Exercises on Mathematical Statistical Physics Math Sheet 6

Problem 1 (1D Ising model, $\beta = 1$ and external field h) We identify the following objects:

Functions $f: \{\pm 1\} \to \mathbb{R}$ and column vectors

$$f \equiv \begin{pmatrix} f(+1) \\ f(-1) \end{pmatrix}$$

Measures ν on E and row vectors

$$\nu \equiv (\nu(+1) \ \nu(-1))$$

Maps $M: \{\pm 1\}^2 \to \mathbb{R}$ and 2×2 matrices

$$M \equiv \begin{pmatrix} M(+1,+1) & M(+1,-1) \\ M(-1,+1) & M(-1,-1) \end{pmatrix}$$

a) Find a symmetric 2×2 matrix T such that

$$\mu_{\Lambda_n|\sigma_{\Lambda_n^c}}(\sigma_1,\dots,\sigma_n) = \frac{T(\sigma_0,\sigma_1)T(\sigma_1,\sigma_2)\dots T(\sigma_n,\sigma_{n+1})}{T^{n+1}(\sigma_0,\sigma_{n+1})}, \qquad \Lambda_n = \{1,\dots,n\}$$

b) Let $\lambda > 0$ and f be the principle eigenvalue and eigenvector of T, respectively. We choose f > 0 and $f(1)^2 + f(-1)^2 = 1$. Define

$$P(\sigma_1, \sigma_2) := \frac{1}{\lambda f(\sigma_1)} T(\sigma_1, \sigma_2) f(\sigma_2)$$

check that P is a stochastic matrix (positive entries and row sums = 1). Determine the invariant measure ν for P, and check that the detailed balance condition is satisfied.

- c) Let μ be a probability measure on $\{\pm 1\}^{\mathbb{Z}}$. Consider the following statements
 - (i) For all $\Lambda = \{x, x+1, \dots, y\}$ and all $\sigma_{x-1}, \dots, \sigma_{y+1} \in \{\pm 1\}$ $\mu\left(\{\omega : \omega_x = \sigma_x, \dots, \omega_y = \sigma_y\} | \{\omega : \omega_{x-1} = \sigma_{x-1}, \omega_{y+1} = \sigma_{y+1}\}\right)$

(i.e. μ is a Gibbs measure).

(ii) μ is the unique measure on $\{\pm 1\}^{\mathbb{Z}}$ with finite dimensional distributions

$$\mu\left(\left\{\omega:\omega_x=\sigma_x,\cdots,\omega_y=\sigma_y\right\}\right)=\nu(\sigma_x)P(\sigma_x,\sigma_{x+1})\cdots P(\sigma_{y-1},\sigma_y)$$

for all $x, y \in \mathbb{Z}$ with x < y.

Prove that (i) \Leftrightarrow (ii).

Problem 2 Let Φ be an absolutely summable potential, $\mu_{\Lambda|\sigma_{\Lambda}^c}$ Gibbs measure with b.c., $\mathscr{G}(\Phi)$ is the collection of infinite volume Gibbs measures. Let \mathcal{R} be a collection of finite sets $\Lambda \subset \mathbb{Z}^d$ such that for every finite $\Delta \subset \mathbb{Z}^d$, there exists a $\Lambda \in \mathcal{R}$ with $\Delta \subset \Lambda$.

- a) Give an example of such a collection \mathcal{R} .
- b) Let μ be a probability measure on $\{\pm 1\}^{\mathbb{Z}^d} = \Omega$. Show that $\mu \in \mathscr{G}(\Phi)$ if and only if: $\forall \Lambda \in \mathcal{R}$, for all measurable $f: \Omega \to \mathbb{R}_+$

$$\int f d\mu = \int_{\Omega} \left(\sum_{\sigma_{\Lambda} \in \{\pm 1\}^{\Lambda}} f(\sigma_{\Lambda}, \tau_{\Lambda^{c}}) \, \mu_{\Lambda | \tau_{\Lambda^{c}}}(\sigma_{\Lambda}) \right) d\mu(\tau).$$

Problem 3 Consider a C^* algebra \mathcal{A} with unit element I, and the spectrum of a normal element $a \in \mathcal{A}$, defined by

$$\sigma(a) := \{ \lambda \in \mathbb{C} | \lambda I - a \text{ has no inverse in } \mathcal{A} \}.$$

Prove that for all $a \in \mathcal{A}$ the limit $\lim_{n\to\infty} ||a^n||^{1/n}$ exists and equals the spectral radius

$$\varrho(a) := \operatorname{sum}_{\lambda \in \sigma(a)} |\lambda|$$

of a. In addition, show that $\rho(a) = ||a||$.

Hint: Prove the complementary inequalities $\varrho(a) \leq \liminf_n ||a^n||^{1/n}$ and $\varrho(a) \geq \limsup_n ||a^n||^{1/n}$. To derive the first inequality, study the series $\lambda^{-1} \sum_k (a/\lambda)^k$; for the second inequality, investigate the radius of convergence of this series. To establish $\varrho(a) = ||a||$, consider $||a^2||^2$.