 2 ��1(q) with q = (x0; y0[y) respetively q = (x0; y0ny0).(Note that a sum sign an be drawn out of the plus funtion if the terms have disjointsupports.)Equation (62) is worth looking at losely: One an read o� that the only possiblejumps are (x0; y0) ! (x0; y0 [ y), reation of a boson, and (x0; y0) ! (x0; y0 n y0), an-nihilation of a boson. In partiular, while one partile is reated or annihilated, theother partiles do not move. The proess that we onsidered in [11℄ onsists of piees ofBohmian trajetories interrupted by jumps with rates (62); the proess is thus an ex-ample of the jump rate formula (1), and an example of ombining jumps and Bohmianmotion by means of proess additivity.The example shows how, for other QFTs, the jump rates (1) an be applied torelevant interation Hamiltonians: If HI is, in the position representation, a polynomialin the reation and annihilation operators, then it possesses a kernel on the relevanton�guration spae. A ut-o� (implemented here by smearing out the reation andannihilation operators) needs to be introdued to make HI a well-de�ned operator onL2. If, in some QFT, the partile number operator is not onserved, jumps between thesetors of on�guration spae are inevitable for an equivariant proess. And, indeed,when HI does not ommute with the partile number operator (as is usually the ase),jumps an our that hange the number of partiles. Often, HI ontains only o�-diagonal terms with respet to the partile number; then every jump will hange thepartile number. This is preisely what happens in the model of [11℄.4 Existene ResultsThe on�guration spae Q is assumed in this paper to be a measurable spae, equippedwith a �-algebra A. Every set we onsider is assumed to belong to the appropriate�-algebra: A on Q or the produt �-algebra A
A on Q�Q. If F is a quadrati form,we will usually use the notation h�jF j	i rather than F (�;	). If P (B)	 and P (C)	lie in the form domain of H, we write h	jP (B)HP (C)j	i for hP (B)	jHjP (C)	i.4.1 Condition for Finite RatesFor the argument of Setion 2.5 to work, it is neessary that (a) the braket in thenumerator of (1) exist as a �nite signed measure on Q�Q, and (b) the Radon{Nikod�ymderivative of the numerator with respet to the denominator also be well de�ned. It turnsout that, given (a), (b) is straightforward. However, ontrary to what a super�ialinspetion might suggest, (a) is problematial even when H is bounded. To see this,onsider the ase H = L2(R) with the natural PVM (orresponding to position) onQ = R, and with H the sum of the Fourier transform on H and its adjoint, given bythe kernel hqjHjq0i =r 2� os(qq0) :23



Then, for 	 real, the braket in (1) would have to be understood as proportional to	(q) os(qq0)	(q0) ;and 	 2 H ould be so hosen that this does not de�ne a signed measure on R � Rbeause both its positive and negative part have in�nite total weight. In fat, 	 anbe so hosen that the resulting �( � jq0) is an in�nite measure, �(Qjq0) = 1, for all q0,and thus does not de�ne a jump proess. Note, however, that for 	 2 L1(R) \ L2(R),�( � jq0) is �nite for this H.The following theorem provides a ondition under whih the argument skethed inSetion 2.5 for the equivariane of the jump rates �, steps 1{5, an be made rigorous.Theorem 1 Let H be a Hilbert spae, 	 2H with k	k = 1, H a self-adjoint operatoron H , Q a standard Borel spae,7 and P a POVM on Q ating on H . Suppose thatfor all B � Q, P (B)	 lies in the form domain of H, and there exists a omplex measure� on Q�Q suh that for all B;C � Q,�(B � C) = h	jP (B)HP (C)j	i : (64)Then the jump rates (1) are well-de�ned and �nite for P-almost every q0, and they areequivariant if, in addition, 	 2 domain(H).Proof. We �rst show that under the hypotheses of the theorem, the jump rates (1) arewell-de�ned and �nite. Then we show that they are equivariant.To begin with, the measure � whose existene was assumed in the theorem is on-jugate symmetri under the transposition mapping (q; q0)tr = (q0; q) on Q � Q, i.e.,�(Atr) = �(A)�. To see this, note that a omplex measure on Q � Q is uniquelydetermined by its values on produt sets. �( � tr) and �( � )� must thus be the samemeasure sine, by the self-adjointness of H, for A = B � C, �(Atr) = �(C � B) (64)=h	jP (C)HP (B)j	i = h	jP (B)HP (C)j	i� = �(A)�.We de�ne a signed measure J on Q�Q by J = 2~ Im�. Let J+ be the positive part ofJ (de�ned by its Hahn{Jordan deomposition, J = J+� J�, see e.g. [21, p. 120℄). Sine� is a omplex measure (and thus assumes only �nite values), J has �nite positive andnegative parts. Sine � is onjugate symmetri, J is anti-symmetri.We now show that for every B � Q, the measure J(B � � ) on Q is absolutelyontinuous with respet to P( � ), the \j	j2" measure de�ned in (21). If C is a P-null set,that is h	jP (C)j	i = 0, then P (C)j	i = 0: if P (C) is a projetion, this is immediate,and if P (C) is just any positive operator, it follows from the spetral theorem|anyomponent of 	 orthogonal to the eigenspae of P (C) with eigenvalue zero would lie inthe positive spetral subspae of P (C) and give a positive ontribution to h	jP (C)j	i.7A standard Borel spae is a measurable spae isomorphi to a omplete separable metri spae withits Borel �-algebra. Basially all spaes that arise in pratie are in fat standard Borel spaes, andso are in partiular all spaes that we have in mind for Q (whih are ountable unions of (separable)Riemannian manifolds). Thus, the ondition of being a standard Borel spae is not muh of a restrition.24



