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me
hani
s, was proposed �fty years ago by David Bohm (and even earlierby Louis de Broglie); see [4℄ for a re
ent overview. Today there remain twobig 
hallenges for this approa
h: to form a relativisti
 version, and a versionsuitable for quantum �eld theory (QFT). Here we shall address the latter.We des
ribe a general and parti
ularly natural way of extending Bohmianme
hani
s to QFTs, expli
itly giving the equations for a simple example.Bohm himself proposed [2, p. 230℄ that Bohmian me
hani
s should beextended to QFT by means of the in
orporation of the a
tual �eld 
on�gu-ration, guided by a wave fun
tional (the state ve
tor). In 
ontrast, John Bellproposed a model [1, p. 173℄ in whi
h, instead of the �eld 
on�guration, thelo
al beables are the fermion numbers at ea
h site of a latti
e dis
retizing 3-spa
e. We argue that it is instru
tive to modify Bell's proposal in two ways,and thus get a similar but even simpler theory with a dire
t 
onne
tion toBohmian me
hani
s. Below, we give an expli
it example of su
h a theory fora parti
ularly simple Hamiltonian.Bell's model 
ontains no beables representing the bosoni
 degrees of free-dom (su
h as radiation), neither an a
tual �eld, nor a
tual parti
les, noranything else; the existen
e of a radiation part of the state ve
tor is relevantonly to the behavior of the fermions. This is 
ertainly 
onsistent and empir-i
ally irrefutable, but it is neither ne
essary (as our example below shows),nor even a natural view.1 In the model proposed below, the bosons have thesame status as the fermions: they are parti
les, des
ribed by their positions.This, of 
ourse, should not be regarded as dis
ouraging 
onsideration of theapproa
h based on a
tual �eld 
on�gurations.The other deviation from Bell's proposal is the repla
ement of the latti
eby 
ontinuous spa
e. The latti
e was introdu
ed in the �rst pla
e for thepurpose of providing an e�e
tive ultraviolet 
ut-o� and thus a well-de�nedHamiltonian. Su
h a 
ut-o�, however, 
an also be realized by smearing outthe intera
tion Hamiltonian through 
onvolution with, say, a sharply peakedbut bounded fun
tion '. The 
ontinuum analogue of the parti
le numberat every latti
e site is the position of all parti
les in ordinary spa
e, withthe total number of parti
les N(t) possibly varying with time. However, in1 After all, if the role of the wave fun
tion is to guide parti
les, it would seem thatthere should be as many parti
les as there are variables in the wave fun
tion. In addition,the Hilbert spa
e of the radiation degrees of freedom (unlike the one for quark 
olor) isnot a purely abstra
t Hilbert spa
e, but is related to spa
e-time points (via 
reation andannihilation operators, for example), a fa
t that would seem surprising if the state ve
torwere not related to spa
e-time obje
ts su
h as parti
les, strings, or �elds.2



