
Two Arrows of Time in Nonloal PartileDynamisRoderih Tumulka�AbstratConsidering what the world would be like if bakwards ausationwere possible is usually mind-bending. Here we disuss something thatis easier to study, a model that inorporates a very restrited sort ofbakwards ausation. Whereas it probably prohibits signalling to thepast, it allows nonloality while being fully ovariant. And that iswhat onstitutes its value: it may be a step towards a fully ovariantversion of Bohmian mehanis.In this paper I will introdue to you a dynamial system|a law of motionfor point partiles|that has been invented [4℄ as a toy model in Bohmianmehanis; for more about Bohmian mehanis, see Detlef D�urr's ontribu-tion to this volume. What makes it remarkable is that it has two arrowsof time, and that preisely its having two arrows of time is what allows itto perform what it was designed for: to have e�ets travel faster than lightfrom their auses (in short, nonloality) without breaking Lorentz invariane.Why should anyone desire suh a behavior of a dynamial system? BeauseBell's nonloality theorem [1℄ teahes us that any dynamial system violatingBell's inequality must be nonloal in this sense. And Bell's inequality, afterall, is violated in Nature.Well, it is easy to ome up with a nonloal theory if one assumes that oneof the Lorentz frames is preferred to the others: simply assume a mehanismof ause and e�et (a sort of interation in the widest sense) that operatesinstantaneously in the preferred frame. That is what nonrelativisti theoriesusually do. In other frames, these nonloal e�ets will either travel at a�Mathematishes Institut der Universit�at M�unhen, Theresienstra�e 39, 80333M�unhen, Germany. E-mail: tumulka�mathematik.uni-muenhen.de1



superluminal (> ) but �nite veloity or preede their auses by a short timespan. This doesn't mean that ausal loops ould arise sine in the preferredframe e�ets never preede auses; but the entire notion of a preferred frameis, of ourse, against the spirit of relativity. Without a preferred frame, to�nd a nonloal law of motion is triky, and muh agonizing has been spenton this. About one way to ahieve this you will learn below.Let's ome bak �rst to the two arrows of time. They are opposite arrows,in fat. But unlike the arrows onsidered in Lawrene Shulman's ontribu-tion to this volume, they are not both thermodynamial arrows. One of thetwo is the thermodynamial arrow. Let's all it �. It arises, as emphasized�rst by Ludwig Boltzmann and in this onferene by Shulman, not fromwhatever asymmetry in the mirosopi laws of motion, but from boundaryonditions. That is, from the ondition that the initial state of the universebe taken from a partiular subset of phase spae (orresponding to, say, aertain low entropy marostate), while the �nal state is not subjeted to anysuh onditions|exept in the senarios studied by Shulman. The dynam-ial laws onsidered in disussions of the thermodynami arrow of time areusually time reversal invariant. But not so ours! It expliitly breaks timesymmetry, and that is how another arrow of time omes in: an arrow ofmirosopi time asymmetry, let's all it C. Suh an arrow must be assumedbefore writing down the equation of motion (6). In addition, the equationof motion is easier to solve in the diretion C than in the other diretion.Doesn't it seem ugly and unnatural to introdue a time asymmetry? Sure,but we will see it buys us something: Lorentz invariant nonloality.Remember that suh an arrow is simply absent in Newtonian mehanisor time symmetri theories. So it is not surprising that the mirosopiarrow C is not the soure of the marosopi time arrow �, even more, thediretion of � is ompletely independent of the diretion of C. � dependson boundary onditions, and not on the details of the mirosopi law ofmotion. And in our ase, � will even be opposite to C. Sine inhabitantsof a hypothetial universe will regard the thermodynamial arrow as theirnatural time arrow, related to marosopi ausation, to memory, and toapparent free will, you should always think of � as pointing towards thefuture, whereas C is pointing to what we all the past.It's time to say what the equation of motion is. The equation is tryingto be as lose to Bohmian mehanis as possible, to be an immediate gen-eralization, and to have Bohmian mehanis as its nonrelativisti limit. Toremind you of how Bohmian mehanis works, you take the wave funtion2



