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Abstract

Considering what the world would be like if backwards causation
were possible is usually mind-bending. Here we discuss something that
is easier to study, a model that incorporates a very restricted sort of
backwards causation. Whereas it probably prohibits signalling to the
past, it allows nonlocality while being fully covariant. And that is
what constitutes its value: it may be a step towards a fully covariant
version of Bohmian mechanics.

In this paper I will introduce to you a dynamical system—a law of motion
for point particles—that has been invented [4] as a toy model in Bohmian
mechanics; for more about Bohmian mechanics, see Detlef Diirr’s contribu-
tion to this volume. What makes it remarkable is that it has two arrows
of time, and that precisely its having two arrows of time is what allows it
to perform what it was designed for: to have effects travel faster than light
from their causes (in short, nonlocality) without breaking Lorentz invariance.
Why should anyone desire such a behavior of a dynamical system? Because
Bell’s nonlocality theorem [1] teaches us that any dynamical system violating
Bell’s inequality must be nonlocal in this sense. And Bell’s inequality, after
all, is violated in Nature.

Well, it is easy to come up with a nonlocal theory if one assumes that one
of the Lorentz frames is preferred to the others: simply assume a mechanism
of cause and effect (a sort of interaction in the widest sense) that operates
instantaneously in the preferred frame. That is what nonrelativistic theories
usually do. In other frames, these nonlocal effects will either travel at a
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superluminal (> ¢) but finite velocity or precede their causes by a short time
span. This doesn’t mean that causal loops could arise since in the preferred
frame effects never precede causes; but the entire notion of a preferred frame
is, of course, against the spirit of relativity. Without a preferred frame, to
find a nonlocal law of motion is tricky, and much agonizing has been spent
on this. About one way to achieve this you will learn below.

Let’s come back first to the two arrows of time. They are opposite arrows,
in fact. But unlike the arrows considered in Lawrence Schulman’s contribu-
tion to this volume, they are not both thermodynamical arrows. One of the
two is the thermodynamical arrow. Let’s call it ©. It arises, as emphasized
first by Ludwig Boltzmann and in this conference by Schulman, not from
whatever asymmetry in the microscopic laws of motion, but from boundary
conditions. That is, from the condition that the initial state of the universe
be taken from a particular subset of phase space (corresponding to, say, a
certain low entropy macrostate), while the final state is not subjected to any
such conditions—except in the scenarios studied by Schulman. The dynam-
ical laws considered in discussions of the thermodynamic arrow of time are
usually time reversal invariant. But not so ours! It explicitly breaks time
symmetry, and that is how another arrow of time comes in: an arrow of
microscopic time asymmetry, let’s call it C'. Such an arrow must be assumed
before writing down the equation of motion (6). In addition, the equation
of motion is easier to solve in the direction C' than in the other direction.
Doesn’t it seem ugly and unnatural to introduce a time asymmetry? Sure,
but we will see it buys us something: Lorentz invariant nonlocality.

Remember that such an arrow is simply absent in Newtonian mechanics
or time symmetric theories. So it is not surprising that the microscopic
arrow C' is not the source of the macroscopic time arrow ©, even more, the
direction of © is completely independent of the direction of C'. © depends
on boundary conditions, and not on the details of the microscopic law of
motion. And in our case, © will even be opposite to C. Since inhabitants
of a hypothetical universe will regard the thermodynamical arrow as their
natural time arrow, related to macroscopic causation, to memory, and to
apparent free will, you should always think of © as pointing towards the
future, whereas C' is pointing to what we call the past.

It’s time to say what the equation of motion is. The equation is trying
to be as close to Bohmian mechanics as possible, to be an immediate gen-
eralization, and to have Bohmian mechanics as its nonrelativistic limit. To
remind you of how Bohmian mechanics works, you take the wave function



(which is supposed to solve Schrodinger’s equation—without ever having to
collapse), plug in the positions of all the particles (here is where a notion of
simultaneity comes in), and from that you compute the velocity of any par-
ticle by applying a certain formula, Bohm’s law of motion, which amounts
to dividing the probability current by the probability density. Now, for a
Lorentz-invariant version, we first have to worry about the wave function.

There are three respects in which the wave function of nonrelativis-
tic quantum mechanics (or Bohmian mechanics, for that matter) conflicts
with relativity: (a) the dispersion relation E = p?/2m at the basis of the
Schrodinger equation is nonrelativistic, (b) the wave function is a function
of 3N position but only one time coordinate, (c¢) the collapse of the wave
function is supposed instantaneous. Physicists were very successful at solv-
ing (a) by means of the Klein—-Gordon or Dirac equation, but it is a little
too early for enthusiasm since we still face (b) and (c). We will worry about
(c) later, and focus on (b) now. The obvious answer is to introduce a wave
function ¢ of 4N coordinates, that is one time coordinate for each particle,
in other words ¢ is a function on (space-time)”. You get back the nonrela-
tivistic function of 3N + 1 coordinates after picking a frame and setting all
time coordinates equal. Multi-time wave functions were first considered by
Dirac et al. in 1932 [2], but what they didn’t mention was that the N time
evolution equations oy
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needed for determining v from initial data at ¢ = 0 do not always possess
solutions. They are usually inconsistent. They are only consistent if the
following condition is satisfied:
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This is easy to achieve for non-interacting particles and tricky in the pres-
ence of interaction. Indeed, to my knowledge it has never been attempted
to write down consistent multi-time equations for many interacting parti-
cles, although this would seem an immediate and highly relevant problem
if one desires a a manifestly covariant formulation of relativistic quantum
mechanics. We will here, however, stay on the easy side and simply consider
a system of noninteracting particles. We take the multi-time equations to be
Dirac equations in an external field A4,
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where ¢ : (space-time)V — (C*)®V  and e and m are charge and mass,

