Exercises on Mathematical Statistical Physics Math Sheet 4

Problem 1 Let $\Omega \neq \emptyset$ be a set.

- a): Let and C_1, \ldots, C_n a partition of Ω into non-empty pairwise disjoint subsets, i.e. $\Omega = \bigcup_{k=1}^n C_k$. Let furthermore $\mathcal{C} := \{\bigcup_{i \in I} C_i \mid I \subseteq \{1, \ldots, n\}\}$, with the convention $\bigcup_{k \in \emptyset} C_k = \emptyset$.
 - (1): Check that \mathcal{C} is a σ -algebra.
 - (2): Let $f: \Omega \to \mathbb{R}$ be a map. Show that f is measurable with respect to \mathcal{C} (i.e. $\forall t \in \mathbb{R} : \{\omega \in \Omega \mid f(\omega) \geq t\} =: \{f \geq t\} \in \mathcal{C}$), if and only if f is constant on each C_i
- b): Let $g: \Omega \to \mathbb{R}$ be a map that takes only finitely many values, i.e. $g(\Omega) = \{y_1, \dots, y_p\}$. Define $C_k := g^{-1}(\{y_k\})$ and \mathcal{C} as in a):
 - 1): Check that q is \mathcal{C} —measureable.
 - 2): Let \mathcal{F} be any σ -algebra such that g is \mathcal{F} -measureable. Show that $\mathcal{C} \subseteq \mathcal{F}$
 - 3): Let $f: \Omega \to \mathbb{R}$ be a nother map. Show that f is \mathcal{C} -measureable if and only if there is a function $h: \mathbb{R} \to \mathbb{R}$ such that $f = h \circ g$.

Problem 2 (Probability and random variables) We make an experiment where secants of the unit circle $S^1 \subset \mathbb{R}$ are randomly chosen in the following ways:

- a) Choose two (different) points on the circle at random (with uniform distribution), connect them with a straight line.
- b) Choose one point $p \neq (0,0)$ inside the circle at random (with uniform distribution) and draw the secant which goes through p and is orthogonal to the line from (0,0) to p.

Define suitable probability spaces $(\Omega_a, \mathcal{F}_a, \mathbb{P}_a)$ and $(\Omega_b, \mathcal{F}_b, \mathbb{P}_b)$ for both cases. Define random variables $X_j : \Omega_j \to \mathbb{R}(j = a, b)$ that assign to a choice of points the length of the respective secant. Calculate the probability distribution of X_a and X_b and the respective expectation values.

Problem 3 Let Ω be a set and \mathcal{F} a corresponding σ -algebra. Let furthermore $\forall n \in \mathbb{N}$, $f_n : \Omega \to \mathbb{R}$ such that $(f_n)_{n \in \mathbb{N}}$ is a sequence of measureable functions. Show that the following functions are measureable:

(1):
$$\Psi(\omega) = \sup_{n \in \mathbb{N}} f_n(\omega)$$

(2):
$$\overline{f}(\omega) := \limsup_{n \to \infty} f_n(\omega)$$
 (limit superior of the sequence $f_n(\omega)$ for every ω).

(3):
$$f(\omega) := \begin{cases} \lim_{n \to \infty} f_n(\omega) & \text{if the limit exists and is in } \mathbb{R} \cup \{-\infty, \infty\} \\ 0 & \text{else} \end{cases}$$

You are allowed to use that

- products and linear combinations of measureable functions are measureable
- if a function $h: \Omega \to \mathbb{R}$ is measureable, then $\forall a \leq b \in \mathbb{R}$:

A)
$$f^{-1}([a,b]) \in \mathcal{F}$$
 (this includes the case $f^{-1}(\{a\}) \in \mathcal{F}$)

B)
$$f^{-1}([a,b)) \in \mathcal{F}$$

C)
$$f^{-1}((a,b]) \in \mathcal{F}$$

D)
$$f^{-1}((a,b)) \in \mathcal{F}$$
 hold.

The solutions to these exercises will be discussed on Monday, 14.05.