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mehanis, was proposed �fty years ago by David Bohm (and even earlierby Louis de Broglie); see [4℄ for a reent overview. Today there remain twobig hallenges for this approah: to form a relativisti version, and a versionsuitable for quantum �eld theory (QFT). Here we shall address the latter.We desribe a general and partiularly natural way of extending Bohmianmehanis to QFTs, expliitly giving the equations for a simple example.Bohm himself proposed [2, p. 230℄ that Bohmian mehanis should beextended to QFT by means of the inorporation of the atual �eld on�gu-ration, guided by a wave funtional (the state vetor). In ontrast, John Bellproposed a model [1, p. 173℄ in whih, instead of the �eld on�guration, theloal beables are the fermion numbers at eah site of a lattie disretizing 3-spae. We argue that it is instrutive to modify Bell's proposal in two ways,and thus get a similar but even simpler theory with a diret onnetion toBohmian mehanis. Below, we give an expliit example of suh a theory fora partiularly simple Hamiltonian.Bell's model ontains no beables representing the bosoni degrees of free-dom (suh as radiation), neither an atual �eld, nor atual partiles, noranything else; the existene of a radiation part of the state vetor is relevantonly to the behavior of the fermions. This is ertainly onsistent and empir-ially irrefutable, but it is neither neessary (as our example below shows),nor even a natural view.1 In the model proposed below, the bosons have thesame status as the fermions: they are partiles, desribed by their positions.This, of ourse, should not be regarded as disouraging onsideration of theapproah based on atual �eld on�gurations.The other deviation from Bell's proposal is the replaement of the lattieby ontinuous spae. The lattie was introdued in the �rst plae for thepurpose of providing an e�etive ultraviolet ut-o� and thus a well-de�nedHamiltonian. Suh a ut-o�, however, an also be realized by smearing outthe interation Hamiltonian through onvolution with, say, a sharply peakedbut bounded funtion '. The ontinuum analogue of the partile numberat every lattie site is the position of all partiles in ordinary spae, withthe total number of partiles N(t) possibly varying with time. However, in1 After all, if the role of the wave funtion is to guide partiles, it would seem thatthere should be as many partiles as there are variables in the wave funtion. In addition,the Hilbert spae of the radiation degrees of freedom (unlike the one for quark olor) isnot a purely abstrat Hilbert spae, but is related to spae-time points (via reation andannihilation operators, for example), a fat that would seem surprising if the state vetorwere not related to spae-time objets suh as partiles, strings, or �elds.2



the model we propose the partiles follow Bohmian trajetories, exept whenthere is partile reation or annihilation. (For a disussion of how Bohmianmehanis arises from a lattie model (in the absene of interation) in thelimit of vanishing lattie width, see [8, 9℄.)Our proposal pro�ts, we believe, from making this ontat with Bohmianmehanis, sine then every argument for taking the Bohmian trajetoriesseriously also provides some support for the proposal. Bohmian mehanisalso pro�ts from this ontat beause the Bohmian trajetories an then betaken seriously even in the framework of QFT.Our moving on�guration Q(t) is onstruted in suh a way that it israndom with distribution at time t equal to �(t) = j	(t)j2, where 	(t) is the(position) Fok spae representation of the state vetor j	(t)i at time t. (Fora model in whih there are only bosons, the n-partile omponent of 	 is	(n)(x1; : : : ;xn) = 1pn! h0ja(x1) � � �a(xn)j	i (1)where j0i is the Fok vauum and a(x) = (2�)�3=2 R d3k eik�x ak is the bo-son annihilation operator at position x.) In partiular, the probability thatN(t) = n, i.e., that there are n partiles at time t, equals the integral of �(t)over K(n) �= (R3)n (suitably symmetrized), the n-partile setor of on�gu-ration spae|i.e., the L2 norm of the projetion of j	i onto the n-partilesubspae of Fok spae. A nontrivial superposition of quantum states withdi�erent partile numbers leads to a probability distribution over di�erentpartile numbers, among whih only one is, of ourse, atually realized.2 Con�guration JumpsThe Hamiltonian for QFTs is typially a sum of terms, eah of whih yields aontribution to the motion we wish to propose. It is quite generally the asethat H = H0 + Hint where the free Hamiltonian H0 orresponds naturallyto a deterministi motion|in the model onsidered here that of Bohmianmehanis, and in a relativisti model for example the Bohm{Dira motion[2, p. 274℄|given by a (time-dependent) veloity �eld v = v	(t)(q; t), onon�guration spae K = [nK(n), that de�nes the \deterministi part" ofthe proess, while the interation term Hint orresponds to random jumps,a ontinuum version of the proess proposed by Bell [1, p. 173℄, de�ned byjump rates � = �(q0; q; t) = �	(t)(q0; q) for a transition from q to q0 at time t.3



