Exercises on Mathematical Statistical Physics Math Sheet 8

Problem 1 (CS inequality for states) Let \mathcal{A} be a C^{*}-algebra and ω a state. Show that for all $a, b \in \mathcal{A}$, we have $\omega(a^*) = \overline{\omega(a)}$,

and

$$|\omega(a^*b)| \le \sqrt{\omega(a^*a)\,\omega(b^*b)}.$$

Use this, to show that $\mathcal{J} := \{a \in \mathcal{A} \mid \omega(a^*a) = 0\}$ is a right ideal, i.e., for $a \in \mathcal{A}, j \in \mathcal{J}$, we have $aj \in \mathcal{J}$ and thus \mathcal{A}/\mathcal{J} has a well defined left- \mathcal{A} -action.

Hint: Consider positivity of ω for elements of the form $a + \lambda b$, $\lambda \in \mathbb{C}$ and extremize over λ .

Problem 2 Consider the C^{*}-algebra $\mathcal{A} = \operatorname{Mat}(n \times n, \mathbb{C})$ and a self-adjoint $H \in \mathcal{A}$. Define a time evolution

$$\alpha_t(a) := e^{-itH} a \, e^{itH},$$

and take $\beta > 0$. show that there is a unique state ω that fulfills

$$\omega(ab) = \omega\big(\alpha_{i\beta}(b)a\big)$$

for all $a, b \in \mathcal{A}$, namely

$$\omega(a) = \frac{\operatorname{tr}(e^{-\beta H}a)}{\operatorname{tr}(e^{-\beta H})}.$$

Furthermore, let $\tilde{\omega}$ be a faithful state of \mathcal{A} , i.e., $\tilde{\omega}(a^*a) = 0 \Leftrightarrow 0$. Show that there is a unique Hamiltonian $\tilde{H} \in \mathcal{A}$ such that ω is a β -KMS-state for the time evolution induced by \tilde{H} (this is the finite dimensional version of the Tomita-Takesaki theorem).

Problem 3 Let (\mathcal{A}, α_t) be a C^{*}-dynamical system and δ its generator. For $a \in \mathcal{A}$ and $m \in \mathbb{N}$, define

$$a_m := \sqrt{\frac{m}{\pi}} \int_{\mathbb{R}} \alpha_t(a) e^{-mt^2} dt$$

Show: a_m is analytic for α_t and δ , and the \star -subalgebra $\mathcal{A}_{\tau} := \{a_m \mid a \in \mathcal{A}, m \in \mathbb{N}\}$ is dense in \mathcal{A} .

The solutions to these exercises will be discussed on Monday, 11.06.

LMU Munich Summer term 2018