Probeklausur I zur Analysis einer Variablen

Prof. Dr. P. Pickl

Aufgabe 1

Es sei $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$ und für $a, b \in \mathbb{F}_5$ seien Addition und Multiplikation gegeben durch $a \oplus b := (a + b) \mod 5$, sowie $a \odot b := (a \cdot b) \mod 5$.

Zeigen Sie: $(\mathbb{F}_5, \oplus, \odot)$ ist ein Körper, wobei Sie die Gültigkeit von Assoziativ- und Distributivgesetz ohne Beweis voraussetzen dürfen.

Aufgabe 2

Bestimmen Sie für die Folge $(a_n)_{n\in\mathbb{N}}$, gegeben durch $a_n=\frac{1}{5n^2+n}$ den Grenzwert $a=\lim_{n\to\infty}a_n$ und finden Sie für $\varepsilon=0,0001$ ein $N_\varepsilon\in\mathbb{N}$, sodass $|a_n-a|<\varepsilon$ für alle $n>N_\varepsilon$ erfüllt ist. Weisen Sie für das von Ihnen gefundene N_ε die gewünschte Eigenschaft auch explizit nach.

Aufgabe 3

Sei \mathbb{K} ein angeordneter Körper und $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge in \mathbb{K} mit $a_n\neq 0$ für alle $n\in\mathbb{N}$ und $\lim_{n\to\infty}a_n=a\neq 0$.

Zeigen Sie: Dann ist die Folge $(b_n)_{n\in\mathbb{N}}$, gegeben durch $b_n = \frac{1}{a_n}$ konvergent und es gilt

$$\lim_{n \to \infty} b_n = \frac{1}{a}$$