(whih is supposed to solve Shr�odinger's equation|without ever having toollapse), plug in the positions of all the partiles (here is where a notion ofsimultaneity omes in), and from that you ompute the veloity of any par-tile by applying a ertain formula, Bohm's law of motion, whih amountsto dividing the probability urrent by the probability density. Now, for aLorentz-invariant version, we �rst have to worry about the wave funtion.There are three respets in whih the wave funtion of nonrelativis-ti quantum mehanis (or Bohmian mehanis, for that matter) onitswith relativity: (a) the dispersion relation E = p2=2m at the basis of theShr�odinger equation is nonrelativisti, (b) the wave funtion is a funtionof 3N position but only one time oordinate, () the ollapse of the wavefuntion is supposed instantaneous. Physiists were very suessful at solv-ing (a) by means of the Klein{Gordon or Dira equation, but it is a littletoo early for enthusiasm sine we still fae (b) and (). We will worry about() later, and fous on (b) now. The obvious answer is to introdue a wavefuntion  of 4N oordinates, that is one time oordinate for eah partile,in other words  is a funtion on (spae-time)N . You get bak the nonrela-tivisti funtion of 3N + 1 oordinates after piking a frame and setting alltime oordinates equal. Multi-time wave funtions were �rst onsidered byDira et al. in 1932 [2℄, but what they didn't mention was that the N timeevolution equations i~� �ti = Hi (1)needed for determining  from initial data at t = 0 do not always possesssolutions. They are usually inonsistent. They are only onsistent if thefollowing ondition is satis�ed:[Hi; Hj℄ = 0 for i 6= j : (2)This is easy to ahieve for non-interating partiles and triky in the pres-ene of interation. Indeed, to my knowledge it has never been attemptedto write down onsistent multi-time equations for many interating parti-les, although this would seem an immediate and highly relevant problemif one desires a a manifestly ovariant formulation of relativisti quantummehanis. We will here, however, stay on the easy side and simply onsidera system of noninterating partiles. We take the multi-time equations to beDira equations in an external �eld A�,1
 � � � 
 �|{z}ith plae
 � � � 
 1 �i ��x�i � eA�(xi)� = m (3)3



where  : (spae-time)N ! (C 4)
N , and e and m are harge and mass,respetively. The orresponding Hamiltonians ommute trivially sine thederivatives at on di�erent oordinates and the matries on di�erent indies.A Dira wave funtion naturally de�nes a tensor �eldJ�1:::�N :=  �1 
 � � � 
 �N  ; (4)and aording to the variant of Bohmian mehanis for Dira wave funtions,the veloity of partile i is, in the preferred frame,_Q�i / J0::: i�:::0(Q1 : : : QN) (5)where the proportionality fator depends on the hoie of parametrizationof the world line Q�i (s) (and thus is physially irrelevant). The oordinatestaken for the other partiles are their positions at the same time, Q0j = Q0i .Instead of a Lorentz frame, one an take any foliation of spae-time intospaelike hypersurfaes for the purpose of de�ning simultaneity-at-a-distane[3℄. The theory I'm about to desribe, in ontrast, uses the hypersurfaesnaturally given by the Lorentzian struture on spae-time: the light ones.More preisely: the future light ones|and that is how the time asymmetryomes in.
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Figure 1: How to hoose the N spae-time points where to evaluate the wavefuntion, as desribed in the text. 4



