Übungen zur Mathematik für Physiker I

Prof. Dr. D. Dürr

Blatt 10

Aufgabe 1: Für gegebenes b>0 berechne (ohne Benutzung von l'Hospital) $\lim_{x\to 0} \frac{b^x-1}{x}$

Aufgabe 2: Zeigen Sie mit der $\epsilon - \delta$ Version der Stetigkeit die Stetigkeit von $f(x) = x^3$.

Aufgabe 3:

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig in $p \in \mathbb{R}$ mit f(p) > 0. Zeigen Sie: Es existiert ein $\delta > 0$ mit f(x) > 0 für alle $x \in U_{\delta}(p) := \{x \in \mathbb{R} : |x p| < \delta\}$.
- (b) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig. Zeigen Sie: Die Menge $N:=\{x\in \mathbb{R}|\ f(x)=0\}$ der Nullstellen ist abgeschlossen.
- (c) Man gebe ein Beispiel für eine Funktion $f:]0,1] \rightarrow [-1,1]$, die stetig aber nicht gleichmäßig stetig ist.

Aufgabe 4: Eine Landausche Definition (Edmund Landau 1877-1938) von π ist die folgende: $\frac{\pi}{2}$ ist die kleinste positive Nullstelle der cosinus-Funktion. Um die Wohldefiniertheit zu sehen, geht man durch folgende Schritte.

- (a) Zeigen Sie mit der Reihendefinition: cos(0) > 0, cos(2) < 0.
- (b) Begründen Sie, daß aus (a) die Existenz von Nullstellen folgt und daß es eine kleinste Nullstelle gibt.

Aufgabe 5: Sei $A_i \subset \mathbb{R}, i \in \mathbb{N}$ eine Familie offener Mengen. Beweisen oder widerlegen Sie

- (a) $\bigcup_{i \in \mathbb{N}} A_i$ ist offen
- (b) Für $N \in \mathbb{N}$ ist $\bigcap_{i=1}^{N} A_i$ offen.
- (c) $\bigcap_{i=1}^{\infty} A_i$ ist offen.

Zusatzaufgabe: Seien X und Y normierte Vektorräume, und $f: X \to Y$. Zeigen Sie: f ist genau dann stetig, wenn für jedes offene $V \subseteq Y$ auch $f^{-1}(V)$ eine offene Teilmenge von X ist. Hinweis: Denken Sie an die $\epsilon - \delta$ -Version der Stetigkeit.