From P (C)	 = 0 it follows that h	jP (B)HP (C)j	i = 0, so that J(B � C) = 0, whihis what we wanted to show.Next we show that for every B � Q, the measure J+(B� � ) is absolutely ontinuouswith respet to P( � ). Suppose again that P(C) = 0. We have thatJ+(B � C) � J+(B � C) + J�(B � C) == jJj(B� C) = supXi;j jJ(Bi� Cj)jwhere the sup is taken over all �nite partitions SiBi = B of B and Sj Cj = C of C.Now eah J(Bi � Cj) = 0 beause J(Bi � � ) � P( � ) and P(Cj) � P(C) = 0. ThusJ+(B � C) = 0.It follows from the Radon{Nikod�ym theorem that for every B, J+(B � � ) possessesa density with respet to P( � ). The density is unique up to hanges on P-null sets,and one version of this density is what we will take as �(Bjq0). We have to make sure,though, that � is a measure in its dependene on B, and from the Radon{Nikod�ymtheorem alone we do not obtain additivity in B. For this reason, we utilize a standardtheorem [27, p. 147℄ on the existene of regular onditional probabilities, asserting thatif Q (and thus also Q�Q) is a standard Borel spae, then every probability measure �on Q �Q possesses regular onditional probabilities, i.e., a funtion p( � jq0) on Q withvalues in the probability measures on Q � Q suh that for almost every q0, p( � jq0) isonentrated on the set Q � fq0g � Q � Q, and for every A � Q � Q, p(Ajq0) is ameasurable funtion of q0 withZq02Q p(Ajq0) �(Q� dq0) = �(A): (65)We set �( � ) = J+( � )=J+(Q�Q) and de�ne � as the orresponding regular onditionalprobability times a fator that takes into aount that (1) involves the density of J+relative to P (rather than to �(Q� � ) or J+(Q� � )):�(Bjq0) := p(B �Qjq0) dJ+(Q� � )dP( � ) (q0) : (66)The last fator exists beause we have shown above that J+(Q� � )� P( � ). �( � jq0) isa (�nite) measure beause p( � jq0) is. For �xed B, �(Bjq0) as a funtion of q0 is a versionof the Radon{Nikod�ym derivative dJ+(B � � )=dP( � ) beauseZq02C �(Bjq0)P(dq0) (66)= Zq02C p(B �Qjq0) dJ+(Q� � )dP( � ) (q0)P(dq0) == J+(Q�Q) Zq02Q p(B � Cjq0) J+(Q� dq0)J+(Q�Q) (65)= J+(B � C):25



Aording to the theorem on regular onditional probabilities that we used, � is de�neduniquely up to hanges on a P-null set of q0s.Now we hek the equivariane of the jump rates �: for any B � Q,L�P(B) (16)= Zq02Q �(Bjq0)P(dq0)� Zq2B �(Qjq)P(dq) = J+(B �Q)� J+(Q� B) ;using that � is a version of the Radon{Nikod�ym derivative of J+ relative to P. Sine Jis anti-symmetri with respet to the permutation mapping (q; q0) 7! (q0; q) on Q�Q,we have that J+(C � B) = J�(B � C), and thereforeL�P(B) = J+(B �Q)� J�(B �Q) = J(B �Q) == 2~ Im�(B �Q) (64)= 2~ Im h	jP (B)Hj	i:It remains to be shown that Pt(B) = he�iHt=~	jP (B) e�iHt=~	i is di�erentiable withrespet to time at t = 0 and has derivativedPt(B)dt ���t=0 = 2~ Im h	jP (B)Hj	i: (67)If 	 lies in the domain of H, 	t = e�iHt=~	 is di�erentiable with respet to t at t = 0[28, p. 265℄ and has derivative _	 = � i~H	. Hene1t�h	tjP (B)	ti � h	0jP (B)	0i�=h	tjP (B)j(	t �	0)= t i+ h(	t � 	0)= t jP (B)	0ionverges, as t! 0, toh	jP (B) _	i+ h _	jP (B)	i = � i~h	jP (B)H	i+ i~hH	jP (B)	i = 2~Imh	jP (B)H	i:It now follows that L�P = dP=dt, whih ompletes the proof. �We remark that if, as supposed in Theorem 1, the measure � exists, it is also unique.This follows from the fat, whih we have already mentioned, that a (omplex) measureon Q�Q is uniquely determined by its values on the produt sets B � C.Another remark onerns how the (existene) assumption of Theorem 1 an be vi-olated. Sine the example Hamiltonian of Setion 3.5 leads to in�nite jump rates, italso provides an example for whih the assumption of Theorem 1 is violated, in fat forevery nonzero 	 2 H . To see this diretly, note that, while P (B)	 lies indeed in theform domain of H (whih is H sine H is bounded),h	jP (B)HP (C)j	i = i ZB dq P-ZC dq0 	�(q)	(q0)q � q026



