Übungen zur Analysis II

Prof. Dr. P. Pickl Blatt 4

Aufgabe 1: Äquivalenz der p-Normen

Die p-Normen sind auf \mathbb{R}^n für $p \in \mathbb{R}$, $p \geq 1$ definiert als:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},$$

wobei x_i , i = 1, ..., n, die Komponenten von x sind.

- (a) Sei $\|\cdot\|_{\infty}$ definiert durch $\|x\|_{\infty} = \max_{i=1,\dots,n}\{|x_i|\}$. Zeigen Sie: $\|x\|_{\infty} = \lim_{p\to\infty} \|x\|_p$.
- (b) Zeigen Sie, dass alle p-Normen (auch $p = \infty$) äquivalent sind. Das heißt, für alle $p, q \in [1, \infty) \cup \{\infty\}$ gibt es positive Konstanten c_1, c_2 mit

$$c_1 ||x||_p \le ||x||_q \le c_2 ||x||_p \quad \forall x \in \mathbb{R}^n.$$

Geben Sie solche Konstanten explizit an! (Die bloße Existenz wurde bereits in der Vorlesung gezeigt.)

Tipp: Beginnen Sie damit, die Äquivalenz einer beliebigen p-Normmit $\|\cdot\|_{\infty}$ zu zeigen!

Aufgabe 2: Zwischenwertsatz für den \mathbb{R}^n

Seien $\bar{B}_r = \{x \in \mathbb{R}^n : ||x||_2 \le r\} \subset \mathbb{R}^n$ der abgeschlossene Ball mit Radius r bzgl. der euklidischen Norm $||\cdot||_2$ sowie $f: \bar{B}_r \to \mathbb{R}$ eine stetige Funktion. Es seien weiterhin $a, b \in \bar{B}_r$ mit f(a) > 0 sowie f(b) < 0. Beweisen Sie: Es existiert ein Punkt $c \in \bar{B}_r$ mit f(c) = 0.

Tipp: Legen Sie eine stetige Kurve $\gamma:[0,1]\to \bar{B}_r, \ \gamma(0)=a, \ \gamma(1)=b$ durch die Punkte a,b und führen Sie die Aussage auf den Zwischenwertsatz für \mathbb{R} aus Analysis I zurück!

Aufgabe 3: Charakterisierung der Stetigkeit von Funktionen $\mathbb{R}^n \to \mathbb{R}^m$

Sei $f: (\mathbb{R}^n, \|\cdot\|_a) \to (\mathbb{R}^m, \|\cdot\|_b)$. In Koordinatendarstellung hat f dann die Form $f = (f_1, ..., f_m)$, wobei $f_i: (\mathbb{R}^n, \|\cdot\|_a) \to (\mathbb{R}, |\cdot|)$, i = 1, ..., m. Beweisen Sie folgende Aussage: f ist stetig genau dann, wenn alle f_i stetig bzgl. $|\cdot|$ sind.

Hinweis: Verwenden Sie das Folgenkriterium für Stetigkeit sowie die Äquivalenz der Normen auf \mathbb{R}^k !

Aufgabe 4: Stetigkeitstest

Untersuchen Sie folgende Funktionen mit Hilfe des Folgenkriteriums auf Stetigkeit:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \begin{cases} 0 & \text{falls } (x,y) = (0,0) \\ \frac{x^2 y}{x^2 + y^2} & \text{sonst} \end{cases}$$

(b)
$$g: \mathbb{R}^2 \to \mathbb{R}, \qquad f(x,y) = \begin{cases} 0 & \text{falls } (x,y) = (0,0) \\ \frac{xy}{x^2 + y^2} & \text{sonst} \end{cases}$$

(c) Eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ heißt partiell stetig im Punkt (x_0, y_0) , wenn $f_1: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x, y_0)$ und $f_2: \mathbb{R} \to \mathbb{R}$, $y \mapsto f(x_0, y)$ in x_0 bzw. y_0 stetig sind. Offenbar sind stetige Funktionen auch partiell stetig (warum?). Gilt auch die Umkehrung? Beweisen oder widerlegen Sie:

f partiell stetig $\Longrightarrow f$ stetig