Übungen zu Lebesguetheorie, Funktionentheorie und gewöhnlichen Differentialgleichungen

Prof. Dr. P. Pickl Blatt 4

Aufgabe 1

Berechnen Sie das Integral

$$\oint_{\partial \mathcal{B}_1(\frac{3}{2})} \frac{e^z}{z(z-1)^3} dz$$

Hinweis: Verwenden Sie die Cauchy-Integralformel der zweiten Ableitung.

Aufgabe 2

Die Potenzreihendarstellungen des Sinus, Kosinus und der Exponentialfunktion sind auch in $\mathbb C$ gegeben durch

$$\sin(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}, \quad \cos(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!},$$

- (a) Berechnen Sie die Konvergenzradien dieser Reihen.
- (b) Berechnen Sie die Ableitungen der durch die Reihen definierten Funktionen.
- (c) Zeigen Sie mit Hilfe des Identitätssatzes, dass

$$\sin^2(z) + \cos^2(z) = 1 \ \forall z \in \mathbb{C}$$

gilt.

(d) Für welche $x \in \mathbb{R}$ konvergiert die folgende Reihe?

$$f: \mathbb{R} \to \mathbb{R}$$
$$f(x) = \sum_{n=0}^{\infty} \frac{\sin(n^3 x)}{n^2}$$

(e) Für welche $z \in \mathbb{C}$ konvergiert die folgende Reihe?

$$f: \mathbb{C} \to \mathbb{C}$$
$$f(z) = \sum_{n=0}^{\infty} \frac{\sin(n^3 z)}{n^2}$$

Aufgabe 3

Sei $f: \mathcal{B}_1(0) \to \mathbb{C}$ holomorph mit |f(z)| < 1 für alle $z \in \mathcal{B}_1(0)$. Zeigen Sie: $|f'(0)| \le 1$.

Aufgabe 4

Zeigen Sie mithilfe des Identitätssatzes, dass die auf $\mathbb C$ definierte Funktion $\sin(|z|)$ nicht holomorph ist.

Abgabe: Montag, 12.05.2012, 12 Uhr.