respectively. The corresponding Hamiltonians commute trivially since the

derivatives act on different coordinates and the matrices on different indices.
A Dirac wave function naturally defines a tensor field
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and according to the variant of Bohmian mechanics for Dirac wave functions,
the velocity of particle 7 is, in the preferred frame,
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where the proportionality factor depends on the choice of parametrization
of the world line !'(s) (and thus is physically irrelevant). The coordinates
taken for the other particles are their positions at the same time, Q? = Q.
Instead of a Lorentz frame, one can take any foliation of space-time into
spacelike hypersurfaces for the purpose of defining simultaneity-at-a-distance
[3]. The theory I'm about to describe, in contrast, uses the hypersurfaces
naturally given by the Lorentzian structure on space-time: the light cones.
More precisely: the future light cones—and that is how the time asymmetry
comes in.

Figure 1: How to choose the N space-time points where to evaluate the wave
function, as described in the text.



So here are the steps: first solve (3), so you know 1 on (space-time)™".
Then, compute the tensor field J on (space-time)™ according to (4). For
determining the velocity of particle ¢ at space-time point ();, find the points
(); where the other particles cross the future light cone of Q;, as depicted
in figure 1. Plug these N space-time points into the field J and get a single
tensor. Find out what the 4-velocities u;-” of the other particles at (); are. Use
these to contract all but one index of J. By definition, the resulting vector is,
up to an irrelevant proportionality factor, the 4-velocity we’ve been looking
for: '
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One can show [4] that this 4-velocity is always timelike or null.

This law of motion is what can be called an ordinary differential equation
with advanced arguments, because the velocity depends on the positions
(and velocities) of other particles at future times, indeed with a wvariable
delay span QY — Q7. It may seem to complicate things considerably that
what happens here depends on the future rather than past behavior of the
other particles, but that is an artifact of perspective: look at the equation
of motion (6) in the other time direction, that is in the direction C, and
notice it now has only retarded arguments. That is a more familiar sort of
differential delay equation that gives rise to no logical or causal problems.
So this theory, although involving a mechanism of backwards causation, is
provably paradox free, since no causal loops can arise: first solve the wave
equation for ¢ in the usual direction ©, then solve the equation of motion in
the opposite direction C.

Unfortunately, there is no obvious probability measure on the set of so-
lutions to (6). This is different from the situation in Bohmian mechanics,
where the |)|? distribution is conserved, a fact crucial for the probability
predictions of that theory. The lack of such a measure for the model con-
sidered here makes it impossible to say whether or not this theory violates
Bell’s inequality, which is a relation between probabilities. But this law of
motion takes what is perhaps the biggest hurdle on the way towards a fully
covariant law of motion conserving the [¢)|? distribution, what Bell’s theorem
says is a necessary condition: nonlocality. I should add that in the nonrel-
ativistic limit, the future light cone approaches the hyperplane ¢ = const.
and the law of motion approaches the “hypersurface Bohm—Dirac law” (5)
conserving |2

How does nonlocality come about in this model? That has to do with the



two arrows of time, pointing in opposite directions. Had we chosen them to
point in the same direction, the theory would have been local, because what
happens at ); would only depend on (what we call) the past light cone. But
in this model, we evaluate i on the future light cone of ();, which means
¥ has, in its multi-time evolution, gone through all the external fields at
spacelike separation from ;. And that is how the velocity at ); may be
influenced by the field imposed by an experimenter at spacelike separation
from Q);.

And what is the story then about problem (c) above, the instantaneous
collapse? The first thing to say is that collapse is not among the basic rules
of this model, or any Bohmian theory. That simply disposes of problem (c).
But something more should be said, since the collapse rule can be derived in
Bohmian mechanics: even if the wave function of Schrodinger’s cat remains
forever a superposition, the cat (formed by the particles, of course) is either
dead or alive, with probabilities determined by |¢|?, and the wave packet of
the dead cat (i.e., the corresponding term in the superposition) is too far
away in configuration space to influence the motion of the live cat. In the
model we are concerned with here, everything just said still applies, except
the probabilities of course.

To this day, thinking about time, time’s arrows, and relativity remains a
source of the unexpected.
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