the model we propose the parti
les follow Bohmian traje
tories, ex
ept whenthere is parti
le 
reation or annihilation. (For a dis
ussion of how Bohmianme
hani
s arises from a latti
e model (in the absen
e of intera
tion) in thelimit of vanishing latti
e width, see [8, 9℄.)Our proposal pro�ts, we believe, from making this 
onta
t with Bohmianme
hani
s, sin
e then every argument for taking the Bohmian traje
toriesseriously also provides some support for the proposal. Bohmian me
hani
salso pro�ts from this 
onta
t be
ause the Bohmian traje
tories 
an then betaken seriously even in the framework of QFT.Our moving 
on�guration Q(t) is 
onstru
ted in su
h a way that it israndom with distribution at time t equal to �(t) = j	(t)j2, where 	(t) is the(position) Fo
k spa
e representation of the state ve
tor j	(t)i at time t. (Fora model in whi
h there are only bosons, the n-parti
le 
omponent of 	 is	(n)(x1; : : : ;xn) = 1pn! h0ja(x1) � � �a(xn)j	i (1)where j0i is the Fo
k va
uum and a(x) = (2�)�3=2 R d3k eik�x ak is the bo-son annihilation operator at position x.) In parti
ular, the probability thatN(t) = n, i.e., that there are n parti
les at time t, equals the integral of �(t)over K(n) �= (R3)n (suitably symmetrized), the n-parti
le se
tor of 
on�gu-ration spa
e|i.e., the L2 norm of the proje
tion of j	i onto the n-parti
lesubspa
e of Fo
k spa
e. A nontrivial superposition of quantum states withdi�erent parti
le numbers leads to a probability distribution over di�erentparti
le numbers, among whi
h only one is, of 
ourse, a
tually realized.2 Con�guration JumpsThe Hamiltonian for QFTs is typi
ally a sum of terms, ea
h of whi
h yields a
ontribution to the motion we wish to propose. It is quite generally the 
asethat H = H0 + Hint where the free Hamiltonian H0 
orresponds naturallyto a deterministi
 motion|in the model 
onsidered here that of Bohmianme
hani
s, and in a relativisti
 model for example the Bohm{Dira
 motion[2, p. 274℄|given by a (time-dependent) velo
ity �eld v = v	(t)(q; t), on
on�guration spa
e K = [nK(n), that de�nes the \deterministi
 part" ofthe pro
ess, while the intera
tion term Hint 
orresponds to random jumps,a 
ontinuum version of the pro
ess proposed by Bell [1, p. 173℄, de�ned byjump rates � = �(q0; q; t) = �	(t)(q0; q) for a transition from q to q0 at time t.3



[This means that when the a
tual 
on�guration Q at time t is q, then withprobability (density, with respe
t to q0) �(q0; q; t) dt, Q will jump from (verynear) q to q0 in the time-interval (t; t+ dt).℄2The relevant 
ontinuum analogue of Bell's jump rates for H = Hint,equations (6{8) of [1, p. 173℄, is�	(q0; q) = 2~ �� Im	(q)hqjHintjq0i	(q0)�+	(q)	(q) (2)where for parti
les with spin the two produ
ts in the numerator and theprodu
t in the denominator are lo
al spinor inner produ
ts, and where wehave used the notation A+ = max(A; 0) for the positive part of A 2 R. Thiswill typi
ally be well-de�ned (as jump rates), sin
e the kernel hqjHintjq0i ofthe (
ut-o�) intera
tion Hamiltonian of a QFT should involve nothing worsethan Æ-fun
tion singularities.The 
omplete pro
ess, 
orresponding to the total Hamiltonian, is thengiven by the deterministi
 motion with velo
ity v, randomly interrupted byjumps, with rate �, after ea
h of whi
h the deterministi
 motion is resumeduntil it is again interrupted. As a fun
tion of t, ea
h realization Q(t) is thuspie
ewise smooth. At the end of a smooth pie
e, Q jumps to the startingpoint of the next smooth pie
e. What is sto
hasti
 about Q are the timesat whi
h the jumps take pla
e, and the destinations of the jumps. Theprobabilities for times and destinations are governed by the wave fun
tion.Q(t) is a Markov pro
ess.As des
ribed, our pro
ess is so designed as to dire
tly imply the followingequivarian
e theorem: If Q(t0) is 
hosen at random with distribution j	(t0)j2,then at every later time t > t0, Q(t) is distributed with density j	(t)j2. (This
an also be expli
itly 
he
ked by 
omparing the equation for �(		)=�t asimplied by the evolution equation of the quantum state, i~ �	=�t = H	,and the master equation for the distribution of Q(t), whi
h reads��t�(q; t) = �r���(q; t) v(q; t)�+ZKdq0��(q0; t) �(q; q0; t)��(q; t) �(q0; q; t)� : )The 
hoi
e of jump rates that will make the j	j2 distribution equivariantis not unique. But the `minimal' jump rates are unique, and these are the ones2One 
an regard the jumps as having two ingredients: A jump o

