Übungen zu Mathematik III für Physiker

Prof. Dr. P. Pickl Blatt 8

Aufgabe 1:

Sei U ein Elementargebiet, $a \in U$ und $f: U \setminus \{a\} \to \mathbb{C}$ holomorph. f habe in a einen Pol der Ordnung n, d.h. $g(z) = f(z)(z-a)^n$ für eine auf U holomorphe Funktion g mit $g(a) \neq 0$.

Zeigen Sie: Das Residdum von f an der Stelle a ist gegeben durch $g^{(n-1)}(a)/(n-1)!$.

Aufgabe 2: Sei $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$, wobei $\mathcal{P}(\Omega)$ die Potenzmenge der Menge Ω bezeichnet. Es gelte

 $M \in \mathcal{A} \Leftrightarrow M$ oder M^c ist höchstens abzählbar.

Zeigen Sei: \mathcal{A} ist eine σ -Algebra.

Aufgabe 3: Die sogenannte Cantor-Menge C lässt sich mittels folgender Iteration konstruieren:

Man beginnt mit dem abgeschlossenen Intervall [0,1] der reellen Zahlen von 0 bis 1.

Aus diesem Intervall wird das offene mittlere Drittel entfernt (weggewischt), also alle Zahlen, die strikt zwischen 1/3 und 2/3 liegen. Übrig bleiben die beiden Intervalle [0,1/3] und [2/3, 1]. Aus diesen beiden Intervallen wird wiederum jeweils das offene mittlere Drittel entfernt und man erhält nun vier Intervalle: [0,1/9], [2/9,1/3], [2/3,7/9] und [8/9,1]. Von diesen Intervallen werden wiederum die offenen mittleren Drittel entfernt. Dieser Schritt wird unendlich oft wiederholt.

Zeigen Sie: C ist überabzaählbar und Lebesguemessbar. Geben Sie das Lebesguemaß von C an.

Hinweis: Wählen Sie eine für den Beweis vorteilhafte Darstellung der reelen Zahlen.

Abgabe: Montag, 18.12.2017, 10 Uhr.