[This means that when the atual on�guration Q at time t is q, then withprobability (density, with respet to q0) �(q0; q; t) dt, Q will jump from (verynear) q to q0 in the time-interval (t; t+ dt).℄2The relevant ontinuum analogue of Bell's jump rates for H = Hint,equations (6{8) of [1, p. 173℄, is�	(q0; q) = 2~ �� Im	(q)hqjHintjq0i	(q0)�+	(q)	(q) (2)where for partiles with spin the two produts in the numerator and theprodut in the denominator are loal spinor inner produts, and where wehave used the notation A+ = max(A; 0) for the positive part of A 2 R. Thiswill typially be well-de�ned (as jump rates), sine the kernel hqjHintjq0i ofthe (ut-o�) interation Hamiltonian of a QFT should involve nothing worsethan Æ-funtion singularities.The omplete proess, orresponding to the total Hamiltonian, is thengiven by the deterministi motion with veloity v, randomly interrupted byjumps, with rate �, after eah of whih the deterministi motion is resumeduntil it is again interrupted. As a funtion of t, eah realization Q(t) is thuspieewise smooth. At the end of a smooth piee, Q jumps to the startingpoint of the next smooth piee. What is stohasti about Q are the timesat whih the jumps take plae, and the destinations of the jumps. Theprobabilities for times and destinations are governed by the wave funtion.Q(t) is a Markov proess.As desribed, our proess is so designed as to diretly imply the followingequivariane theorem: If Q(t0) is hosen at random with distribution j	(t0)j2,then at every later time t > t0, Q(t) is distributed with density j	(t)j2. (Thisan also be expliitly heked by omparing the equation for �(		)=�t asimplied by the evolution equation of the quantum state, i~ �	=�t = H	,and the master equation for the distribution of Q(t), whih reads��t�(q; t) = �r���(q; t) v(q; t)�+ZKdq0��(q0; t) �(q; q0; t)��(q; t) �(q0; q; t)� : )The hoie of jump rates that will make the j	j2 distribution equivariantis not unique. But the `minimal' jump rates are unique, and these are the ones2One an regard the jumps as having two ingredients: A jump ours with total rate��(q; t) = R �(q0; q; t) dq0; when a jump does our, the destination is randomly hosen withdistribution �(q0; q; t)=��(q; t). 4



we have hosen. Details on the hoie of jump rates as well as an eluidationof the general mathematial struture underlying equivariant proesses willbe presented in [3℄.Corresponding to the standard interation terms in QFT, the possiblejumps are very restrited: there are only hanges in the partile number by�1, and possible types are (i) appearane or (ii) disappearane of a partile(while the others remain at their positions) or (iii) replaement of a partileby two others or (iv) the reverse of this. Type (i) is appropriate for, e.g.,photon emission, (ii) for absorption, (iii) for pair reation and (iv) for pairannihilation. (It follows that there is no disontinuity in the individual par-tile world lines, in spite of the disontinuity in Q.) In our expliit model,only types (i) and (ii) our.3 An Expliit ModelWe now present an expliit theory. It is based on a \baby" QFT taken from[6, p. 339℄ and [5℄, ontaining two speies of partiles, whih we simply alleletrons and photons. Eletrons, whose number stays onstant, emit andabsorb photons. To keep things simple, we employ nonrelativisti dispersionrelations (as everything here is nonrelativisti) for both eletrons and pho-tons, and give the photon a positive (rest) mass. In addition, we ignore spinand polarization, and, of ourse, smoothen the interation Hamiltonian.In �eld theoreti language, we have a bosoni �eld �(x) = ay(x) + a(x),with ay and a the photon reation and annihilation operators [f. equations(4) and (5)℄ and a fermioni �eld  (x), and the Hamiltonian is the sumH = HF +HB + Hint= (1=2mF ) Z d3xr y(x)r (x) + (1=2mB) Z d3xray(x)ra(x)+g Z d3x y(x)�'(x) (x)where �'(x) = R d3y�'(x � y)ay(y) + '(x � y)a(y)� is the uto� bosoni�eld, mF and mB denote the mass of the eletrons and photons, and g isa real oupling onstant. H ommutes with the fermion number operatorNF = R d3x y(x) (x).Sine the fermion number is onserved, we give it a �xed value N . Theon�guration spae (hanging notation slightly from before) isK = S1m=0K(m)5



