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Consider a countable set P, whose elements will be called polymers. Let
I be a subset of P2(P), the set of all subsets of P with two elements. We
say that two polymers γ and γ′ are incompatible if {γ, γ′} ∈ I or if γ = γ′,
and we will also write γ 6∼ γ′. If {γ, γ′} 6∈ I we say that the two polymers
are compatible and we write γ ∼ γ′.

Assume that a complex valued function φ(γ), γ ∈ P, is given. We call
φ(γ) the weight, or the activity, of the polymer γ. For any finite subset
Λ ⊂ P, the partition function Z(Λ) of the polymer system is defined by

Z(Λ) =
∑

X⊂Λ
compatible

∏

γ∈X

φ(γ) (1)

The sum runs over all subsets X of Λ such that γ ∼ γ′ for any two distinct
elements of X . If X contains only one element, X is considered a compatible
subset, and if X = ∅, the product is interpreted as the number 1.

We introduce the following function on P × P

f(γ, γ′) =
{

−1 if γ 6∼ γ′ or γ = γ′

0 otherwise
(2)

Let Gn, n ≥ 2 be the set of connected graphs with n vertices, 1, . . . , n.
We consider undirected graphs without multiple edges, equivalently defined
by a subset of P2({1, . . . , n}) which determines the edges. Given g ∈ Gn we
define the value of g on a sequence (γ1, . . . , γn) ∈ Pn as

g(γ1, . . . , γn) =
∏

(i,j)∈g

f(γi, γj) (3)

where (i, j) ∈ g means that the graph g has an edge connecting i with j. We
also define G1 as the set containing only one graph g having only one vertex
(and no edges) and write

g(γ) = 1, γ ∈ P (4)

Theorem 1 (Expansion) Define

aT(γ1, . . . , γn) =
∑

g∈Gn

g(γ1, . . . , γn) (5)

Then, we have

lnZ(Λ) =
∞
∑

n=1

1

n!

∑

(γ1,...,γn)∈Λn

aT(γ1, . . . , γn)
n
∏

i=1

φ(γi) (6)
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Proof. The partition function can be written as

Z(Λ) = 1 +
∑

γ∈Λ

φ(γ) +
∞
∑

n=2

1

n!

∑

(γ1,...,γn)∈Λn

n
∏

i=1

φ(γi)
∏

1≤i<j≤n

(f(γi, γj) + 1) (7)

and developing the second product

Z(Λ) = 1 +
∞
∑

n=1

1

n!

∞
∑

m=1

1

m!

∑

k1,...,km
∑

i
ki=n

∑

g1∈Gk1

∑

g2∈Gk2

. . .
∑

gm∈Gkm

n!

k1!k2! . . . km!

∑

(γ1,...,γn)∈Λn

g1(γ1, . . . , γk1)g2(γk1+1, . . . , γk1+k2) . . .

. . . gm(γk1+...+km−1+1, . . . , γn)
n
∏

i=1

φ(γi)

= 1 +
∞
∑

m=1

1

m!

(

∞
∑

k=1

1

k!

∑

g∈Gk

∑

(γ1,...,γk)∈Λk

g(γ1, . . . , γk)
k
∏

i=1

φ(γi)

)m

= exp

(

∞
∑

k=1

1

k!

∑

g∈Gk

∑

(γ1,...,γk)∈Λk

g(γ1, . . . , γk)
k
∏

i=1

φ(γi)

)

(8)

The theorem is proved.

With any finite sequence Γ = (γ1, . . . , γn) ∈ Pn we associate the graph
θ(Γ) with vertices {1, . . . , n} obtained by drawing an edge between the ver-
tices i and j if γi 6∼ γj and also if γi = γj . We observe that g(Γ) 6= 0 only
if θ(Γ) is a connected graph (i.e., if θ(Γ) ∈ Gn) and g ∈ Gn is a subgraph of
θ(Γ). Then

aT(Γ) =
∑

g∈Gn

g(Γ) =
∑

g⊂θ(Γ)
g∈Gn

(−1)|g| (9)

where |g| is the number of edges of the graph g. In other words, aT(Γ) is
equal to the number of connected subgraphs of θ(Γ) with an even number
of edges minus the number of connected subgraphs with an odd number of
edges. If the graph θ(Γ) is not connected, aT(Γ) = 0.

We observe that the aT(γ1, . . . , γn), n = 1, 2, . . ., are symmetric functions.
Thus, we can write the considered expansions also in terms of multi-indices
instead of finite sequences. A multi-index X on a set P is a function X(γ),
γ ∈ P, taking non-negative integer values and such that suppX = {γ ∈ P :
X(γ) ≥ 1} is a finite set or, equivalently, such that |X| =

∑

γ∈P X(γ) is a
finite number. We denote by M(Λ) the set of multi-indices defined on Λ.
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If X is a given multi-index and Γ = (γ1, . . . , γn), n = |X|, one of the
sequences corresponding to X , we define aT(X) = aT(Γ), and a new function

φT(X) =
(

∏

γ∈P

X(γ)!
)−1

aT(X)
∏

γ∈P

φ(γ)X(γ) (10)

Taking into account that the number of different sequences Γ associated to
X is n!/

∏

γ∈P X(γ)!, the statement in theorem 1 can be written as

lnZ(Λ) =
∑

X∈M(Λ)

φT(X) (11)

The multi-indices such that aT(X) 6= 0 (i.e., whose associated graph θ(Γ) is
connected) will be called clusters.

