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Problem 1 (Green’s functions and random walks) Let E be a finite or countably
infinite set and P = (P (x, y))x,y∈E a transition matrix (i.e., P (x, y) ≥ 0 and

∑
y P (x, y) =

1). Define

G(x, y) := δx,y + P (x, y) +
∞∑
n=2

∑
x1,...,xn−1∈E

P (x, x1)P (x1, x2) · · ·P (xn−1, y) (x, y ∈ E).

a) Explain why G(x, y) is the expected number of visits to site y of a random walker in
E started at site x and evolving according to the transition matrix P .

b) Define ((I − P )G)(x, y) by the usual matrix product formulas. Show that if G <∞
on E×E, then ((I−P )G

)
(x, y) = δx,y for all x, y ∈ E. (In this sense, G = (I−P )−1.)

c) Suppose that E is finite. Is it possible that G <∞ on E × E?

d) Let E = Zd. Assume that G < ∞ on E × E, that G is symmetric and positive
semi-definite: G(x, y) = G(y, x) for all x, y and

∑
x,y∈Zd fxG(x, y)fy ≥ 0 for all

f = (fx)x∈Zd for which the sum converges. Suppose that there exists a measure µ on
Ω := RZd

(equipped with the product of the Borel-σ-algebras) such that∫
Ω

ei
∑

x∈Zd fxϕxdµ(ϕ) = e−
1
2

∑
x,y∈Zd fxG(x,y)fy .

for all f = (fx)x∈Zd ∈ RZd
that have only finitely many non-zero entries. Show that

for all x, y ∈ Zd, ∫
Ω

ϕxϕydµ(ϕ) = G(x, y).

e) Let E = Zd and

P (x, y) :=

{
1
2d
, if x, y are nearest neighbors,

0, else.

Show that for all ϕ ∈ RZd
that have only finitely many non-zero entries,∑

x,y∈Zd

ϕx

(
δx,y − P (x, y)

)
ϕy

is proportional to
∑

x,y∈Zd:||x−y||=1

(
ϕy−ϕx)2. Compute the proportionality constant.



Problem 2 (Markov chains and reflection positivity) Let E be a finite, non-empty
set, Ω = EZ, and F the product σ-algebra. Let P = (P (x, y))x,y∈E be a transition matrix
and µ a measure on E that satisfies the detailed balance µ(x)P (x, y) = µ(y)P (y, x). Let
P be the unique probability measure on (Ω,F) such that

P
(
{ω ∈ Ω : ω−n = x−n, . . . , ωn = xn}

)
= µ(x−n)P (x−n, x−n+1) · · ·P (xn−1, xn)

for all n ∈ N and (x−n, . . . , xn) ∈ E2n+1. For the purpose of this exercise, the axis Z is
best thought of as discrete time and Ω as a space of paths in E; P is a probability measure
on paths.

a) Let θ : Ω → Ω be the reflection defined by (θω)k := ω−k. Further let A+ the
collection of complex-valued maps F ∈ L2(Ω,P) that depend (ωk)k≥0 only, and Aloc

+

those elements F ∈ A+ that are also local. Define the bilinear form B by

B(F,G) :=

∫
Ω

F (θω)F (ω)dP(ω) (F,G ∈ A+).

Show that B(F, F ) ≥ 0 for all F ∈ Aloc
+ .

b) Let s : Ω → Ω be the reflection around n = 1/2, i.e., (sω)k := ω1−k. Show that
(i) if

∫
Ω
G ◦ sGdP ≥ 0 for all local G : ω → C that depend on (ωk)k≥1 alone, then

necessarily the matrix (µ(x)P (x, y))x,y∈E is positive semi-definite. (ii) Consider

E = {1, 2}, P =

(
0 1
1 0

)
, µ = (1/2, 1/2).

Does the criterion from b) (i) hold true?

c) Define an equivalence relation on A+ by F ∼ G if and only if B(F −G,F −G) = 0.
The space of equivalence classes is equipped with the scalar product 〈[F ]∼, [G]∼〉 :=
B(F,G). Let H be the completion of the space of equivalence classes with respect to
this norm.

(i) Show that for every F ∈ Aloc
+ , there is a function g : E → C such that F ∼ G

with G(ω) := g(ω0).

(ii) Let L2(E, µ0) be the Hilbert space of functions g : E → C with scalar product
〈g, h〉 =

∑
x0∈E g(x0)h(x0)µ(x0). Show that there is a norm-preserving, linear

bijection U : L2(E, µ0) → H (thus H and L2(E, µ0) are isomorphic). You are
allowed to use that Aloc

+ is dense in A.

d) Let τ : Ω→ Ω be the shift operator (τω)k := ωk+1. For F ∈ Aloc
+ , let g := U−1[F ]∼.

Show that
[F ◦ τ ]∼ = U(Pg).



Remark: The exercise hints at how, in principle, the “time-zero” Hilbert space L2(E, µ0)
and the transition matrix P can be recovered from a reflection positive measure on path-
space. This was the initial motivation for the notion of reflection positivity (also called
Osterwalder-Schrader positivity), in the context of constructive quantum field theory; when
time is continuous rather than discrete, one looks for a semi-group (Pt)t≥0 rather than just
one matrix P and associates it with a Hamilton operator H by Pt = exp(−tH) (the full
theory is quite involved, however!).