where P- R denotes a prinipal value integral. For B \ C = ;, P- R an be replaed bya Lebesgue integral. This, together with (64), would leave for � only one possibility(up to addition of a omplex measure onentrated on the diagonal f(q; q) : q 2 Qg),namely �(dq � dq0) = i	�(q)	(q0)q � q0 dq dq0:But this is not a omplex measure for any 	 sine i	�(q)	(q0)=(q� q0) is not absolutelyintegrable. This example also niely illustrates the di�erene between a omplex bi-measure �(B;C), i.e., a omplex measure in eah variable, and a omplex measure �( � )on Q � Q: h	jP (B)HP (C)j	i is here a omplex bi-measure and thus de�nes a �nite-valued additive set funtion on the family of �nite unions of produt sets B�C � Q�Q,whih, however, annot be suitably extended to all sets A � Q�Q. The essential reasonis that the positive and the negative singularity in 1=(q � q0) anel (thanks to the useof prinipal value integrals) for every produt set but do not for some nonprodut setssuh as f(q; q0) : q > q0g. In ontrast, a (�nite) non-negative bi-measure an always beextended to a (�nite) measure on the produt spae; see Setion 4.4.A related remark on the need for the existene assumption of Theorem 1. One mightwell have imagined that the omplex measure � on Q�Q, extending (64) from produtsets, an always be onstruted, at least when H is bounded, as the quantum expetedvalue of the bounded-operator-valued measure (BOVM) P �H P on Q � Q, the \H-twisted produt measure" P (dq)HP (dq0) of the POVM P with itself|or, equivalently,the produt of the POVM P (dq) and the BOVM HP (dq0). Indeed, the nonexisteneof � for the Hamiltonian in the prinipal-value example that we have just disussed, aswell as for the Hamiltonian in the Fourier-transform example at the beginning of thissetion, implies that P �H P does not exist as a BOVM in these ases; if it did, so would�, for all 	. The Fourier-transform example an also easily be adapted to show that theprodut P1 � P2 of two POVMs need not exist as a BOVM, and in fat does not existwhen P1 and P2 are the most familiar PVMs for quantum mehanis, orrespondingrespetively to position and momentum. There is, however, an important speial asefor whih the produt P1 � P2 of two POVMs does exist, in fat as a POVM, namelywhen P1 and P2 mutually ommute, i.e., when [P1(B); P2(C)℄ = 0 for all B and C. Thiswill be disussed in Setion 4.4.4.2 Integral OperatorsIn this setion we make preise the statement that Hamiltonians with (suÆiently reg-ular) kernels lead to �nite jump rates. In partiular, we speify a set of wave funtions,depending on H; that lead to �nite jump rates.4.2.1 Hilbert{Shmidt OperatorsWe begin with the simple ase in whih 	 is a omplex-valued wave funtion on Q, sothat the natural on�guration POVM P ( � ) is a \nondegenerate" PVM. What �rst omes27



to mind as a lass of Hamiltonians possessing a kernel is the lass of Hilbert{Shmidtoperators; for these, the kernels are in fat square-integrable funtions on Q�Q.Corollary 1 Let Q be a standard Borel spae, H = L2(Q; C ; dq) with respet to a �-�nite nonnegative measure on Q that we simply denote dq, let 	 2H with k	k = 1, letH be a self-adjoint operator on H , and let P be the natural PVM on Q (multipliationby indiator funtions) ating on L2(Q; C ; dq). Suppose that H is a Hilbert{Shmidtoperator. Then, by virtue of Theorem 1, the jump rates given by (1) are well-de�nedand �nite P-almost everywhere, and equivariant. In fat, the jump rates are given by(19) with hqjHjq0i the kernel funtion of H.Proof. Sine H is a Hilbert{Shmidt operator, it possesses an integral kernel K(q; q0)that is a square-integrable funtion [28, p. 210℄, i.e., there is a funtion K 2 L2(Q �Q; C ; dq dq0) suh that for all � 2H ,H�(q) = ZQ K(q; q0) �(q0) dq0 :Thus, for all �;�0 2H ,h�jHj�0i = ZQ dq ZQ dq0��(q)K(q; q0) �0(q0) =(by Fubini's theorem, beause the integrand is absolutely integrable)= ZQ�Q dq dq0��(q)K(q; q0) �0(q0):It follows thath	jP (B)HP (C)j	i = ZQ�Q dq dq0 1B(q)	�(q)K(q; q0) 1C(q0)	(q0) = (68a)= ZB�C dq dq0	�(q)K(q; q0)	(q0): (68b)Note that sine H is bounded, its form domain is H and thus ontains all P (B)	. ForA � Q�Q, de�ne �(A) = ZA 	�(q)K(q; q0)	(q0) dq dq0 :Sine ZQ�Q j	(q)j jK(q; q0)j j	(q0)j dq dq0 <1 ;28



�(A) is always �nite, and thus a omplex measure. (68) entails that (64) is satis�ed, sothat Theorem 1 applies. �We have already remarked that every Hamiltonian H an be approximated byHilbert{Shmidt operators Hn. In this ontext, it is interesting to note that if H isitself a Hilbert{Shmidt operator, and if the Hn onverge to H in the Hilbert{Shmidtnorm, then the rates �	;Hn onverge to �	;H in the sense thatZQ�Q ���	;Hn(dqjq0)� �	;H(dqjq0)�� j	(q0)j2 dq0 n!1�! 0:4.2.2 Complex-Valued Wave FuntionsIn addition to the ase of Hilbert{Shmidt operators, Theorem 1 applies in many otherases, in whih the kernel K(q; q0) is not square-integrable, nor even a funtion butinstead a measure K(dq�dq0). More preisely, K(dq�dq0) should be a �-�nite omplexmeasure, i.e., a produt of a omplex-valued measurable funtion Q � Q ! C and a�-�nite nonnegative measure on Q � Q. (Note that this terminology involves a slightabuse of language sine a �-�nite omplex measure need not be a omplex measure.)The omplex measure � assumed to exist in Theorem 1 is then�(dq � dq0) = 	�(q)K(dq � dq0)	(q0) : (69)This equation suggests that the minimal amount of regularity that we need to assume onthe kernel of H is that it be a �-�nite omplex measure. Otherwise, there would be nohope that (69) ould be a omplex measure for a generi wave funtion 	, that vanishesat most on a set of measure 0. The exat onditions that we need for applying Theorem1 to a Hamiltonian H with kernel K(dq � dq0) are listed in the following statement:Corollary 2 Let Q be a standard Borel spae, H = L2(Q; C ; dq) with respet to a �-�nite nonnegative measure on Q that we simply denote dq, let 	 2 H with k	k = 1,let H be a self-adjoint operator on H , and let P be the natural PVM on Q atingon L2(Q; C ; dq). Suppose that H has a kernel K(dq � dq0) for 	; i.e., suppose thatK(dq� dq0) is a �-�nite omplex measure on Q�Q, and that some everywhere-de�nedversion 	 : Q ! C of the almost-everywhere-de�ned funtion 	 2 L2(Q; C ; dq) satis�esZQ�Q j	(q)j jK(dq � dq0)j j	(q0)j <1 (70a)P (B)	 2 form domain(H) 8B � Q (70b)h	jP (B)HP (C)j	i = ZB�C 	�(q)K(dq � dq0)	(q0) 8B;C � Q: (70)Then, by virtue of Theorem 1, the jump rates given by (1) are well-de�ned and �niteP-almost everywhere, and they are equivariant if 	 2 domain(H).29



