Übungen zur Mathematik I für Physiker

Prof. Dr. D.-A. Deckert

Blatt 12

Die Aufgaben, neben denen "Zur Abgabe" steht, können in **Dreier- oder Vierergruppen** gelöst und mithilfe von UniWorX bis Freitag, 25.01.2019, 14:00 Uhr zur Korrektur abgegeben werden.

Aufgabe 1: (Zur Abgabe)

Welche folgenden Funktionen sind auf ihrem Definitionsbereich differenzierbar, welche stetig, welche gleichmässig stetig? Geben Sie die Ableitungen an, falls diese existieren, und beweisen Sie Ihre Aussagen.

- (a) $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$
- (b) $f:[0,4] \to \mathbb{R}, x \mapsto x^2$
- (c) $f: \mathbb{R}^+ \to \mathbb{R}, x \mapsto \sqrt{x}$
- (d) $f: \mathbb{R}_0^+ \to \mathbb{R}, x \mapsto \sqrt{x}$
- (e) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{1}{x}$
- (f) $f:[1,\infty)\to\mathbb{R}, x\mapsto \frac{1}{x}$

Aufgabe 2: (Zur Abgabe)

- (a) In der Vorlesung haben wir vorerst Ableitungen von Funktionen $D \to W$ mit $D, W \subseteq \mathbb{R}$ eingeführt. Vergewissern Sie sich, dass unsere Definition auch allgemeiner, z.B. auf die komplexwertige Funktion $f: \mathbb{R} \to \mathbb{C}$ mit $f(x) := e^{\lambda x}$ für ein $\lambda \in \mathbb{C}$, anwendbar ist. Berechnen Sie die Ableitung von f. Welche Eigenschaft des Wertebereichs benutzen Sie bei der Berechnung der Ableitung?
- (b) Zeigen Sie, dass für alle $A, B, \omega \in \mathbb{R}$ die Funktion $f(t) = A\sin(\omega t) + B\cos(\omega t)$ folgende Differentialgleichung $f''(t) = -\omega^2 f(t)$ löst. *Hinweis*: Benutzen Sie Aufgabenteil (a), um die Ableitungen von $\sin(x)$ und $\cos(x)$ zu berechnen.
- (c) Beweisen Sie mittels vollständiger Induktion, dass für $n \in \mathbb{N}$ gilt: $\frac{d}{dx}x^n = nx^{n-1}$.
- (d) Berechnen Sie die Ableitung von x^{x^x} . Benutzen Sie, dass $\forall a, x \in \mathbb{R} : a^x = e^{x \log(a)}$.

Aufgabe 3:

(a) Zeigen Sie, dass die Umkehrfunktion log von exp : $\mathbb{R} \to (0, \infty)$ streng monoton wachsend und unbeschränkt ist, aber für $k \in \mathbb{N}$ gilt:

$$\lim_{x \to \infty} x^{-k} \log(x) = 0.$$

Hinweis: Um den Limes zu berechnen, benutzen Sie zuerst die Reihendarstellung von e^x , um $\lim_{x\to\infty} x^{-k}e^x = \infty$ bzw. $\lim_{x\to\infty} x^k e^{-x} = 0$ zu zeigen, und machen Sie sich danach die Eigenschaften der Umkehrfunktion zu nutze.

- (b) Zeigen Sie mithilfe der Resultate aus der Vorlesung, dass der Kosinus auf $[0, \pi/2]$ eine Umkehrfunktion hat und geben Sie deren Definitionsbereich an. Bemerkung: Natürlich hat der Kosinus sogar auf dem größeren Intervall $[0, \pi]$ eine Umkehrfunktion, die üblicherweise mit $\arccos(x)$ bezeichnet wird, und eine weitere auf $[\pi, 2\pi]$ usw., was man über die Additionstheoreme beweisen kann.
- (c) Zeigen Sie, dass auf dem entsprechendem Definitionsbereich gilt:

$$\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}.$$

Hinweis: Verwenden Sie, dass $\cos(\arccos(x)) = x$ sowie $\sin^2(x) + \cos^2(x) = 1$.

Aufgabe 4: Sei $a, b \in \mathbb{R}$ mit a < b. Für die Menge

$$\mathcal{C}^0([a,b],\mathbb{R}) := \{ f : [a,b] \to \mathbb{R} \mid f \text{ stetig} \}$$

haben Sie schon gezeigt, dass diese bzgl. der üblichen Funktionsaddition f+g und der skalaren Multiplikation $\lambda \cdot f$ einen \mathbb{R} -Vektorraum $\mathcal{C}[a,b] := (\mathcal{C}^0([a,b],\mathbb{R}),+,\cdot)$ bildet. Weiter induziert

$$||f||_{\infty} := \sup_{x \in [a,b]} |f(x)|$$

eine Norm, die sog. Supremumsnorm, auf $\mathcal{C}[a,b]$. Zeigen Sie im Folgenden, dass der normierte Raum $(\mathcal{C}[a,b],\|\cdot\|_{\infty})$ vollständig und damit ein Banachraum ist:

- (a) Formulieren Sie folgende Aussagen geeignet mittels Quantoren und machen Sie sich die Bedeutung der Aussagen klar:
 - (a) $(g_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge in $\mathcal{C}[a,b]$
 - (b) $(h_n)_{n\in\mathbb{N}}$ konvergiert gegen ein h in $\mathcal{C}[a,b]$.
- (b) Sei nun im Folgenden $(f_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge. Zeigen Sie, dass für alle $x\in[a,b]$ die Folgen $(f_n(x))_{n\in\mathbb{N}}$ in \mathbb{R} Cauchy-Folgen in \mathbb{R} sind.
- (c) Zeigen Sie, dass die Funktion $f:[a,b]\to\mathbb{R}$ mit $f(x):=\lim_{n\to\infty}f_n(x)$ wohldefiniert ist.

(d) Zeigen Sie, dass $(f_n)_{n\in\mathbb{N}}$ gegen f bzgl. $\|\cdot\|_{\infty}$ konvergiert.

Hinweis: Nutzen Sie dafür aus, dass $|f(x) - f_n(x)| = \lim_{m \to \infty} |f_m(x) - f_n(x)|$ gilt, worauf sie für genügend große $n, m \in \mathbb{N}$ das Cauchy-Kriterium geeignet anwenden können.

(e) Zeigen Sie schließlich, dass $f \in \mathcal{C}[a,b]$ gilt, also f auf [a,b] stetig ist.

Hinweis: Setzen Sie wie folgt an

$$|f(x) - f(x')| = |f(x) - f_n(x) + f_n(x) - f_n(x') + f_n(x') - f(x')|$$

und schätzen Sie die erste und letzte Differenz durch (d) ab und benutzen Sie für die Abschätzung der mittlere Differenz die Stetigkeit der f_n .

Vergegenwärtigen Sie sich abschließend, dass Sie mit (b)-(e) also bewiesen haben, dass alle Cauchy-Folgen in $\mathcal{C}[a,b]$ auch in $\mathcal{C}[a,b]$ konvergieren.

Bemerkung: Die Konvergenz von Funktionenfolgen bzgl. $\|\cdot\|_{\infty}$ nennt man auch gleichmäßige Konvergenz. Vergleichen sie diesen Konvergenzmodus mit dem der gleichmäßigen Konvergenz von Doppelfolgen.