where m is the photon number andK(m) := (R3)N � (R3)m ; K(0) = (R3)N :We will denote the eletron oordinates by x := x(N) := (x1; : : : ;xN ) andthe photon oordinates by y := y(m) = (y1; : : : ;ym). The full on�gurationis thus given by q = (x; y) and, more expliitly, by q(m) = (x; y(m)).In terms of the wave funtion 	 [the (position) Fok representation of thequantum state℄, the Hilbert spae inner produt ish�j	i := 1Xm=0 ZK(m)d3Nx d3my �(x; y)	(x; y) ;and the ontributions to the Hamiltonian assume the formHF = �Xi ~22mF�iHB = �Xj ~22mB�jand Hint = g NXi=1 �'(xi) = g NXi=1 �ay'(xi) + a'(xi)� (3)with reation and annihilation operators ay' and a' ating on Fok spae ina smeared-out form: ay'(x) = Z d3u'(u� x) ay(u)a'(x) = Z d3u'(u� x) a(u);where �ay(u)	�(q(m)) = 1pmXj Æ(yj � u)	(bqj) ; (4)�a(u)	�(q(m)) = pm + 1	�q(m);u�: (5)ay'(x) reates a new photon in state ' entered at x 2 R3 (whih will be theposition of an eletron), and a'(x) annihilates a photon with \form fator"6



' at x.3 Here (q(m);u) is the on�guration with a photon at u added to q(m)and bqj is the on�guration with the j-th photon deleted from q(m). Thus(Hint	)(q(m)) = gpm NXi=1 mXj=1 '(yj � xi)	�bqj� (6)+ gpm+ 1 NXi=1 Z d3y0 '(y0 � xi)	�q(m);y0� :	 satis�es the Pauli priniple, i.e., it is symmetri in the photon variablesand antisymmetri in the eletron variables.We now turn to the partiles, desribed by the atual eletron on�gura-tion X and the atual photon on�guration Y . The deterministi part of themotion Q(t) = (X(t); Y (t)), orresponding to HF +HB, is the usual Bohmmotion _X i = v	F;i(Q) := ~mF Im ��	=�xi�(Q)	(Q) ; (7)_Y j = v	B;j(Q) := ~mB Im ��	=�yj�(Q)	(Q) (8)and it follows from (2) and (6) that only two kinds of jumps our, with ratesas follows:� The j-th photon vanishes, while all the other partiles stay at theirpositions. Thus q0 = bqj and the jump rate from q = q(m) to q0 is�(q0; q) = 2g~pmh� NXi=1 Im 	(bqj)'(yj � xi)	(q) i+: (9)� A new photon appears at y0, while all the other partiles stay at theirpositions. Thus q0 = (q(m);y0) and the jump rate from q = q(m) to q0(a density in the variable y0) is�(q0; q) = 2g~ pm + 1h� NXi=1 Im 	(q;y0)'(y0 � xi)	(q) i+: (10)3If the form fator ' is square-integrable (as we assume) it provides an ultravioletuto�; it an be regarded as determining the e�etive range of a eletron's power to reateor absorb a photon. 7



We reiterate that these hoies guarantee that the proess obeys the equiv-ariane theorem mentioned in the previous setion.Note that, ontrary to what might have been expeted, the reation op-erator in the interation Hamiltonian (3) orresponds, aording to (2), tothe annihilation rate, while the annihilation operator orresponds to the re-ation rate. There is less in this than meets the eye: The orrespondene isan artifat of the way (2) is written, and if (2) had been written equivalentlyas �	(q0; q) = 2~ � Im	(q0)hq0jHintjqi	(q)�+	(q)	(q) (11)the orrespondene would have been reversed. Note also that if ' is supportedby a Æ-ball around the origin of R3 , then photons an be reated or annihilatedonly in the Æ-neighborhood of an eletron.4Our model is translation invariant (unless one introdues an additionalexternal potential), time translation invariant, rotation invariant provided' is spherially symmetri, time reversal invariant provided ' is real-valued,and gauge invariant provided one introdues an external vetor potential|inall derivatives ating on eletron oordinates|and an external salar poten-tial into HF. Galilean boost invariane fails, but not beause of the Bohmianvariables; owing to the interation term (6), it fails, in fat, for the evolu-tion of the quantum state. The reason is that, roughly speaking, a photongets reated with wave funtion ' whih annot be Galilean invariant. Al-ternatively, one ould say that under boosts with veloity u the form fator'(y � x) must be replaed by exp (imBu � y=~)'(y � x). Note that evenwith the uto� removed, i.e., for '(y) = Æ(y), the quantum dynamis is notGalilean invariant.If we add to H a suitable on�ning potential (and ' is real-valued, andthe rest energy of the photon is made positive), it possesses a unique groundstate [7℄, and this ground state (like every nondegenerate eigenstate) is realup to an overall phase. Thus in this state the jump rates (9), (10) as wellas the veloities (7), (8) vanish identially|nothing moves. Surprisingly,perhaps, the Bohmian partiles do not perform any \vauum utuations".4 One might suspet that if Æ were small, there would be only a small probability(perhaps of order Æ3) that a photon will ome loser than Æ to an eletron. But equivarianeimplies that this is not so: if a ertain amount of j	(m)j2 ows to the setor K(m�1), thenthe probability for a photon to be annihilated is just as large.8



