Tutorien zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Prof. Dr. P. Pickl Blatt 5

Aufgabe 1

Seien f eine holomorphe Funktion auf einer offenen Menge $U \subset \mathbb{C}$ und $\overline{B_R(z_0)} \subset U$. Zeigen Sie

$$|f(z_0)| \leqslant \sup_{z \in \partial B_R(z_0)} |f(z)|.$$

Aufgabe 2

Seien f, g holomorphe Funktionen auf einem offenen Sterngebiet U. Zeigen Sie:

- a) Sei $a \in \mathbb{C}$. Falls f nicht konstant ist, ist die Menge $\{z \in \mathbb{C} : f(z) = a\}$ diskret in U.

 Bemerkung: Eine Menge $M \subset U$ heißt diskret, falls jeder Punkt $z \in U$ eine Umgebung $B \ni z$ hat mit $M \cap B \setminus \{z\} = \emptyset$.
- b) Es existiert $z_0 \in U$ mit $f^{(n)}(z_0) = g^{(n)}(z_0)$ für alle $n \in \mathbb{N}$, so gilt f = g auf U. Hinweis: Entwickeln Sie f und g in Potenzreihen um z_0 .