Proof. Set �(A) = ZA 	�(q)K(dq � dq0)	(q0) : (71)The integral exists beause of (70a) and de�nes a omplex measure �, whih satis�es(64) beause of (70). �We remark that the hoie of the everywhere-de�ned version 	 : Q ! C of thealmost-everywhere-de�ned funtion 	 2 L2(Q; C ; dq) does not a�et the jump rates,sine the measure � is uniquely determined by its values on produt sets, whih aregiven in (64) in terms of the almost-everywhere-de�ned funtion 	 2H .The reader may be surprised that our notion of H having a kernel K seems todepend on 	, whereas one may expet that H either has a kernel or does not, inde-pendent of 	. The reason for our putting it this way is that domain questions are verydeliate for suh general kernels, and it is a triky question for whih 	's the expres-sion h	jP (B)HP (C)j	i is atually given by the integral (70). A disussion of domainquestions would only obsure what is atually relevant for having a situation in whihTheorem 1 applies, whih is (70). Note, though, that if H has kernel K(dq � dq0) for	, then it has kernel K also for every 	0 from the subspae spanned by P (B)	 for allB � Q.The onditions (70) beome very transparent in the following ase: Suppose H is aself-adjoint extension of the integral operator K arising from a kernel K(q; dq0) that isa �-�nite omplex measure on Q for every q 2 Q and is suh that for every B � Q,K(q; B) is a measurable funtion of q. K is de�ned byK�(q) = Zq02Q K(q; dq0) �(q0) (72)on the domain D ontaining the �'s satisfyingZq02Q jK(q; dq0)j j�(q0)j <1 for almost every q (73)and ZQ K(q; dq0) �(q0) is an L2 funtion of q: (74)That H is an extension of K means that the domain of H ontains D , and H� = K�for all � 2 D . Then, for a 	 2 D satisfyingZq02B K(q; dq0)	(q0) 2 L2(Q; C ; dq) 8B � Q (75)and ZQ�Q j	(q)j jK(q; dq0)j j	(q0)j dq <1; (76)30



onditions (70) are satis�ed with K(dq � dq0) = K(q; dq0) dq, and thus Corollary 2applies. The jump rates (1) an still be written as in (19), understood as a measure inq. Corollary 2 de�nes a set of good 	's, for whih the jump rates are �nite, for theexamples of Setions 3.1, 3.4, and for (38a).4.2.3 Vetor-Valued Wave FuntionsWe now onsider wave funtions with spin, i.e., with values in C k . In this ase, let	�(q) denote, as before, the adjoint spinor, and ��(q)	(q) the inner produt in C k .Corollary 2 remains true if we replae C by C k everywhere and understand K(dq�dq0) asmatrix-valued, i.e., as the produt of a matrix-valued funtion and a �-�nite nonnegativemeasure. The proof goes through without hanges.Let us now be a bit more general and allow the value spae of the wave funtion tovary with q; we reformulate Corollary 2 for wave funtions that are ross-setions of avetor bundle E over Q. The kernel is then matrix valued in the sense that hqjHjq0i isa linear mapping Eq0 ! Eq.Corollary 3 Let Q = SnQ(n) be an (at most) ountable union of (separable) Rieman-nian manifolds, and E = SnE(n) the union of vetor bundles E(n) over Q(n), wherethe �ber spaes Eq are endowed with Hermitian inner produts, whih we denote by��(q)	(q). Let H = L2(E; dq) be the spae of square-integrable (with respet to theRiemannian volume measure that we denote dq) ross-setions of E, let 	 2 H withk	k = 1, let H be a self-adjoint operator on H , and let P be the natural PVM on Qating on H . Suppose that K(dq � dq0), the produt of a �-�nite nonnegative measureon Q�Q and a setion of the bundle Sq;q0 Eq
E�q0 over Q�Q, is a kernel of H for 	;i.e., suppose that some everywhere-de�ned version 	 of the almost-everywhere-de�nedross-setion 	 2 L2(E; dq) satis�es (70a)-(70) (where the integrand on the right handside of (70) should now be understood as involving the Hermitian inner produt of Eq,and (70a) as involving the operator norm of K(dq � dq0)). Then, by virtue of Theorem1, the jump rates given by (1) are well-de�ned and �nite P-almost everywhere, and theyare equivariant if 	 2 domain(H).The proof of Corollary 2 applies here without hanges. (19) remains valid if suitablyinterpreted. Corollary 3 de�nes a set of good 	's, for whih the jump rates are �nite,for the examples of Setions 3.2, 3.3, 3.10, 3.12, and for (39) in ase the sum over i isalways �nite.4.2.4 POVMsWe now proeed to the fully general ase of an arbitrary POVM. First, we provide twoimportant mathematial tools for dealing with POVMs.� Any POVM orresponds to a PVM on a larger Hilbert spae, aording to thefollowing theorem of Naimark [7, p. 142℄: If P is a POVM on the standard Borel31



