Blatt 8 der Übungen zu Mathematik III für Physiker

Prof. Dr. D. Dürr

Aufgabe 1: Zeigen Sie: \mathbb{C} ist vollständig.

Aufgabe 2: Überprüfen Sie folgende Funktionen auf komplexe Differenzierbarkeit:

- (a) $f(z) = \exp \overline{z}$
- (b) $f(z) = (\text{Re}z)^3 (\text{Im}z)^2 + i(\text{Re}z)^2 (\text{Im}z)^3$
- (c) f(z) = 1/z, $z \neq 0$

Aufgabe 3: Es sei $f_1: \mathbb{R}^2 \to \mathbb{R}$, $f_1(x,y) = y^2 - x^2$. Finden Sie eine Funktion $f_2: \mathbb{R}^2 \to \mathbb{R}$, so dass $f(z) := f_1(x,y) + \mathrm{i} f_2(x,y)$, $z = x + \mathrm{i} y$ komplex differenzierbar ist

Aufgabe 4: Es sei $f: \mathbb{C} \to \mathbb{C}$, $f(z) := \exp z$.

(a) Sei $\epsilon \in (0, \pi)$, $a \in \mathbb{R}$. Zeichnen Sie das Bild f(Q) für

$$Q:=\left\{x+\mathrm{i}\mathbf{y}\mid \mathbf{a}-\epsilon\leq\mathbf{x}\leq\mathbf{a}+\epsilon,\; -\epsilon\leq\mathbf{y}\leq\epsilon\right\}.$$

(b) Berechnen Sie das Verhältnis der Flächen $\lim_{\epsilon \to 0} \frac{|f(Q)|}{|Q|}$. Warum war dieses Ergebnis zu erwarten?

Aufgabe 5: Es sei f(z) = 1/z, $z \in \mathbb{C}\setminus\{0\}$. Auf welche Kurven bildet f Kreise mit Mittelpunkt im Nullpunkt, und auf welche bildet sie Nullpunktsgeraden ab? Wie verändert sich der Winkel zwischen zwei Nullpunktsgeraden? Wie verändert sich der Winkel zwischen zwei beliebigen Geraden?

Aufgabe 6:

- (a) Zeigen Sie: exp : $U \to \mathbb{C} \setminus \{0\}$ ist bijektiv, wobei $U := \{z \in \mathbb{C} \mid \text{Im}(z) \in (-\pi, \pi]\}$.
- (b) Es sei log die zu $\exp |_U$ gehörige Umkehrfunktion. Diese ist, analog zum reellen Fall, komplex differenzierbar. Man gebe $\log'(z)$ an.
- (c) Sei für $\varphi \in (-\pi, \pi]$ und $0 \neq z = r \exp i\varphi$ das "Argument von z" $\arg(z) := \varphi$. Zeigen Sie: $\log zw = \log z + \log w + i(2\pi, 0, -2\pi)$, falls $\arg(z) + \arg(w) \in ((-2\pi, -\pi], (-\pi, \pi], (\pi, 2\pi])$.
- (d) Für $z \in \mathbb{C} \setminus \{0\}$ und $a \in \mathbb{C}$ sei $z^a := \exp(a \log z)$. Berechnen Sie $(z^a)'$. Bestimmen Sie für a = i + 1 den Wert (d.h. Real- und Imaginärteil) der Ableitung im Punkt z = i.