So here are the steps: �rst solve (3), so you know  on (spae-time)N .Then, ompute the tensor �eld J on (spae-time)N aording to (4). Fordetermining the veloity of partile i at spae-time point Qi, �nd the pointsQj where the other partiles ross the future light one of Qi, as depitedin �gure 1. Plug these N spae-time points into the �eld J and get a singletensor. Find out what the 4-veloities u�jj of the other partiles atQj are. Usethese to ontrat all but one index of J . By de�nition, the resulting vetor is,up to an irrelevant proportionality fator, the 4-veloity we've been lookingfor: _Q�ii / J�1:::�N (Q1 : : : QN ) Yj 6=i uj�j(Qj) : (6)One an show [4℄ that this 4-veloity is always timelike or null.This law of motion is what an be alled an ordinary di�erential equationwith advaned arguments, beause the veloity depends on the positions(and veloities) of other partiles at future times, indeed with a variabledelay span Q0j � Q0i . It may seem to ompliate things onsiderably thatwhat happens here depends on the future rather than past behavior of theother partiles, but that is an artifat of perspetive: look at the equationof motion (6) in the other time diretion, that is in the diretion C, andnotie it now has only retarded arguments. That is a more familiar sort ofdi�erential delay equation that gives rise to no logial or ausal problems.So this theory, although involving a mehanism of bakwards ausation, isprovably paradox free, sine no ausal loops an arise: �rst solve the waveequation for  in the usual diretion �, then solve the equation of motion inthe opposite diretion C.Unfortunately, there is no obvious probability measure on the set of so-lutions to (6). This is di�erent from the situation in Bohmian mehanis,where the j j2 distribution is onserved, a fat ruial for the probabilitypreditions of that theory. The lak of suh a measure for the model on-sidered here makes it impossible to say whether or not this theory violatesBell's inequality, whih is a relation between probabilities. But this law ofmotion takes what is perhaps the biggest hurdle on the way towards a fullyovariant law of motion onserving the j j2 distribution, what Bell's theoremsays is a neessary ondition: nonloality. I should add that in the nonrel-ativisti limit, the future light one approahes the hyperplane t = onst:and the law of motion approahes the \hypersurfae Bohm{Dira law" (5)onserving j j2.How does nonloality ome about in this model? That has to do with the5



two arrows of time, pointing in opposite diretions. Had we hosen them topoint in the same diretion, the theory would have been loal, beause whathappens at Qi would only depend on (what we all) the past light one. Butin this model, we evaluate  on the future light one of Qi, whih means has, in its multi-time evolution, gone through all the external �elds atspaelike separation from Qi. And that is how the veloity at Qi may beinuened by the �eld imposed by an experimenter at spaelike separationfrom Qi.And what is the story then about problem () above, the instantaneousollapse? The �rst thing to say is that ollapse is not among the basi rulesof this model, or any Bohmian theory. That simply disposes of problem ().But something more should be said, sine the ollapse rule an be derived inBohmian mehanis: even if the wave funtion of Shr�odinger's at remainsforever a superposition, the at (formed by the partiles, of ourse) is eitherdead or alive, with probabilities determined by j j2, and the wave paket ofthe dead at (i.e., the orresponding term in the superposition) is too faraway in on�guration spae to inuene the motion of the live at. In themodel we are onerned with here, everything just said still applies, exeptthe probabilities of ourse.To this day, thinking about time, time's arrows, and relativity remains asoure of the unexpeted.Aknowledgement. I wish to thank Sheldon Goldstein for his omments on adraft of this paper.Referenes[1℄ J.S. Bell: Speakable and unspeakable in quantum mehanis, CambridgeUniversity Press (1987)[2℄ P.A.M. Dira, V.A. Fok, B. Podolsky, \On Quantum Eletrodynam-is", Physikalishe Zeitshrift der Sowjetunion 2 (1932) 468. Reprintedin J. Shwinger (ed.): Quantum Eletrodynamis, Dover Publishing (NewYork 1958)[3℄ D. D�urr, S. Goldstein, K. M�unh-Berndl, N. Zangh��, Phys. Rev. A 60(1999) 2729 and quant-ph/9801070[4℄ S. Goldstein, R. Tumulka: \Opposite Arrows of Time Can ReonileRelativity and Nonloality", submitted. arXiv: quant-ph/01050406