spae Q ating on the Hilbert spae H , then there is a Hilbert spae Hext � Hand a PVM Pext on Q ating on Hext suh that P ( � ) = P+Pext( � )I with P+ :Hext !H the projetion and I :H !Hext the inlusion, and Hext is the losedlinear hull of fPext(B)H : B � Qg. The pair Hext; Pext is unique in the sensethat if H 0ext, P 0ext is another suh pair then there is a unitary isomorphism betweenHext and H 0ext �xing H and arrying Pext to P 0ext.We all Hext and Pext the Naimark extension of H and P . We reall that forthe Hilbert spae of positive energy solutions of the Dira equation and the orre-sponding POVM introdued earlier, the Naimark extension is given by L2(R3 ; C 4)and its natural PVM; this example indiates that the Naimark extension may be,in pratie, something natural to onsider.� In Corollaries 2 and 3, we were onsidering, for H and P , L2 spaes with theirnatural PVMs. But when we are given an arbitrary PVM on a Hilbert spae, thesituation is not genuinely more general, sine it an be viewed as the natural PVMof an L2 spae. We all this the naturalization of the PVM. It is based on thefollowing version of the spetral theorem (whih an be obtained from the repre-sentation theory of abelian operator algebras, see, e.g., [9℄): If P is a PVM on thestandard Borel spae Q ating on the Hilbert spae H , then there is a measurable�eld of Hilbert spaes8 Hq over Q, a �-�nite nonnegative measure dq on Q, and aunitary isomorphism U :H ! R �Hq dq to the diret integral9 of Hq that arriesP to the natural PVM on Q ating on R �Hq dq. The naturalization is uniquein the sense that if fH 0q g; (dq)0; U 0 is another suh triple, then there is a measur-able funtion f : Q ! (0;1) suh that (dq)0 = f(q) dq and a measurable �eld ofunitary isomorphisms Uq :Hq !H 0q suh that U 0	(q) = f(q)�1=2UqU	(q).A naturalized PVM is similar to a vetor bundle in that with every q 2 Q thereis assoiated a value spae Hq, whih however may be in�nite-dimensional, and	 2 H an be understood as a funtion on Q suh that 	(q) 2 Hq. Of ourse,instead of the di�erentiable struture of a vetor bundle the naturalization of aPVM leads merely to a measurable struture.Thus, the situation with a general POVM is not muh di�erent from the situationwith a vetor bundle, as treated in Corollary 3.For Hilbert{Shmidt operators, the kernel is so well-behaved that no further ondi-tions on 	 are neessary:8A measurable �eld of Hilbert spaes on Q is a family of Hilbert spaes Hq with salar produtshh � j � iiq , endowed with a measurable struture that an be de�ned by speifying a family of ross-setions �i(q) suh that for all i; i0 the funtions q 7! hh�i(q)j�i0 (q)iiq are measurable and for every qthe family �i(q) is total in Hq [18℄.9This is the Hilbert spae of square-integrable measurable ross-setions of the �eld fHqg, i.e., ross-setions �(q) suh that all funtions q 7! hh�i(q)j�(q)iiq are measurable and R hh�(q)j�(q)iiq dq < 1[18℄. 32



Corollary 4 LetH be a Hilbert spae, 	 2H with k	k = 1, H a self-adjoint operatoron H , Q a standard Borel spae, and let P be a POVM on Q ating on H . Supposethat H is a Hilbert{Shmidt operator. Then, by virtue of Theorem 1, the jump ratesgiven by (1) are well-de�ned and �nite P-almost everywhere, and they are equivariant.Proof. Let Pext be the Naimark extension PVM of P ating on Hext � H with P+the projetion Hext ! H , and let U : Hext ! R �Hq dq be a naturalization of Pext.For every q 2 Q, pik an orthonormal basis Iq = fjq; iig of Hq, with measurabledependene on q. When eah set Iq is thought of as equipped with the ountingmeasure, then from dq we obtain a measure on I = SqIq, and R �Hq dq is naturallyidenti�ed with L2(I ; C ). Sine H is a Hilbert{Shmidt operator, so is Hext = IHP+,whih thus possesses a kernel funtion K 2 L2(I �I ; C ) suh that for all � 2HextUHext�(q; i) = ZQ dq0 Xi02Iq0 K(q; i; q0; i0)U�(q0; i0):Sine h	jP (B)HP (C)j	i = h	jPext(B)HextPext(C)j	i ;we have, for the same reasons as in the proof of Corollary 1, thath	jP (B)HP (C)j	i = ZB�C dq dq0Xi2Iq Xi02Iq0 U	�(q; i)K(q; i; q0; i0)U	(q0; i0) : (77)For A � Q�Q, set�(A) = ZA dq dq0Xi2Iq Xi02Iq0 U	�(q; i)K(q; i; q0; i0)U	(q0; i0):Sine U	�(q; i)K(q; i; q0; i0)U	(q0; i0) is absolutely summable and integrable over q; i; q0,and i0, �(A) is �nite, and thus a omplex measure. (77) entails that (64) is satis�ed.Thus Theorem 1 applies. �We now provide the most general version of our statement about jump rates forHamiltonians with kernel measures. LetB(Hq0;Hq) denote the spae of bounded linearoperators Hq0 !Hq with the operator normjOj = sup�2Hq0 ;�6=0 kO�kk�k :For the norm of 	(q) in Hq, hh	(q)j	(q)ii1=2q , we also write j	(q)j.Corollary 5 LetH be a Hilbert spae, 	 2H with k	k = 1, H a self-adjoint operatoron H , Q a standard Borel spae, and P a POVM on Q ating on H . Let Pext be theNaimark extension PVM of P ating on Hext � H , and U : Hext ! R �Hq dq the33