urs with total rate��(q; t) = R �(q0; q; t) dq0; when a jump does o

ur, the destination is randomly 
hosen withdistribution �(q0; q; t)=��(q; t). 4



we have 
hosen. Details on the 
hoi
e of jump rates as well as an elu
idationof the general mathemati
al stru
ture underlying equivariant pro
esses willbe presented in [3℄.Corresponding to the standard intera
tion terms in QFT, the possiblejumps are very restri
ted: there are only 
hanges in the parti
le number by�1, and possible types are (i) appearan
e or (ii) disappearan
e of a parti
le(while the others remain at their positions) or (iii) repla
ement of a parti
leby two others or (iv) the reverse of this. Type (i) is appropriate for, e.g.,photon emission, (ii) for absorption, (iii) for pair 
reation and (iv) for pairannihilation. (It follows that there is no dis
ontinuity in the individual par-ti
le world lines, in spite of the dis
ontinuity in Q.) In our expli
it model,only types (i) and (ii) o

ur.3 An Expli
it ModelWe now present an expli
it theory. It is based on a \baby" QFT taken from[6, p. 339℄ and [5℄, 
ontaining two spe
ies of parti
les, whi
h we simply 
allele
trons and photons. Ele
trons, whose number stays 
onstant, emit andabsorb photons. To keep things simple, we employ nonrelativisti
 dispersionrelations (as everything here is nonrelativisti
) for both ele
trons and pho-tons, and give the photon a positive (rest) mass. In addition, we ignore spinand polarization, and, of 
ourse, smoothen the intera
tion Hamiltonian.In �eld theoreti
 language, we have a bosoni
 �eld �(x) = ay(x) + a(x),with ay and a the photon 
reation and annihilation operators [
f. equations(4) and (5)℄ and a fermioni
 �eld  (x), and the Hamiltonian is the sumH = HF +HB + Hint= (1=2mF ) Z d3xr y(x)r (x) + (1=2mB) Z d3xray(x)ra(x)+g Z d3x y(x)�'(x) (x)where �'(x) = R d3y�'(x � y)ay(y) + '(x � y)a(y)� is the 
uto� bosoni
�eld, mF and mB denote the mass of the ele
trons and photons, and g isa real 
oupling 
onstant. H 
ommutes with the fermion number operatorNF = R d3x y(x) (x).Sin
e the fermion number is 
onserved, we give it a �xed value N . The
on�guration spa
e (
hanging notation slightly from before) isK = S1m=0K(m)5



where m is the photon number andK(m) := (R3)N � (R3)m ; K(0) = (R3)N :We will denote the ele
tron 
oordinates by x := x(N) := (x1; : : : ;xN ) andthe photon 
oordinates by y := y(m) = (y1; : : : ;ym). The full 
on�gurationis thus given by q = (x; y) and, more expli
itly, by q(m) = (x; y(m)).In terms of the wave fun
tion 	 [the (position) Fo
k representation of thequantum state℄, the Hilbert spa
e inner produ
t ish�j	i := 1Xm=0 ZK(m)d3Nx d3my �(x; y)	(x; y) ;and the 
ontributions to the Hamiltonian assume the formHF = �Xi ~22mF�iHB = �Xj ~22mB�jand Hint = g NXi=1 �'(xi) = g NXi=1 �ay'(xi) + a'(xi)� (3)with 
reation and annihilation operators ay' and a' a
ting on Fo
k spa
e ina smeared-out form: ay'(x) = Z d3u'(u� x) ay(u)a'(x) = Z d3u'(u� x) a(u);where �ay(u)	�(q(m)) = 1pmXj Æ(yj � u)	(bqj) ; (4)�a(u)	�(q(m)) = pm + 1	�q(m);u�: (5)ay'(x) 
reates a new photon in state ' 
entered at x 2 R3 (whi
h will be theposition of an ele
tron), and a'(x) annihilates a photon with \form fa
tor"6



