Übungen zur Mathematik für Physiker I

Prof. Dr. D. Dürr

Blatt 9

Aufgabe 1: Bestimmen Sie, falls existent, den Summenwert von

$$\sum_{\substack{m,n=0\\m\leq n}}^{\infty} \binom{n}{m} 2^{m-2n}.$$

Aufgabe 2: Es sei $f : \mathbb{R} \to \mathbb{R}$ eine Funktion mit $\lim_{h\to 0} (f(x-h) - f(x+h)) = 0$ für alle $x \in \mathbb{R}$. Ist f stetig? (Beweis oder Gegenbeispiel)

Aufgabe 3:

- (a) Bestimmen Sie, falls existent, $\lim_{h\to 0} \sum_{k=0}^{\infty} \frac{h^k}{k!}$.
- (b) Erklären Sie, wie die Stetigkeit von $\exp: \mathbb{R} \to \mathbb{R}$ und $\exp: \mathbb{C} \to \mathbb{C}$ aus $x \mapsto \sum_{k=0}^{\infty} \frac{x^k}{k!}$ $z \mapsto \sum_{k=0}^{\infty} \frac{z^k}{k!}$ dem Ergebnis von (a) folgt.

Aufgabe 4: Zeigen Sie, daß $f: \mathbb{C} \to \mathbb{C}$ mit f(z) = |z| stetig ist.

Aufgabe 5:

(a) Seien $f: \mathbb{C} \to \mathbb{C}$ und $g: \mathbb{C} \to \mathbb{C}$ stetig in \mathbb{C} . Zeigen Sie, daß

$$f+g$$
, $f\cdot g$, $1/f$, $f\circ g$

(auf ihren möglichen Definitionsbereichen) stetig sind.

- (b) Sei $p: \mathbb{C} \to \mathbb{C}$ ein Polynom. Zeigen Sie, dass es stetig ist.
- (c) Zeigen Sie, dass sin und cos stetige Funktionen sind. Hinweis: Benutzen Sie Aufgabe 3 und die Eulerformel.

Aufgabe 6: Sei $f:[a,b] \to \mathbb{R}$ stetig, $f(a) \le f(b)$. Zeigen Sie folgendes Korollar zum Nullstellensatz (Zwischenwertsatz):

$$\forall p \in [f(a), f(b)] \ \exists c \in [a, b] : f(c) = p$$

Aufgabe 7: Es sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ sei stetig. Zeigen Sie:

f injektiv $\Leftrightarrow f$ streng monoton.