Übungen zur Analysis einer Variablen

Prof. Dr. P. Pickl

Blatt 2

Aufgabe 1. Berechnen Sie die Werte folgender Ausdrücke:

$$\prod_{i=1}^{2} \left(\sum_{j=1}^{3} (ij) \right); \quad \prod_{k=1}^{2} \left(\sum_{m=1}^{3} (km) \right); \quad \sum_{m=1}^{3} \left(\prod_{k=1}^{2} (km) \right); \quad \prod_{k=1}^{2} \left(k \sum_{m=1}^{3} m \right); \quad \sum_{m=1}^{3} \left(m \prod_{k=1}^{2} k \right).$$

Bemerkung: Ähnlich wie das Summenzeichen ' \sum ' ist das Produktzeichen ' Π ' folgendermaßen definiert:

$$\prod_{i=a}^{b} f(i) = f(a) \cdot f(a+1) \cdot f(a+2) \cdot \dots \cdot f(b-2) \cdot f(b-1) \cdot f(b),$$

wobei $a,b\in\mathbb{N}$ und $f(j)\in\mathbb{R}$ für jedes $j\in\mathbb{N}$ mit $a\leq j\leq b$. (Die Konvention für den Fall $a\geq b$: $\prod_{j=a}^b f(j)=f(a)$, falls a=b; $\prod_{j=a}^b f(j)=1$, falls a>b.)

Aufgabe 2. Beweisen Sie durch vollständige Induktion die folgenden Formeln:

- (a) $(1+x)^n \ge 1 + nx$, wobei $x \in \mathbb{R}$ mit $x \ge -1$ und $n \in \mathbb{N}$;
- (b) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Aufgabe 3. Überprüfen Sie, ob es sich im folgenden um Gruppen handelt:

- (a) (\mathbb{Q}, \cdot) , wobei die Verknüpfung ' · ' die aus der Schule bekannte Multiplikation von Brüchen ist.
- (b) $(\{0,1,2,3\},\oplus)$, wobei die Verknüpfung ' \oplus ' für $a,b\in\{0,1,2,3\}$ wie folgt definiert ist:

 $a \oplus b = \text{der Rest beim Teilen von } a + b \text{ durch } 4.$

Geben Sie, falls möglich, neutrales Element und alle Inversen an.

Aufgabe 4. Zeigen Sie durch vollständige Induktion, dass die in der Vorlesung definierte Summe natürlicher Zahlen kommutativ ist, d.h. für alle $n, m \in \mathbb{N}$ gilt: n + m = m + n.

Hinweis: Benutzen Sie die Peano-Axiome, die in der Vorlesung gegebene Definition der Summe natürlicher Zahlen und die folgende in der Vorlesung bewiesene Gleichung:

$$n + m' = n' + m$$
 für alle $n, m \in \mathbb{N}$.

Abgabe: Woche ab 05.11.2012.