naturalization of Pext. Suppose that H has a kernel K(dq � dq0) for 	 in the positionrepresentation de�ned by P ; i.e., suppose that K(dq � dq0) is the produt of a �-�nitenonnegative measure on Q�Q and a measurable ross-setion of the �eld B(Hq0 ;Hq)over Q � Q, that 	 satis�es (70b), and that some everywhere-de�ned version 	(q) ofthe almost-everywhere-de�ned ross-setion U	 2 R �Hq dq satis�es (70a) and (70)(where the integrand on the right hand side of (70) is understood as involving theinner produt of Hq). Then, by virtue of Theorem 1, the jump rates given by (1) arewell-de�ned and �nite P-almost everywhere, and they are equivariant if 	 2 domain(H).The proof of Corollary 2 applies here without hanges if one understands	�(q)K(dq � dq0)	(q) as meaning hh	(q)jK(dq � dq0)	(q0)iiq. Corollary 5 de�nes aset of good 	's, for whih the jump rates are �nite, for the examples of Setions 3.7,3.8, and 3.9.4.3 Global Existene QuestionThe rates �t and veloities vt, together with Pt, de�ne the proess Qt assoiated withH;P , and 	, whih an be onstruted along the lines of Setion 2.3. However, therigorous existene of this proess, like the global existene of solutions for an ordinarydi�erential equation, is no trivial matter. In order to establish the global existene ofthe proess (see [15℄ for an example), a variety of aspets must be ontrolled, inludingthe following: (i) One has to show that for a suÆiently large set of initial state vetors,the relevant onditions for �niteness of the jump rates, see Setions 4.1 and 4.2, aresatis�ed at all times. (ii) One has to show that there is probability zero that in�nitelymany jumps aumulate in �nite time. (iii) One has to show that there is probabilityzero that the proess runs into a on�guration where � is ill de�ned (e.g., where thedenominator of (19) vanishes, if that equation is appropriate).4.4 Extensions of Bi-MeasuresWe have pointed out in the next-to-last paragraph of Setion 4.1 that a omplex bi-measure need not possess an extension to a omplex measure on the produt spae, afat relevant to the onditions for �nite rates. In this setion we show, see Theorem 2below, that nonnegative real bi-measures always possess suh an extension.A useful orollary of Theorem 2, see Corollary 7 below, asserts that one an form thetensor produt of any two POVMs. This is a speial ase of the more general statement,see Corollary 6 below, asserting that one an form the produt of any two POVMsthat ommute with eah other; this statement an be regarded as the generalizationfrom PVMs to POVMs of the fat that two ommuting observables an be measuredsimultaneously; it is also related to the disussion in the last paragraph of Setion 4.1.Though we ould not �nd the expliit statement of Corollary 6 in this form in theliterature, it does follow from a part of a proof given by Halmos [20, p. 72℄. Below,however, we give a somewhat di�erent proof, using Theorem 2 instead of the lemma of34



von Neumann [33, p. 167℄ that Halmos uses. It is also presumably possible to deriveCorollary 6 from Lemma 2.1 or Theorem 2.2 of [7℄.Theorem 2 Let Q1 and Q2 be standard Borel spaes with �-algebras A1 and A2, andlet �( � ; � ) be a �nite nonnegative bi-measure, i.e., a mapping � : A1 � A2 ! [0; a℄,a > 0, that is a measure in eah variable when the other variable is a �xed set. Then� an be extended to a measure � on Q1 �Q2: there exists a unique �nite nonnegativemeasure � : A1 
A2 ! [0; a℄ suh that for all B1 2 A1 and B2 2 A2,�(B1 �B2) = �(B1; B2): (78)Proof. Suppose �rst that Q1 is �nite or ountably in�nite. Then every set A 2 A1
A2is an (at most) ountable union of produt sets,A = [q12Q1fq1g � Bq1;where every Bq1 2 A2. Therefore, the unique way of extending � is by setting�(A) := Xq12Q1 �(fq1g; Bq1): (79)One easily heks that (79) indeed de�nes a �nite measure satisfying (78), noting �rstthat the sum is always �nite beauseP �(fq1g; Bq1) �P �(fq1g;Q2) = �(Q1;Q2). Thesame argument an of ourse be applied if Q2 is �nite or ountably in�nite.Suppose now that neither Q1 nor Q2 is �nite or ountable. Every unountablestandard Borel spae Q is isomorphi, as a measurable spae, to the spae of binarysequenes f0; 1gN (equipped with the �-algebra generated by the family B of sets thatdepend on only �nitely many terms of the sequene), i.e., there exists a bijetion ' :Q ! f0; 1gN that is measurable in both diretions, see [24, p. 138℄ and [23, p. 358℄.We may thus assume, without loss of generality, that Q1 = f0; 1gf�1;�2;�3;:::g and Q2 =f0; 1gf0;1;2;:::g, with Bi de�ned aordingly. Q1 � Q2 an then be anonially identi�edwith f0; 1gZ.From the restrition of � to sets B1 2 B1 and B2 2 B2, one easily obtains a onsis-tent family of �nite-dimensional distributions, and hene, by the Kolmogorov extensiontheorem, e.g. [6, p. 24℄, a unique measure � on Q1 � Q2 obeying (78) for all B1 2 B1and B2 2 B2.It remains to establish (78) for all B1 2 A1 and B2 2 A2. First �x B2 in B2. Then�( � �B2) and �( � ; B2) are measures on A1 that agree on B1. Hene they agree on A1.Thus, �xing B1 in A1, we have that �(B1 � � ) and �(B1; � ) are measures on A2 thatagree on B2, and hene on all of A2, ompleting the proof. �In the following, we will again write B1 � Q1 instead of B1 2 A1.Corollary 6 Let H be a Hilbert spae, Q1 and Q2 standard Borel spaes, and P1 andP2 POVMs on Q1 and Q2 respetively, ating on H . If [P1(B1); P2(B2)℄ = 0 for all35