Theorem 2 (Convergence) Assume that there is a positive function µ(γ),
γ ∈ P, such that, for all γ0 ∈ P,

|φ(γ0)| ≤ (eµ(γ0) − 1) exp
(

−
∑

γ 6∼γ0

µ(γ)
)

(12)

Then, for all γ1 ∈ P, we have
∑

X∈M(P), X(γ1)≥1

|φT(X)| ≤ µ(γ1) (13)

∑

X∈M(P)

X(γ1)|φ
T(X)| ≤ eµ(γ1) − 1 (14)

We first prove the following lemma.

Lemma 1 For any X ∈ M(P), we have

(−1)|X|+1aT(X) ≥ 0 (15)

Proof of lemma 1. We introduce the partition function

Z∗(Λ) =
∑

X⊂Λ
compatible

∏

γ∈X

(

− |φ(γ)|
)

(16)

for which

− lnZ∗(Λ) =
∑

X∈M(Λ)

−
(

∏

γ∈P

X(γ)!
)−1

aT(X)
∏

γ

(

− |φ(γ)|
)X(γ)

(17)
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If inequality (15) is satisfied, we have

− lnZ∗(Λ) =
∑

X∈M(Λ)

|φT(X)| (18)

showing that lemma 1 is equivalent to the fact that all terms in the expansion
of − lnZ∗(Λ) are positive. This fact will be proved by an induction argument
on the subsets Λ. It certainly holds when Λ contains only one polymer.
Assume that it holds for a given Λ and let γ0 ∈ P\Λ. From the definition of
Z∗ we see that

Z∗(Λ ∪ {γ0}) = Z∗(Λ)− |φ(γ0)|Z
∗(Λ0) (19)

with Λ0 = {γ ∈ Λ : γ ∼ γ0}, and

− ln Z∗(Λ ∪ {γ0}) = − ln Z∗(Λ)− ln

(

1−
|φ(γ0)|Z

∗(Λ0)

Z∗(Λ)

)

(20)

On the other hand, we have

Z∗(Λ0)/Z
∗(Λ) = exp

∑

X∈M(Λ)\M(Λ0)

|φT(X)| (21)

This shows the positivity of all the terms in the expansion of the second term
in the right hand side of equation (20) (remark that the series expansions
of the functions exp x and − ln(1 − x) have only positive terms for x ≥ 0).
Since, by assumption, this is also the case for the first term, it follows that also
− ln Z∗(Λ ∪ {γ0}) satisfies the induction hypothesis. The lemma is proved.

Proof of theorem 2. We use again an induction argument on the subsets Λ.
Assume that, for a given Λ and any γ ∈ Λ, the following estimate holds

∑

X∈M(Λ), X(γ)≥1

|φT(X)| ≤ µ(γ) (22)

This inequality can also be written as

− lnZ∗(Λ) + lnZ∗(Λ\{γ}) ≤ µ(γ) (23)

and, for all Λ′ ⊂ Λ, it implies

− lnZ∗(Λ) + lnZ∗(Λ′) ≤
∑

γ∈Λ\Λ′

µ(γ) (24)
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and, in particular,

Z∗(Λ0)/Z
∗(Λ) ≤ exp

(

∑

γ:γ∈Λ,γ 6∼γ0

µ(γ)
)

(25)

because Λ\Λ0 = {γ ∈ Λ : γ 6∼ γ0}. Since Λ does not contain γ0, we get

|φ(γ0)|
Z∗(Λ0)

Z∗(Λ)
≤ |φ(γ0)| exp

(

− µ(γ0) +
∑

γ:γ∈P,γ 6∼γ0

µ(γ)
)

(26)

and, taking the assumption (12) of the theorem into account,
∣

∣

∣

∣

φ(γ0)Z
∗(Λ0)

Z∗(Λ)

∣

∣

∣

∣

≤ e−µ(γ0)(eµ(γ0) − 1) = 1− e−µ(γ0) (27)

Then, using (20) and the fact that − ln(1−x) is an increasing function of x,
for any real x in the interval −1 < x < 1, we obtain

− ln
Z∗(Λ ∪ {γ0})

Z∗(Λ)
≤ − ln

(

1−
(

1− e−µ(γ0)
))

= µ(γ0) (28)

This proves the induction hypothesis (22) for Λ ∪ {γ0}, and therefore for all
Λ (being valid when Λ contains only one element). Statement (13) of the
theorem is proved.