' at x.3 Here (q(m);u) is the 
on�guration with a photon at u added to q(m)and bqj is the 
on�guration with the j-th photon deleted from q(m). Thus(Hint	)(q(m)) = gpm NXi=1 mXj=1 '(yj � xi)	�bqj� (6)+ gpm+ 1 NXi=1 Z d3y0 '(y0 � xi)	�q(m);y0� :	 satis�es the Pauli prin
iple, i.e., it is symmetri
 in the photon variablesand antisymmetri
 in the ele
tron variables.We now turn to the parti
les, des
ribed by the a
tual ele
tron 
on�gura-tion X and the a
tual photon 
on�guration Y . The deterministi
 part of themotion Q(t) = (X(t); Y (t)), 
orresponding to HF +HB, is the usual Bohmmotion _X i = v	F;i(Q) := ~mF Im ��	=�xi�(Q)	(Q) ; (7)_Y j = v	B;j(Q) := ~mB Im ��	=�yj�(Q)	(Q) (8)and it follows from (2) and (6) that only two kinds of jumps o

ur, with ratesas follows:� The j-th photon vanishes, while all the other parti
les stay at theirpositions. Thus q0 = bqj and the jump rate from q = q(m) to q0 is�(q0; q) = 2g~pmh� NXi=1 Im 	(bqj)'(yj � xi)	(q) i+: (9)� A new photon appears at y0, while all the other parti
les stay at theirpositions. Thus q0 = (q(m);y0) and the jump rate from q = q(m) to q0(a density in the variable y0) is�(q0; q) = 2g~ pm + 1h� NXi=1 Im 	(q;y0)'(y0 � xi)	(q) i+: (10)3If the form fa
tor ' is square-integrable (as we assume) it provides an ultraviolet
uto�; it 
an be regarded as determining the e�e
tive range of a ele
tron's power to 
reateor absorb a photon. 7



We reiterate that these 
hoi
es guarantee that the pro
ess obeys the equiv-arian
e theorem mentioned in the previous se
tion.Note that, 
ontrary to what might have been expe
ted, the 
reation op-erator in the intera
tion Hamiltonian (3) 
orresponds, a

ording to (2), tothe annihilation rate, while the annihilation operator 
orresponds to the 
re-ation rate. There is less in this than meets the eye: The 
orresponden
e isan artifa
t of the way (2) is written, and if (2) had been written equivalentlyas �	(q0; q) = 2~ � Im	(q0)hq0jHintjqi	(q)�+	(q)	(q) (11)the 
orresponden
e would have been reversed. Note also that if ' is supportedby a Æ-ball around the origin of R3 , then photons 
an be 
reated or annihilatedonly in the Æ-neighborhood of an ele
tron.4Our model is translation invariant (unless one introdu
es an additionalexternal potential), time translation invariant, rotation invariant provided' is spheri
ally symmetri
, time reversal invariant provided ' is real-valued,and gauge invariant provided one introdu
es an external ve
tor potential|inall derivatives a
ting on ele
tron 
oordinates|and an external s
alar poten-tial into HF. Galilean boost invarian
e fails, but not be
ause of the Bohmianvariables; owing to the intera
tion term (6), it fails, in fa
t, for the evolu-tion of the quantum state. The reason is that, roughly speaking, a photongets 
reated with wave fun
tion ' whi
h 
annot be Galilean invariant. Al-ternatively, one 
ould say that under boosts with velo
ity u the form fa
tor'(y � x) must be repla
ed by exp (imBu � y=~)'(y � x). Note that evenwith the 
uto� removed, i.e., for '(y) = Æ(y), the quantum dynami
s is notGalilean invariant.If we add to H a suitable 
on�ning potential (and ' is real-valued, andthe rest energy of the photon is made positive), it possesses a unique groundstate [7℄, and this ground state (like every nondegenerate eigenstate) is realup to an overall phase. Thus in this state the jump rates (9), (10) as wellas the velo
ities (7), (8) vanish identi
ally|nothing moves. Surprisingly,perhaps, the Bohmian parti
les do not perform any \va
uum 
u
tuations".4 One might suspe
t that if Æ were small, there would be only a small probability(perhaps of order Æ3) that a photon will 
ome 
loser than Æ to an ele
tron. But equivarian
eimplies that this is not so: if a 
ertain amount of j	(m)j2 
ows to the se
tor K(m�1), thenthe probability for a photon to be annihilated is just as large.8



