Übungen zur Mathematik für Physiker I

Prof. Dr. D. Dürr

Blatt 7

Aufgabe 1: (a) Sei $f:[0,\infty]\to\mathbb{R}_+$ eine monoton fallende Funktion, d.h. $x\leq y\Rightarrow f(x)\geq f(y)$. Zeigen Sie mit der Interpretation des Integrals als "Fläche unter Kurve" dass

$$\sum_{n=2}^{N} f(n) \le \int_{1}^{N} f(x) dx \le \sum_{n=1}^{N} f(n)$$

- (b) Zeigen Sie, dass $\sum_{n=1}^N \frac{1}{n}$ logarithmisch divergiert.
- (c) Sei a > 1. Zeigen Sie, dass $\sum_{n=1}^{\infty} \frac{1}{n^a}$ konvergiert.
- (d) Was ist mit dem Konvergenzverhalten der Reihe $\sum_{n=2}^{\infty} \frac{1}{n l n(n)}$?

Aufgabe 2: Man berechne, falls existent:

$$\lim_{n\to\infty} \left(\sqrt{n+\sqrt{n}} - \sqrt{n}\right)$$

$$\lim_{n\to\infty} \frac{n^n}{(n+q)^n} \text{ für } q\in\mathbb{R}.$$

Aufgabe 3: Man zeige: Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge und $(x_{n_k})_{k\in\mathbb{N}}$ eine Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die gegen x konvergiert. Dann konvergiert $(x_n)_{n\in\mathbb{N}}$ gegen x.

Aufgabe 4: Zeige: $\lim_{n\to\infty} \sqrt[n]{n}=1$. Hinweis: Es gibt zwei schnelle Lösungen: 1.) n durch $a_n:=\sqrt[n]{n}-1$ ausdrücken und geeignet abschätzen. Oder 2.) Verwenden Sie die Ungleichung zwischen arithmetischen und geometrischen Mitteln.

Aufgabe 5: Sei $x_n := (1 - \frac{1}{n^2})^n$. Man zeige, daß die Folge $(x_n)_{n \in \mathbb{N}}$ gegen 1 konvergiert.

Aufgabe 6: (Bolzano Weierstraß für mehrere Dimensionen.) Betrachten Sie \mathbb{R}^2 mit der Norm: $\|\mathbf{x}\| = \left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\| = \sqrt{x^2 + y^2}$. Sei $(\mathbf{x}_n)_{n \in \mathbb{N}}$ eine beschränkte Folge in \mathbb{R}^2 . Zeigen Sie, daß die Folge $(\mathbf{x}_n)_{n\in\mathbb{N}}$ mindestens einen Häufungspunkt hat. Hinweis: Bilden Sie geschickte Teilfolgen.