Finally, if γ0 ∈ Λ and Λ0 is defined as above, we have

∑

X∈M(Λ)

X(γ0)|φ
T(X)| = −|φ(γ0)|

∂

∂|φ(γ0)|
lnZ∗(Λ) =

|φ(γ0)|Z
∗(Λ0)

Z∗(Λ)
(29)

Then, the statement (14) follows from hypothesis (12), taking into account
inequality (24) and that now Λ contains γ0. This ends the proof of the
theorem.

The following consequences of the theorem concern the correlation func-
tions and the truncated correlation functions. Notice that, for Λ finite and
{γ1, . . . , γn} ⊂ Λ, these functions can be written as

ρΛ(γ1, . . . , γn) = Z(Λ)−1
(

n
∏

i=1

φ(γi)
)

Z(∩n
i=1Λi) (30)

= Z(Λ)−1
(

n
∏

i=1

(φ(γi) ∂/∂φ(γi))
)

Z(Λ) (31)

ρTΛ(γ1, . . . , γn) =
(

n
∏

i=1

(φ(γi) ∂/∂φ(γi))
)

lnZ(Λ) (32)

with Λi = {γ ∈ Λ : γ ∼ γi}.
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Corollary 1 Under the hypothesis of theorem 2, the thermodynamic limits
(Λ ↑P) of the correlation functions and the truncated correlation functions,
ρ and ρT, exist. Moreover

|ρ(γ1, . . . , γn)| ≤
n
∏

i=1

(eµ(γi) − 1) (33)

Proof. Expressions (30), (31) and (32) show that the corresponding expan-
sions in terms of the φT(X) are

ρΛ(γ1, . . . , γn) =
(

n
∏

i=1

φ(γi)
)

exp
(

∑

X∈

φT(X)
)

(34)

ρT(γ1, . . . , γn) =
∑

X∈M(P)

X(γ1) . . .X(γn)φ
T(X) (35)

where Q(γ1, . . . , γn) = M(P)\M(∩n
i=1Pi) is the set of X whose support con-

tains a γ incompatible with one of the γi, i = 1, . . . , n. The corollary follows
from the convergence of these expansions stated in theorem 2. A simple
extension of the argument leading to inequality (15) proves the inequality
stated in the corollary.

Corollary 2 Assume that, for all γ0 ∈ P,

|φ(γ0)| ≤ e−t(eµ(γ0) − 1) exp
(

−
∑

γ 6∼γ0

µ(γ)
)

(36)

where e−t < 1 is a uniform factor. Then the following cluster property is
satisfied (for all γ1 ∈ P)

∑

(γ2,...,γn)∈Pn−1

|ρTΛ(γ1, . . . , γn)| ≤ (n− 1)! t−n+1(eµ(γ1) − 1) (37)

Proof. Theorem 2 and assumption (36) imply the bound

∑

X∈M(P)

X(γ1)e
t |X||φT(X)| ≤ (eµ(γ1) − 1) (38)

Taking into account equation (32) and that

et |X| =
∞
∑

n=0

tn

n!

(

∑

γ∈P

X(γ)
)n

(39)
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we obtain the stated estimate (37) from this bound.

Bibliographical note

The rigorous study of perturbation series in statistical mechanics has
quite a long history since the times when Lebowitz and Penrose proved the
convergence of the virial expansion [1], or the earlier result by Groeneveld
[2] in the case of repulsive potentials (using an alternating sign property
similar to that of Lemma 1). Other related early works are described in
[3],[4]. In this context, polymer systems and the corresponding expansions,
also called cluster expansions, have a particular interest as they permitted to
analyze, among other questions, high and low temperature properties in the
case of lattice systems (see, for instance, [5] chapter V). There are several
approaches to the proof of the convergence of cluster expansions: one is based
on the use of Kirkwood-Salsburg type of equations [6],[7], others in bounding
each term of the series by some combinatorics of trees on a graph [8],[9], [5]
(chapter V). In [10] such bounds were obtained from a recurrence relation
similar to the one used here in the first part of the proof, and in [11] the
Möbius inversion formula was used. In a recent work [12], Dobrushin used
an induction argument to obtain uniform bounds on the partition functions
and, as a consequence, analyticity properties of the system.

The proof of the convergence of cluster expansions presented in this note,
and in ref. [13], is based in part on the last mentioned work. This proof
is in our view rather simple and direct. The result, stated in Theorem 2, is
expressed in the “classical” form, useful in the applications, that is as a bound
on a sum of an absolutely convergent series. The hypothesis, the same that
in [12], is slightly weaker than the hypothesis used in the mentioned previous
works. We use, as in [11] and [12], the formalism of an abstract polymer
system. Some recent developments of this approach can be found in ref. [14].

In the present note we follow refs. [7] and [13]. The proofs, however, have
been improved and simplified.
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