As in Bohmian me
hani
s, disentangled subsystems are governed by thesame laws as for the whole. More pre
isely, if � and 	 are two wave fun
tionsfrom Fo
k spa
e having disjoint supports S� and S	 in physi
al spa
e R3 ,�
	 de�nes another Fo
k state ��	 after suitable symmetrization; if thedistan
e between S� and S	 is at least the diameter Æ of the support of ',then in a system with wave fun
tion �� 	 the parti
les in S� and those inS	 will not in
uen
e ea
h other, ea
h set moving independently a

ordingto the 
orresponding `fa
tors'. This is a 
onsequen
e of the fa
t that thevelo
ities and jump rates are homogeneous of degree 0 in the wave fun
tion.While the other parti
les keep their positions when a photon is 
reatedor annihilated, their velo
ities may 
hange dis
ontinuously be
ause (7) eval-uated at the destination may di�er from (7) evaluated at the point of de-parture. As a result, the world lines of all (possibly distant) parti
les, ifthe parti
les are entangled, will have kinks at the times of parti
le 
reationor annihilation. These kinks will however not be visible in, say, a 
loud
hamber sin
e the ne
essary entanglement is destroyed by the de
oheren
eof the tra
ked parti
le with its environment, 
aused, say, by the parti
le'sintera
tion with the vapor.4 Removing the Cuto�Removing the 
uto� is of 
ourse problemati
al, whi
h is why the 
uto� wasintrodu
ed in the �rst pla
e. However the problems arise primarily from theevolution equation of the wave fun
tion, not those of the Bohmian 
on�gura-tion, equations (7) through (10). Suppose that a family of ''s is parametrizedby � 2 R, and that as � ! 1, '�(y) approa
hes Æ(y). Then the limit� ! 1 
orresponds to \removing the 
uto�". Unfortunately, the 
orre-sponding H� will not 
onverge in any reasonable sense. But there existnumbers E� tending to in�nity [5℄ su
h that H� � E� does 
onverge in asuitable sense, and the evolution of the wave fun
tion is well-de�ned. Thisseems 
ompletely a

eptable. We do not know whether the 
orrespondingpro
ess Q� approa
hes (given a �xed initial wave fun
tion) a limiting pro
essQ1. To de
ide this requires a 
areful mathemati
al study, but at least wesee nothing pre
luding this possibility: the velo
ity law is not a�e
ted by the
uto�, while absorption might be
ome deterministi
 in the limit �!1 ando

ur whenever (and only when) a photon hits an ele
tron.Other Hamiltonians, more sophisti
ated ones, are more problemati
al,9



and do not possess a limit as � ! 1, even after subtra
ting an \in�niteenergy". In some 
ases this is due to the 
reation of a large (average) numberm� of photons that goes to in�nity with �. On the other hand, it is not 
learthat removing the 
uto� is desirable or relevant. That is, there might existan e�e
tive UV 
uto� in nature, just as there is an e�e
tive IR 
uto� (the�nite radius of the universe).Be that as it may, if the unitary evolution on some Hilbert spa
e doesnot survive the limit �!1, we fa
e a problem, one that seems parti
ularlybad for Bohmian theories, whi
h so heavily rely on the wave fun
tion and,
onsequently, its having a well-de�ned unitary evolution. But appearan
esare misleading here. From a Bohmian viewpoint, the basi
 variable, bearingall the physi
al impli
ations of the theory, is the 
on�guration Q, whereas	 and H are only theoreti
al obje
ts whose purpose is to generate a law ofmotion for Q. And, indeed, a law for Q might arise as a limit �!1 of thelaw indu
ed by 	� andH�; it might be the 
ase that while 	� andH� do nothave a limit, the time evolution of Q is well de�ned in the limit. After all, thisis pre
isely what o

urs when one 
onsider the limit ~! 0 of nonrelativisti
quantum me
hani
s: while the Hamiltonian and wave fun
tion do not haveany sensible limit, the law for Q does!5 DeterminismWe 
lose with a remark on (the la
k of) determinism. It may seem surprisingthat we abandon determinism. Was not the main point of hidden variablesto restore it? A
tually, no. What was important was to provide a 
learand 
oherent a

ount of quantum me
hani
s. The simplest su
h a

ount, webelieve, is provided by Bohmian me
hani
s, whi
h happens to be determin-isti
. And the simplest su
h a

ount of QFT seems to be of the sort we havepresented here, whi
h is sto
hasti
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