As in Bohmian mehanis, disentangled subsystems are governed by thesame laws as for the whole. More preisely, if � and 	 are two wave funtionsfrom Fok spae having disjoint supports S� and S	 in physial spae R3 ,�
	 de�nes another Fok state ��	 after suitable symmetrization; if thedistane between S� and S	 is at least the diameter Æ of the support of ',then in a system with wave funtion �� 	 the partiles in S� and those inS	 will not inuene eah other, eah set moving independently aordingto the orresponding `fators'. This is a onsequene of the fat that theveloities and jump rates are homogeneous of degree 0 in the wave funtion.While the other partiles keep their positions when a photon is reatedor annihilated, their veloities may hange disontinuously beause (7) eval-uated at the destination may di�er from (7) evaluated at the point of de-parture. As a result, the world lines of all (possibly distant) partiles, ifthe partiles are entangled, will have kinks at the times of partile reationor annihilation. These kinks will however not be visible in, say, a loudhamber sine the neessary entanglement is destroyed by the deohereneof the traked partile with its environment, aused, say, by the partile'sinteration with the vapor.4 Removing the Cuto�Removing the uto� is of ourse problematial, whih is why the uto� wasintrodued in the �rst plae. However the problems arise primarily from theevolution equation of the wave funtion, not those of the Bohmian on�gura-tion, equations (7) through (10). Suppose that a family of ''s is parametrizedby � 2 R, and that as � ! 1, '�(y) approahes Æ(y). Then the limit� ! 1 orresponds to \removing the uto�". Unfortunately, the orre-sponding H� will not onverge in any reasonable sense. But there existnumbers E� tending to in�nity [5℄ suh that H� � E� does onverge in asuitable sense, and the evolution of the wave funtion is well-de�ned. Thisseems ompletely aeptable. We do not know whether the orrespondingproess Q� approahes (given a �xed initial wave funtion) a limiting proessQ1. To deide this requires a areful mathematial study, but at least wesee nothing preluding this possibility: the veloity law is not a�eted by theuto�, while absorption might beome deterministi in the limit �!1 andour whenever (and only when) a photon hits an eletron.Other Hamiltonians, more sophistiated ones, are more problematial,9



and do not possess a limit as � ! 1, even after subtrating an \in�niteenergy". In some ases this is due to the reation of a large (average) numberm� of photons that goes to in�nity with �. On the other hand, it is not learthat removing the uto� is desirable or relevant. That is, there might existan e�etive UV uto� in nature, just as there is an e�etive IR uto� (the�nite radius of the universe).Be that as it may, if the unitary evolution on some Hilbert spae doesnot survive the limit �!1, we fae a problem, one that seems partiularlybad for Bohmian theories, whih so heavily rely on the wave funtion and,onsequently, its having a well-de�ned unitary evolution. But appearanesare misleading here. From a Bohmian viewpoint, the basi variable, bearingall the physial impliations of the theory, is the on�guration Q, whereas	 and H are only theoretial objets whose purpose is to generate a law ofmotion for Q. And, indeed, a law for Q might arise as a limit �!1 of thelaw indued by 	� andH�; it might be the ase that while 	� andH� do nothave a limit, the time evolution of Q is well de�ned in the limit. After all, thisis preisely what ours when one onsider the limit ~! 0 of nonrelativistiquantum mehanis: while the Hamiltonian and wave funtion do not haveany sensible limit, the law for Q does!5 DeterminismWe lose with a remark on (the lak of) determinism. It may seem surprisingthat we abandon determinism. Was not the main point of hidden variablesto restore it? Atually, no. What was important was to provide a learand oherent aount of quantum mehanis. The simplest suh aount, webelieve, is provided by Bohmian mehanis, whih happens to be determin-isti. And the simplest suh aount of QFT seems to be of the sort we havepresented here, whih is stohasti.Referenes[1℄ Bell, J.S.: Speakable and unspeakable in quantum mehanis. CambridgeUniversity Press (1987)
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