Übungen zur Mathematik I für Physiker

Prof. Dr. D. Dürr

Blatt 2

Aufgabe 1:

(a) Zeigen Sie (z.B. mit vollständiger Induktion), dass jede natürliche Zahl ungleich 1 in ein Produkt von Primzahlen zerlegt werden kann, d.h. in symbolischer Sprache, wenn P die Menge der Primzahlen bezeichnet

$$\forall n \in \mathbb{N} \setminus \{1\} \exists k \in \mathbb{N} \text{ und } \exists p_1, \dots, p_k \in P : n = p_1 \cdot p_2 \cdots p_k.$$

Dabei brauchen die p_i , i=1,...,k nicht verschieden zu sein.

(b) Zeigen Sie, dass es keine größte Primzahl gibt. Hinweis: Betrachten Sie $1 \cdot 2 \cdots p + 1$ unter der Annahme, p sei die größte Primzahl.

Aufgabe 2: Man zeige die *Eindeutigkeit* der Primfaktorenzerlegung: Man erhält (nach Vorlesung) aus der Wechselwegnahme (Euklidischer Algorithmus): Für natürliche Zahlen m, n existieren ganze Zahlen (d.h. positive und negative) q, p, so dass

$$ggT(m,n) = qm + pn.$$

(a) Seien m, n Zahlen und p eine Primzahl. Man zeige:

 $m \cdot n$ teilbar durch $p \Leftrightarrow m$ oder nteilbar durch $p \,.$

(b) Man verallgemeinere dies auf Produkte von mehr als zwei Zahlen. Hier kann man an vollständige Induktion denken.

Aufgabe 3: Man zeige: \sqrt{n} ist irrational für alle natürlichen Zahlen n > 1, welche keine Quadratzahlen sind. *Hinweis*: Aufgabe 2.

Aufgabe 4: Neben der Iteration, die man aus der Wechselwegnahme von Diagonale und Seite des Quadrates bekommt, gibt es noch weitere Verfahren zur Bestimmung von $\sqrt{2}$: Sei (x_n) eine Folge, "die gegen $\sqrt{2}$ geht". Für große n ist dann $x_n \approx x_{n+1}$, also $(x_n - x_{n+1})^2 \approx 0$. Ausquadrieren und die Setzung $x_{n+1}^2 = 2$ führt auf die Rekursion

$$x_{n+1} := \frac{1}{2}x_n + \frac{1}{x_n} \,.$$

Zeigen Sie, daß diese Rekursion genauso gut wie die aus der Wechselwegnahme ist: Geben Sie die Konvergenzgeschwindigkeit dieser Rekursion in Abhängigkeit von $x_0 > 0$ an, d.h. schätzen Sie $|x_n - \sqrt{2}|$ ab. Anleitung: Zeigen Sie (1) $(x_{n+1} - x_n)^2 = x_{n+1}^2 - 2$ für $n \in \mathbb{N}_0$. Folgern Sie (2) $x_n/2 \ge 1/x_n$ für $n \in \mathbb{N}$. Zeigen Sie damit, daß $(x_n)_{n\ge 1}$ eine monoton fallende Folge ist, und weiter, dass

$$|x_{n+1} - \sqrt{2}| \le \frac{(\frac{1}{x_0} - \frac{x_0}{2})^2}{4^n 2\sqrt{2}}.$$

Berechnen Sie mit dieser Folge $\sqrt{2}$ auf 3 Dezimalen genau.

Aufgabe 5:

(a) Zeigen Sie die Bernoulli-Ungleichung: Für alle $n \in \mathbb{N}$ gilt für $x \ge -1$

$$(1+x)^n \ge 1 + nx.$$

(b) Sei 0 < q < 1. Zeigen Sie: Für alle $\epsilon > 0$ existiert ein $N \in \mathbb{N}$, so daß für alle $n \geq N$

$$q^n \le \epsilon$$
.

Aufgabe 6:

Beweisen Sie

(a) Für $1 \neq q \in \mathbb{R}$ und für alle $n \in \mathbb{N}_0$ gilt:

$$\sum_{k=0}^{n} q^{k} = 1 + q + q^{2} + \ldots + q^{n} = \frac{1 - q^{n+1}}{1 - q}$$

(b) Es sei | q |< 1. Zeigen Sie, daß für alle $\epsilon>0$ ein $N\in\mathbb{N}$ existiert, so dass

$$\left| \sum_{k=0}^{n} q^k - \frac{1}{1-q} \right| < \epsilon \qquad \forall n \ge N .$$