Übungen zur Analysis einer Variablen

Prof. Dr. P. Pickl

Blatt 9

Aufgabe 1 Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge und $(x_{n_k})_{k\in\mathbb{N}}$ eine Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die gegen x konvergiert. Zeigen Sie, dass dann auch $(x_n)_{n\in\mathbb{N}}$ gegen x konvergiert.

Aufgabe 2

(a) Beweisen Sie die folgende Version des Quotientenkriteriums:

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge mit $a_n \neq 0$ für alle $n \in \mathbb{N}$ und $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$. Dann ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.

Hinweis: Zeigen Sie, dass es für die durch $b_n = \sup\left\{\left|\frac{a_{k+1}}{a_k}\right| \mid k \geq n\right\}$ definierte Folge $(b_n)_{n \in \mathbb{N}}$ ein $\lambda \in \mathbb{R}$ mit $\lim_{n \to \infty} b_n < \lambda < 1$ und ein $N \in \mathbb{N}$ gibt, so dass $\left|\frac{a_{n+1}}{a_n}\right| \leq \lambda$ für alle $n \geq N$ erfüllt ist.

Bemerkung: Darüber hinaus lässt sich zeigen, dass die Reihe $\sum_{n=1}^{\infty} a_n$ divergiert, wenn gilt $\liminf_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$. Im Falle $\liminf_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| \le 1 \le \limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$ lässt sich keine Konvergenzaussage machen.

(b) Beweisen Sie die folgende Version des Wurzelkriteriums:

Sei
$$(a_n)_{n\in\mathbb{N}}$$
 eine Folge mit $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1$. Dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut.

Bemerkung: Gilt dagegen $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1$, so divergiert die Reihe (die Glieder bilden keine Nullfolge), im Falle $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = 1$ lässt sich keine Konvergenzaussage treffen (beachten Sie, dass es im Falle des Wurzelkriteriums im Gegensatz zum Quotientenkriterium kein "lim inf-Kriterium" gibt).

Aufgabe 3

(a) Sei $(A_i)_{i\in\mathbb{N}}$ eine abzählbare Familie von Mengen. Beweisen Sie die De Morgan'schen Regeln:

$$(\bigcup_{i\in\mathbb{N}} \mathcal{A}_i)^C = \bigcap_{i\in\mathbb{N}} (\mathcal{A}_i)^C \text{ sowie } (\bigcap_{i\in\mathbb{N}} \mathcal{A}_i)^C = \bigcup_{i\in\mathbb{N}} (\mathcal{A}_i)^C$$

Hinweis: Um die Gleichheit zweier Mengen M=N zu zeigen, müssen Sie die beiden Inklusionen $M \subseteq N$ und $N \subseteq M$ beweisen. Um z.B. $M \subseteq N$ zu beweisen, wählen Sie ein beliebiges Element $x \in M$ und zeigen Sie, dass es auch im N liegt.

(b) Sei $(A_i)_{i\in\mathbb{N}}$ eine abzählbare Familie abgeschlossener Mengen, $N\in\mathbb{N}$.

Beweisen oder widerlegen Sie folgende Aussagen: $(i) \bigcup_{i \in \mathbb{N}} \mathcal{A}_i$ ist abgeschlossen, $(ii) \bigcap_{i \in \mathbb{N}} \mathcal{A}_i$ ist abgeschlossen, $(iii) \bigcup_{i=1}^{N} \mathcal{A}_i$ ist abgeschlossen, $(iv) \bigcap_{i=1}^{N} \mathcal{A}_i$ ist abgeschlossen.

Aufgabe 4

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge definiert durch

$$a_n = n\sqrt{2} - \lfloor n\sqrt{2} \rfloor,$$

wobei für jedes $x \in \mathbb{R}$ die Gaußklammer |x| definiert ist als die größte ganze Zahl, die kleiner oder gleich x ist: $|x| = \max\{k \in \mathbb{Z} \mid k \leq x\}$. Zeigen Sie, dass es für jede reelle Zahl $a \in [0,1]$ eine Teilfolge $(a_{n_k})_{k \in \mathbb{N}}$ gibt, die gegen a konvergiert (dass also jeder Punkt in [0,1] Häufungspunkt von $(a_n)_{n\in\mathbb{N}}$ ist!), indem Sie die folgende Aussage beweisen:

Sei $a \in [0,1], \epsilon > 0$ und $N \in \mathbb{N}$ vorgegeben. Dann gibt es ein $\mathbf{M} \in \mathbb{N}$ mit $\mathbf{M} \geq N$, so dass $|a_{\mathbf{M}} - a| < \epsilon \text{ gilt.}$

Anleitung:

Um eine Anschauung zu bekommen, machen Sie sich deutlich, dass $a_n = (n\sqrt{2}) \mod 1$, mit der Erweiterung der Modulo-Funktion (siehe Blatt 3, Aufgabe 2) auf reelle Zahlen, d.h. ist $\mathbb{R} \ni a = q + r$ mit $q \in \mathbb{Z}$ und $0 \le r < 1$, dann ist $a \mod 1 = r$. Sie können sich also vorstellen, einen Kreis der Länge 1 zu durchlaufen mit der Schrittlänge $\sqrt{2}$. Zeigen Sie zunächst, dass Sie beim Durchlaufen nie den selben Punkt zweimal erreichen, dass also $a_{n'} \neq a_{n''}$ für $n' \neq n''$ gilt, indem Sie die gegenteilige Annahme zu einem Widerspruch zur Irrationalität von $\sqrt{2}$ führen. Benutzen Sie als nächsten Schritt den Satz von Bolzano-Weierstraß um zu zeigen, dass es $n, k \in \mathbb{N}$ gibt, so dass $|a_{n+k} - a_n| < \epsilon$ erfüllt ist. Setzen Sie $x := a_{n+k} - a_n$ und zeigen Sie, dass |x| > 0. Die Folge $b_n := nx - \lfloor nx \rfloor = (nx) \mod 1$ durchläuft den Kreis der Länge 1 mit Schrittlänge x. Verwenden Sie nun die Ungleichungen $0 < |x| < \epsilon$ um sich zu überzeugen, dass es ein $M' \in \mathbb{N}$ mit $M' \geq N$ gibt, so dass $|b_{M'}-a|<\epsilon$ gilt. Beweisen Sie schließlich noch, dass $mx-\lfloor mx\rfloor=a_{m\cdot k}$ für alle $m\in\mathbb{N}$ gilt, um das gesuchte M zu finden.

Abgabe: Woche ab 7.1.2013.