B1 � Q1 and B2 � Q2, then there exists a unique POVM P on Q1 �Q2 ating on Hsuh that for all B1 � Q1 and B2 � Q2,P (B1 � B2) = P1(B1)P2(B2): (80)Proof. (We largely follow [20, p. 72℄.) For 	 2H we de�ne a bi-measure �	 by setting�	(B1; B2) := h	jP1(B1)P2(B2)j	i. �	 is obviously a omplex bi-measure, and it takesvalues only in the nonnegative reals beause P1(B1)P2(B2) is a positive operator (sinethe two positive operators P1(B1) and P2(B2) an be simultaneously diagonalized). Thevalues of �	 are bounded by k	k2. By Lemma 2, �	 an be extended to a measure �	on Q1 �Q2.We now de�ne omplex measures ��;	 on Q1 � Q2 by \polarization": for everyA � Q1 �Q2 and for every pair of vetors �;	 we write��;	(A) := � 12�+ 12	(A)� � 12�� 12	(A) + i� 12�� i2	(A)� i� 12�+ i2	(A): (81)We assert that ��;	(A) is, for eah �xed set A, a symmetri bilinear funtional. Thisassertion is proved by noting that (i) it is true if A = B1 � B2, and (ii) the lass ofall sets for whih it is true is losed under the formation of omplements and ountableunions. To see (ii), note that ��;	(A) = ��;	(Q1�Q2)���;	(A) and ��;	(S1k=1Ak) =limn!1Pnk=1 ��;	(Ak).Sine �	;	(A) = �	(A) � k	k2 for every A � Q1 � Q2, the bilinear funtional��;	(A) is bounded and has, in fat, a norm � 1. Therefore, there is a boundedoperator P (A) suh that ��;	(A) = h�jP (A)j	i. P (A) is positive sine �	;	(A) � 0for every 	. P ( � ) is ountably additive in the weak operator topology beause ��;	( � )is ountably additive. P ( � ) satis�es (80), and thus P (Q1 �Q2) = I. �Note that P1 need not be a ommuting POVM, i.e., possibly [P1(B1); P1(C1)℄ 6= 0,and orrespondingly for P2.An immediate onsequene of Corollary 6, whih we use in several plaes of [12℄, isCorollary 7 Let H1 and H2 be Hilbert spaes, Q1 and Q2 standard Borel spaes, andP1 and P2 POVMs on Q1 and Q2 respetively, ating on H1 and H2 respetively. Thenthere exists a unique POVM P on Q1�Q2 ating onH1
H2 suh that for all B1 � Q1and B2 � Q2, P (B1 � B2) = P1(B1)
 P2(B2): (82)5 MinimalityIn this setion we explain in what sense the minimal jump rates (1)|or (19) or (38a)|are minimal. In so doing, we will also explain the signi�ane of the quantity J de�nedin (25), and larify the meaning of the steps taken in Setions 2.4 and 2.5 to arrive atthe jump rate formulas. 36



Given a Markov proess Qt on Q, we de�ne the net probability urrent jt at time tbetween sets B and B0 byjt(B;B0) = lim�t&0 1�t hProb�Qt 2 B0; Qt+�t 2 B	� (83)�Prob�Qt 2 B;Qt+�t 2 B0	i :This is the amount of probability that ows, per unit time, from B0 to B minus theamount from B to B0. For a pure jump proess, we have thatjt(B;B0) = Zq02B0 �t(Bjq0) �t(dq0)� Zq2B �t(B0jq) �t(dq) ; (84)so that jt(B;B0) = j�;�(B � B0) (85)where j�;� is the signed measure, on Q�Q, given by the integrand of (16),j�;�(dq � dq0) = �(dqjq0) �(dq0)� �(dq0jq) �(dq) : (86)For minimal jump rates �, de�ned by (1) or (19) or (38a) (and with the probabilities �given by (21), � = P), this agrees with (25), as was noted earlier,j�;� = J	;H;P ; (87)where we have made expliit the fat that J is de�ned in terms of the quantum entities	; H, and P . Note that both J and the net urrent j are anti-symmetri, Jtr = �J andjtr = �j, the latter by onstrution and the former beause H is Hermitian. (Here trindiates the ation on measures of the transposition (q; q0) 7! (q0; q) on Q � Q.) Theproperty (87) is stronger than the equivariane of the rates �, L�Pt = dPt=dt: Sine,by (16), (L��)(dq) = j�;�(dq �Q); (88)and, by (25), dPdt (dq) = J(dq�Q); (89)the equivariane of the jump rates � amounts to the ondition that the marginals ofboth sides of (87) agree, j�;�(dq �Q) = J(dq�Q) : (90)In other words, what is speial about proesses with rates satisfying (87) is that notonly the single-time distribution but also the urrent is given by a standard quantumtheoretial expression in terms of H;	, and P . That is why we all (87) the standard-urrent property|de�ning standard-urrent rates and standard-urrent proesses.Though the standard-urrent property is stronger than equivariane, it alone doesnot determine the jump rates, as already remarked in [2, 29℄. This an perhaps be best37



appreiated as follows: Note that (86) expresses j�;� as twie the anti-symmetri part ofthe (nonnegative) measure C(dq � dq0) = �(dqjq0) �(dq0) (91)on Q� Q whose right marginal C(Q� dq0) is absolutely ontinuous with respet to �.Conversely, from any suh measure C the jump rates � an be reovered by forming theRadon{Nikod�ym derivative �(dqjq0) = C(dq � dq0)�(dq0) : (92)Thus, given �, speifying � is equivalent to speifying suh a measure C.In terms of C, the standard-urrent property beomes (with � = P)2AntiC = J: (93)Sine (realling that J = J+� J� is anti-symmetri)J = 2Anti J+; (94)an obvious solution to (93) is C = J+;orresponding to the minimal jump rates. However, (87) �xes only the anti-symmetripart of C. The general solution to (93) is of the formC = J+ + S (95)where S(dq � dq0) is symmetri, sine any two solutions to (93) have the same anti-symmetri part, and S � 0, sine S = C ^ Ctr, beause J+ ^ (J+)tr = 0.In partiular, for any standard-urrent rates, we have thatC � J+; or �(dqjq0) � J+(dq � dq0)P(dq0) : (96)Thus, among all jump rates onsistent with the standard-urrent property, one hoie,distinguished by equality in (96), has the least frequent jumps, or the smallest amountof stohastiity: the minimal rates (1).6 Remarks6.1 SymmetriesQuantum theories, and in partiular QFTs, often have important symmetries. To name afew examples: spae translations, rotations and inversion, time translations and reversal,Galilean or Lorentz boosts, global hange of phase 	! ei�	, and gauge transformations.38



