Übungen zu Mathematik III für Physiker

Prof. Dr. D. Dürr

Blatt 14

Aufgabe 1: Sei \mathcal{H} ein Hilbertraum und $\{v_n : n \in \mathbb{N}\}$ ein Orthonormalsystem (ONS).

(a) Man zeige: Ein ONS ist eine ONB (Orthonormalbasis) genau dann wenn folgende Aussage gilt: " $\langle v_k, x \rangle = 0 \ \forall k \Leftrightarrow x = 0$."

Erinnerung: ONS = ONB $\Leftrightarrow \forall x \in \mathcal{H} \text{ gilt: } \sum_{k=1}^{\infty} \langle v_k, x \rangle v_k.$

Hinweis: "⇒": Definition der ONB.

"\(:\) Sei $x \in \mathcal{H}$. Setze $y = \sum_{k=1}^{\infty} \langle v_k, x \rangle v_k$. Zu zeigen ist: x = y.

(b) Sei \mathcal{H} separabel. Beweisen Sie: "Ein ONS ist eine ONB $\Leftrightarrow \forall x \in \mathcal{H}$ gilt: $||x||^2 = \sum_{k=1}^{\infty} |\langle v_k, x \rangle|^2$." (Parseval).

Aufgabe 2: Seien \mathcal{H} separabel sowie $x, y \in \mathcal{H}$.

- (a) Zeigen Sie die Polarisationsidentität:
 - (i) Im Fall, dass \mathcal{H} ein reeller Vektorraum ist:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

(ii) Im Fall, dass \mathcal{H} ein komplexer Vektorraum ist:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 - i(\|x + iy\|^2 - \|x - iy\|^2)).$$

(b) Seien $x, y \in \mathcal{H}$ und $\{v_n : n \in \mathbb{N}\}$ eine ONB. Zeigen Sie, dass aus der Parseval-Gleichung (siehe oben) die Plancherel-Identität folgt:

$$\langle x, y \rangle = \sum_{k=1}^{\infty} \overline{\langle v_k, x \rangle} \langle v_k, y \rangle.$$

Aufgabe 3: Seien $f, g \in L_1(\mathbb{R})$. g sei außerdem stetig differenzierbar und habe kompakten Träger (d.h. $g \neq 0$ auf einer Menge mit Maß kleiner unendlich). Zeigen Sie: Dann ist die Faltung $f \star g$ differenzierbar.

Hinweis: Man betrachte $\lim_{\Delta x \to 0} \frac{(f \star g)(x + \Delta x) - (f \star g)(x)}{\Delta x}$ und wende den Satz von der dominierten Konvergenz an, um Grenzwert und Integral zu vertauschen.

Aufgabe 4: (*)

(a) Für $n \in \mathbb{N}$ ist

$$(1 - x^2)y'' - 2xy' = -n(n+1)y,$$

die sogenannte Legendresche Differentialgleichung (y = f(x)). Bestimmen Sie die ersten drei (n = 0, 1, 2) Polynomlösungen P_n durch einen Polynomansatz!

Hinweis: Polynomansatz bedeutet, dass als Lösung ein Polynom mit unbekannten Koeffizienten angesetzt wird. Dann bestimmt man durch Einsetzen und Rechnen die Koeffizienten.

(b) Folgern Sie aus (a), dass die P_n ein Orthonormalsystem bilden, d.h. dass mit dem durch $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)\lambda(dx) \ \forall f, g, \in L^2([-1, 1])$ definiertem Skalarprodukt gilt:

$$\langle P_n, P_m \rangle = 0 \ \forall m, n \in \mathbb{N}_0, \ n \neq m.$$

Hinweis: Zeigen Sie zunächst, dass für zweimal stetig differenzierbare Funktionen $f,g:[-1,1]\to\mathbb{R}$

$$\langle f, Ag \rangle = \langle Af, g \rangle$$

gilt. Hierbei bezeichnet A den durch $Af(x) = (1 - x^2)f''(x) - 2xf'(x)$ definierten Differentialoperator.

Aufgabe 5: Es sei auf $L^2([-\pi, \pi])$ das Skalarprodukt durch $\langle f, g \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x)\lambda(dx)$ gegeben. Dann bilden die Funktionen $\{f_k\}_{k\in\mathbb{N}}$ mit $f_0(x) := \frac{1}{\sqrt{2}}, \ f_{2n}(x) := \cos(nx)$ und $f_{2n-1}(x) := \sin(nx) \ (n=1,2,\ldots)$ ein vollständiges Orthonormalsystem in $L^2([-\pi,\pi])$.

- (a) Bestimmen Sie die Fourierkoeffizienten der Funktion $f(x) := |\sin x|!$
- (b) Leiten Sie mit Hilfe der Parsevalschen Gleichung und (a) die Beziehung

$$\sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)^2} = \frac{\pi^2 - 8}{16}$$

her!

(c) Zeigen Sie, dass die Fourierreihe gleichmäßig gegen die Funktion f konvergiert!

Sternchenaufgabe (*): Falls Sie eine Korrektur dieser Aufgabe wünschen, werfen Sie diese bis Freitag 12:00 h auf einem gesonderten Blatt in den Zettelkasten "Mathematik III für Physiker" im ersten Stockwerk des B-Turms ein! Die korrigierten Aufgaben werden in der folgenden Woche über den Rückgabekasten zurückgegeben.