Übungen zur Analysis II

Prof. Dr. P. Pickl Blatt 3

Aufgabe 1: Normen

(i) Prüfen Sie, welche der folgenden Abbildungen $||\cdot||$. : $\mathbb{R}^n \to \mathbb{R}$ eine Norm ist. Dabei seien $x \in \mathbb{R}^n$, x_j für j = 1, ..., n die Komponenten von x sowie $|\cdot|$ der Betrag einer reellen Zahl.

(a)
$$||x||_a := \sup_{1 \le j \le n} \{|x_j|\}$$

(b)
$$||x||_b := \sum_{j=1}^n |x_j|$$

(c)
$$||x||_c := \sum_{j=1}^n (x_j)^2$$

(ii) Sei n=2. Zeichnen Sie die Einheitskreise $K_1=\{x\in\mathbb{R}^2:||x||_{\cdot}=1\}$ derjenigen Abbildungen aus (i), die eine Norm sind. Veranschaulichen Sie graphisch, dass jeweils ein Ball $B_r=\{x\in\mathbb{R}^2:||x||_{\cdot}< r\}$ bzgl. der einen Norm in denjenigen der anderen passt, sowie umgekehrt.

Bemerkung: Damit haben Sie die Äquivalenz dieser Normen auf \mathbb{R}^2 graphisch gezeigt. Sie wird noch allgemeiner in der Vorlesung bewiesen.

Aufgabe 2: Verallgemeinerung topologischer Standardsätze aus Analysis I für normierte Räume

Verallgemeinern Sie folgende Aussagen, die schon in Analysis I für den normierten Raum $(\mathbb{R}, |\cdot|)$ bewiesen wurden, für allgemeine normierte \mathbb{C} -Vektorräume $(V, ||\cdot||)$:

- (a) Seien $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subset V$ Cauchyfolgen bzgl. $||\cdot||$. Dann ist auch $(x_n+y_n)_{n\in\mathbb{N}}\subset V$ eine Cauchyfolge bzgl. $||\cdot||$.
- (b) Beliebige Vereinigungen und endliche Schnitte offener Mengen bzgl. $||\cdot||$ sind offen bzgl. $||\cdot||$.
- (c) Beliebige Schnitte und endliche Vereinigungen abgeschlossener Mengen bzgl. $||\cdot||$ sind abgeschlossen bzgl. $||\cdot||$.

Tipp: Überlegen Sie, welche Ersetzungen nötig sind, damit die alten Beweise nur mit minimalen Änderungen auch hier gültig sind!

Aufgabe 3: Grundbegriffe der Topologie für \mathbb{R}^n

Bestimmen Sie Rand, Inneres und Abschluss der folgenden Teilmengen:

- (a) $(a, b] \subset \mathbb{R}$ bezüglich der Standardmetrik von \mathbb{R} ,
- (b) $\mathbb{Q} \subset \mathbb{R}$ bezüglich der Standardmetrik von \mathbb{R} ,
- (c) $\{(x,y,0) \in \mathbb{R}^3 | -1 < x < 1, -1 < y < 1\} \subset \mathbb{R}^3$ bezüglich der Standardmetrik von \mathbb{R}^3 .

Aufgabe 4: Gegenbeispiel zum Satz von Bolzano-Weierstrass, falls die Voraussetzungen verletzt sind

Sei X eine Menge. Die diskrete Metrik d auf X wurde in der Vorlesung definiert durch

$$d(x,y) = \begin{cases} 0 & \text{falls } x = y \\ 1 & \text{falls } x \neq y \end{cases}$$
 für alle $x, y \in X$.

- (a) Betrachten Sie den metrischen Raum (\mathbb{R}, d) . Zeigen Sie, dass in diesem Fall das Intervall [0, 1] zwar abgeschlossen und beschränkt, aber nicht kompakt ist.
- (b) Laut dem Satz von Bolzano-Weierstrass gilt "kompakt ⇔ abgeschlossen und beschränkt". Was ist hier anders, sodass diese Aussage nicht gilt?