This gives rise to the question whether the proess Qt of the orresponding Bell-type QFT respets these symmetries as well. Exept for Lorentz invariane, whih isdiÆult in that Lorentz boosts fail to map equal-time on�gurations into equal-timeon�gurations, the answer is yes; a disussion is given in [12, Se. 6.1℄. An essentialingredient of this result is the manifest fat that the minimal jump rates (1) inherit thesymmetries of the Hamiltonian (under whih the POVM transforms ovariantly).6.2 Homogeneity of the RatesThe minimal jump rates (1) de�ne a homogeneous funtion of degree 0 in 	, i.e., ��	 =�	 for every � 2 C n f0g. This property is noteworthy sine it forms the essentialmathematial basis for a number of desirable properties of theories using suh jump rates(suh as that of [11℄): (i) that (when P is a produt PVM) unentangled and deoupledsubsystems behave independently and follow the same laws as the entire system, (ii) that\ollapsed-away," i.e., suÆiently distant, parts of the wave funtion do not inuene thefuture behaviour of the on�guration Qt, (iii) invariane under a global hange of phase	 ! ei�	, (iv) invariane under the replaement 	 ! e�iEt=~	 for some onstant E,whih orresponds to adding E to the total Hamiltonian, (v) invariane under relabelingof the partiles (whih may ause a replaement 	! �	 due to the Pauli priniple).6.3 H +EAdding a onstant E to the interation Hamiltonian will not hange the jump rates (1)provided P is a PVM. This is beause h	jP (B)EP (C)j	i = E h	jP (B \ C)j	i hasvanishing imaginary part. For a POVM, however, this need not be true.6.4 Nondegenerate EigenstatesAs mentioned earlier, after (19), it is a onsequene of the minimal jump rate formula(1), in fat of the very minimality, that at eah time t either �(qjq0) or �(q0jq) is zero. Itfollows that for a time-reversible Hamiltonian H and POVM P , all jump rates vanishif 	 is a nondegenerate eigenstate of H. This is beause, in the simplest ases, hqjHjq0iis real, and the oeÆients hqj	i an also be hosen real, or, more generally and moreto the point, beause in this ase the proess must oinide with its time reverse, whihimplies that the urrent from q to q0 is as large as the one from q0 to q, so that minimalityrequires both to vanish.6.5 Left or Right ContinuityFrom what we have said so far, there remains an ambiguity as to whether Qt at the jumptimes should be the point of departure or the destination, in other words, whether therealization t 7! Qt should be hosen to be left or to be right ontinuous. Although wethink there is not muh physial ontent to this question, we should point out that de-manding either left or right ontinuity will destroy time-reversal invariane (f. Setion39



6.1). A presription that preserves time-reversal invariane an, however, be devisedprovided the possible jumps an be divided into two lasses, A and B, in suh a waythat the time reverse of a lass-A jump neessarily belongs to lass B and vie versa.Then lass-A jumps an be hosen left ontinuous and lass-B as right ontinuous. Anexample is provided by the model of [11℄: sine at every jump the number of partileseither inreases or dereases, the jumps naturally form two lasses (\reation" and \an-nihilation"), and the time reverse of a reation is an annihilation. The presription ouldbe that if a partile is reated (annihilated) at time t, then Qt already (still) ontains theadditional partile. But the opposite rule would be just as onsistent with time-reversalsymmetry, and we an see no ompelling reason to prefer one rule over the other.7 ConlusionsWe have investigated the possibility of understanding QFT as a theory about movingpartiles, an idea pioneered, in the realm of nonrelativisti quantum mehanis, by deBroglie and Bohm. The models proposed by Bell [3℄ and ourselves [11℄ turn out to berather universal; that is, their onstrution an be transferred to a variety of situations,involving di�erent Hamiltonians and on�guration spaes, and invoking formulas of aanonial harater.One ingredient of the onstrution is the use of stohasti jumps whose rates aredetermined by the quantum state vetor (and the Hamiltonian). These rates an bespei�ed through an expliit formula (1) that has a status similar to the veloity for-mula in Bohmian mehanis. We have provided a version of this jump rate formulathat is more general than any previous one. Indeed, it seems to be the most generalversion possible: we need assume merely that the on�guration spae Q is a measurablespae (the weakest notion of \spae" available in mathematis), that the Hamiltonian iswell-de�ned, and that Q and the Hilbert spae are related through a generalized posi-tion observable (a positive-operator-valued measure, or POVM, the most general notionavailable in quantum theory of how a vetor in Hilbert spae may de�ne a probabilitydistribution). We have shown that these jump rates are well-de�ned and �nite if theinteration Hamiltonian possesses a suÆiently regular kernel in the position represen-tation de�ned by the POVM.We have also indiated that in a Bell-type QFT, the di�erent ontributions to theHamiltonian orrespond to di�erent ontributions to the motion of the on�guration Qt.The relevant fat is proess additivity, i.e., that the generator of the Markov proess Qt isadditive in the Hamiltonian. The free proess usually onsists of ontinuous trajetories,Bohmian or similar, an observation already made in [11℄ for the model onsidered there.Exploiting proess additivity, we obtain that Qt is pieewise deterministi, the pieesbeing Bohm-type trajetories, interrupted by stohasti jumps. Given a Hamiltonianand POVM, our presription determines the Markov proess Qt. As an example, wehave desribed the proess expliitly for a simple QFT.The essential point of this paper is that there is a diret and natural way|a anonialway|of devising a Bell-type version of any QFT.40
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