Exercises on Mathematical Statistical Physics Sheet 11

Problem 1 (Green's functions and random walks) Let E be a finite or countably infinite set and $P = (P(x,y))_{x,y \in E}$ a transition matrix (i.e., $P(x,y) \ge 0$ and $\sum_y P(x,y) = 1$). Define

$$G(x,y) := \delta_{x,y} + P(x,y) + \sum_{n=2}^{\infty} \sum_{x_1,\dots,x_{n-1} \in E} P(x,x_1)P(x_1,x_2)\cdots P(x_{n-1},y) \qquad (x,y \in E).$$

- a) Explain why G(x, y) is the expected number of visits to site y of a random walker in E started at site x and evolving according to the transition matrix P.
- b) Define ((I-P)G)(x,y) by the usual matrix product formulas. Show that if $G < \infty$ on $E \times E$, then $((I-P)G)(x,y) = \delta_{x,y}$ for all $x,y \in E$. (In this sense, $G = (I-P)^{-1}$.)
- c) Suppose that E is finite. Is it possible that $G < \infty$ on $E \times E$?
- d) Let $E = \mathbb{Z}^d$. Assume that $G < \infty$ on $E \times E$, that G is symmetric and positive semi-definite: G(x,y) = G(y,x) for all x,y and $\sum_{x,y \in \mathbb{Z}^d} f_x G(x,y) f_y \geq 0$ for all $f = (f_x)_{x \in \mathbb{Z}^d}$ for which the sum converges. Suppose that there exists a measure μ on $\Omega := \mathbb{R}^{\mathbb{Z}^d}$ (equipped with the product of the Borel- σ -algebras) such that

$$\int_{\Omega} e^{i\sum_{x\in\mathbb{Z}^d} f_x \varphi_x} d\mu(\varphi) = e^{-\frac{1}{2}\sum_{x,y\in\mathbb{Z}^d} f_x G(x,y) f_y}.$$

for all $f = (f_x)_{x \in \mathbb{Z}^d} \in \mathbb{R}^{\mathbb{Z}^d}$ that have only finitely many non-zero entries. Show that for all $x, y \in \mathbb{Z}^d$,

$$\int_{\Omega} \varphi_x \varphi_y \mathrm{d}\mu(\varphi) = G(x,y).$$

e) Let $E = \mathbb{Z}^d$ and

$$P(x,y) := \begin{cases} \frac{1}{2d}, & \text{if } x,y \text{ are nearest neighbors,} \\ 0, & \text{else.} \end{cases}$$

Show that for all $\varphi \in \mathbb{R}^{\mathbb{Z}^d}$ that have only finitely many non-zero entries,

$$\sum_{x,y\in\mathbb{Z}^d} \varphi_x \big(\delta_{x,y} - P(x,y)\big) \varphi_y$$

is proportional to $\sum_{x,y\in\mathbb{Z}^d:||x-y||=1} (\varphi_y-\varphi_x)^2$. Compute the proportionality constant.

Problem 2 (Markov chains and reflection positivity) Let E be a finite, non-empty set, $\Omega = E^{\mathbb{Z}}$, and \mathcal{F} the product σ -algebra. Let $P = (P(x,y))_{x,y\in E}$ be a transition matrix and μ a measure on E that satisfies the detailed balance $\mu(x)P(x,y) = \mu(y)P(y,x)$. Let \mathbb{P} be the unique probability measure on (Ω, \mathcal{F}) such that

$$\mathbb{P}(\{\omega \in \Omega : \omega_{-n} = x_{-n}, \dots, \omega_n = x_n\}) = \mu(x_{-n})P(x_{-n}, x_{-n+1})\cdots P(x_{n-1}, x_n)$$

for all $n \in \mathbb{N}$ and $(x_{-n}, \ldots, x_n) \in E^{2n+1}$. For the purpose of this exercise, the axis \mathbb{Z} is best thought of as discrete time and Ω as a space of paths in E; \mathbb{P} is a probability measure on paths.

a) Let $\theta: \Omega \to \Omega$ be the reflection defined by $(\theta\omega)_k := \omega_{-k}$. Further let \mathcal{A}_+ the collection of complex-valued maps $F \in L^2(\Omega, \mathbb{P})$ that depend $(\omega_k)_{k \geq 0}$ only, and $\mathcal{A}_+^{\text{loc}}$ those elements $F \in \mathcal{A}_+$ that are also local. Define the bilinear form B by

$$B(F,G) := \int_{\Omega} \overline{F(\theta\omega)} F(\omega) d\mathbb{P}(\omega) \quad (F,G \in \mathcal{A}_{+}).$$

Show that $B(F, F) \geq 0$ for all $F \in \mathcal{A}^{loc}_+$.

b) Let $s: \Omega \to \Omega$ be the reflection around n = 1/2, i.e., $(s\omega)_k := \omega_{1-k}$. Show that (i) if $\int_{\Omega} \overline{G \circ s} \, G dP \geq 0$ for all local $G: \omega \to \mathbb{C}$ that depend on $(\omega_k)_{k\geq 1}$ alone, then necessarily the matrix $(\mu(x)P(x,y))_{x,y\in E}$ is positive semi-definite. (ii) Consider

$$E = \{1, 2\}, \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mu = (1/2, 1/2).$$

Does the criterion from b) (i) hold true?

- c) Define an equivalence relation on \mathcal{A}_+ by $F \sim G$ if and only if B(F G, F G) = 0. The space of equivalence classes is equipped with the scalar product $\langle [F]_{\sim}, [G]_{\sim} \rangle := B(F, G)$. Let \mathcal{H} be the completion of the space of equivalence classes with respect to this norm.
 - (i) Show that for every $F \in \mathcal{A}^{loc}_+$, there is a function $g: E \to \mathbb{C}$ such that $F \sim G$ with $G(\omega) := g(\omega_0)$.
 - (ii) Let $L^2(E, \mu_0)$ be the Hilbert space of functions $g: E \to \mathbb{C}$ with scalar product $\langle g, h \rangle = \sum_{x_0 \in E} \overline{g(x_0)} h(x_0) \mu(x_0)$. Show that there is a norm-preserving, linear bijection $U: L^2(E, \mu_0) \to \mathcal{H}$ (thus \mathcal{H} and $L^2(E, \mu_0)$ are isomorphic). You are allowed to use that $\mathcal{A}_+^{\text{loc}}$ is dense in \mathcal{A} .
- d) Let $\tau: \Omega \to \Omega$ be the shift operator $(\tau \omega)_k := \omega_{k+1}$. For $F \in \mathcal{A}^{loc}_+$, let $g := U^{-1}[F]_{\sim}$. Show that

$$[F \circ \tau]_{\sim} = U(Pg).$$

Remark: The exercise hints at how, in principle, the "time-zero" Hilbert space $L^2(E, \mu_0)$ and the transition matrix P can be recovered from a reflection positive measure on path-space. This was the initial motivation for the notion of reflection positivity (also called Osterwalder-Schrader positivity), in the context of constructive quantum field theory; when time is continuous rather than discrete, one looks for a semi-group $(P_t)_{t\geq 0}$ rather than just one matrix P and associates it with a Hamilton operator P by $P_t = \exp(-tH)$ (the full theory is quite involved, however!).