Definition (Gl, H.H., *) is called a
C+-algebra if OT is a complex
algebra, I.H.OT -> R is a norm,
OT is complek in the I.H.-topology
(which makes if a Barach algebra)
and *: OT -> OT is an involution
with V a bear, & cO

$$a^{**} = a$$

 $(a+b)^* = a^* + b^*$
 $(ab)^* = b^* a^*$
 $(\lambda_a)^* = x a^*$
 $\|a^*a\| = \|a^*\|\|a\| = \|a\|^2$ ($c_x - propety$)
NB: We did not assume commutativity
or the existing of a 1 eQ.

Examples:

OI = Mat (LXG, C) AU finte dimm sourt Ct - algebras ean be decomposed into a divert seem of such full matix algebras.

i)
$$f + 2 a(f)$$
 is $anh - liner
(i.e. $a(\lambda f) = \overline{\lambda} a(f)$)
2) $\{a(f), a(g)\} = 0$ $\forall f_{n}g \in L$
3) $\{a(f), a(g)\} = \langle f_{n}g \rangle$ id$

fludes:

•
$$a^{*}(f)$$
 is line
• $\|\ln(f)\| = \|f\|$
 $(free : \|a^{*}(f) \circ (f)\|^{2} =$
 $\|a^{*}(f) \circ (f) \circ (f) \circ (f)\|^{2} =$
 $\|a^{*}(f) \circ (f) \circ (f) \circ (f)\| =$
 $\|b^{*}(f) \circ (f) \circ (f)\| =$
 $\|f\|^{2} \|a^{*}(f) \circ (f)\| = \|f\|^{2} \|a^{*}(f) \circ (f)\| =$
• $\|f\|^{2} \|a^{*}(f) \circ (f)\| = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = \infty \Rightarrow CAP(R) = \|a(f)\|$
• $\lim_{t \to t} h = 0$
• $\lim_$

there exists a unique
$$\gamma \in h-1$$
 (AR(h))
with $\gamma(\alpha(f)) = \alpha(hf) + \alpha^*(v(f))$
with $\gamma(\alpha(f)) = \alpha(hf) + \alpha^*(v(f))$
This is called a Sogplinbar - frans for unitin.
Tas $V \neq 0$, it unities or eation and
dunihilation operators.
Justical of $\alpha^*(f)$ and $\alpha(f)$ be can also
use $B(f) := \frac{1}{2} (\alpha(f) + \alpha^*(f))$
(inver: $\alpha(f) = \frac{1}{2} (\beta(f) + i \beta(if))$
The $\{B(f), B(g)\} = \operatorname{Re}(\langle f, S \rangle)$
This suggest, we could have studed from
 α real Sibut space β with α rul
possible symmetric $\beta(f) = \sin(f)$

If $j:h \to h$ is a complex structure, i.e. $J^2 = -id$ with S(J(,g) = -S(f, Jg))

we could the oblic
as
$$(f):= f_{z}(B(f) + i B(Jf))$$

such that
 $\{a_{y}(f), a_{y}^{\dagger}(g)\} = S(f_{1}g) + i S(d_{1}Jg)$
the Bogobubou transferantian is the
obtained from an isometry $T:h-sh$
with $S(Tf, Tg) = S(f_{1}g)$ and $J(S(H)) = B(TH)$.
This the gives $U = f_{z}(T - fTf)$, $V = f_{z}(T + fTf)$

Conomical commutation relations (Bosons):
If lat h be a symplectic space (i.e.
real vector space with anti-symmetric
bilinar form
$$\nabla = h \times h \rightarrow R$$
 with
 $\forall g \in h: \nabla (f,g) = \partial \implies f = 0.$
Then, there is a unique $C \times -algebra$
 $(CR(h))$ growated by $W(d)$ for fech
with

i)
$$W(f)^{*} = W(-f)$$

ii) $W(f)^{*} = e^{i_{2} \cdot \sigma(f,g)} W(f,g)$
Humble: If h is actually complex Hilbst spin
one can doxe $\sigma(f,g) = J_{in} \cdot f_{i}g$
otoh, in the real case, one
(an complexify using equin a complex
Structure J:h-sh, $J^{2} = -id$, $\sigma(Jf,g) = \sigma(J_{2},g)$
 $(f,g) := \sigma(f, Jg) + i \cdot \sigma(f,g)$