Übungen zur Stochastik

Prof. Dr. P. Pickl Blatt 8

Aufgabe 1

Es sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $X, Y : \Omega \to \mathbb{R}$ diskrete Zufallsgrößen.

- (a) Zeigen Sie: $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\mathbb{E}([X-\mathbb{E}(X)][Y-\mathbb{E}(Y)]).$
- (b) Wie vereinfacht sich dieser Ausdruck, falls X und Y unabhängig sind?

Aufgabe 2

X und Y seien diskrete reelle Zufallsgrößen. Füllen Sie die Lücken ___ mit den Symbolen $\{\leq,\geq,=\}$ und begründen Sie ihre Antwort:

(a)
$$\mathbb{E}(X)_{---}\sqrt{\mathbb{E}(X^2)}$$
,

(b)
$$\mathbb{E}(\sin^2(X)) + \mathbb{E}(\cos^2(X))_{--1}$$
,

(c)
$$P(|X| > c) = \frac{\mathbb{E}(|X|^3)}{c^3}$$
 mit $c \in \mathbb{R}^+$,

(d)
$$\mathbb{E}(XY)_{---}\sqrt{\mathbb{E}(X^2)\mathbb{E}(Y^2)}$$
,

(e)
$$P(X + Y > 10)_{-}P(X > 5 \text{ oder } Y > 5)$$
.

Aufgabe 3

X sei exponential verteilt mit Dichte $\rho(x) = \begin{cases} 0 & x \leq 0, \\ \mathrm{e}^{-x} & x > 0. \end{cases}$

- (a) Berechnen Sie $P(X \ge a)$ für a > 0.
- (b) Schätzen Sie $P(X \ge a)$ mit Hilfe der Markov-Ungleichung gegen E(X) ab.
- (c) Vergleichen Sie die beiden Resultate.

Aufgabe 4

Wir betrachten einen n-fachen Münzwurf. Die Zufallsgröße X gebe an, wie oft die Münze auf "Kopf" gefallen ist. Finden Sie Werte n, sodass $P(|X-\frac{n}{2}|\geq 0.01n)\leq 0.1$.

 $\mathit{Hinweis} :$ In der Vorlesung wurde gezeigt, dass für eine "faire" Münze $P(X=k) = B_{n,\frac{1}{2}}(k).$

Abgabe: Dienstag 16.6.2015, 16 Uhr.