Übungen zu Mathematik III für Physiker

Prof. Dr. D. Dürr

Blatt 13

Aufgabe 1: Sei $f : \mathbb{R} \to \mathbb{R}$ eine Abbildung, $\mathcal{B}(\mathbb{R})$ die Borel-Algebra und $\mathcal{D} := \{A \subset \mathbb{R} : f^{-1}(A) \in \mathcal{B}(\mathbb{R})\}$. Zeigen Sie: \mathcal{D} ist eine σ -Algebra.

Aufgabe 2: Beweisen Sie: Für alle $f \in \mathcal{L}([a,b])$ gilt:

$$\int_a^b |f(x)| \, \lambda(dx) = 0 \quad \Rightarrow \quad f = 0 \text{ fast "überall auf } [a,b] \; .$$

Aufgabe 3: Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge Lebesgue-integriebarer Funktionen, die im Limes $n\to\infty$ auf dem offenen Intervall (0,1) punktweise gegen eine Lebesgue-integrierbare Funktion f konvergieren. Widerlegen Sie:

$$\lim_{n \to \infty} \int_0^1 f_n(x) \lambda(dx) = \int_0^1 f(x) \lambda(dx) .$$

Aufgabe 4: Zeigen Sie, dass C[a,b], der Vektorraum der stetigen Funktionen $f:[a,b]\subset \mathbb{R}\to \mathbb{C}$, vollständig bezüglich der Supremumsnorm $\|f\|_{\infty}=\sup_{x\in [a,b]}|f(x)|$ ist.

Hinweis: Was müssen Sie zum Beweis der Vollständigkeit eines Raumes bezüglich einer gegebenen Norm zeigen? Denken Sie für den letzten Schritt an das $\frac{\varepsilon}{3}$ -Argument!

Aufgabe 5: Es sei \mathbb{K} der Körper der komplexen oder reellen Zahlen. Beweisen Sie, dass $l^2 := \{x = (x_k)_{k \in \mathbb{N}} \mid \sum_{k=1}^{\infty} |x_k|^2 < \infty, x_k \in \mathbb{K}, k \in \mathbb{N}\}$ mit der Norm $||x||_2 := (\sum_{k=1}^{\infty} |x_k|^2)^{\frac{1}{2}}$ vollständig ist!