Übungen zur Mathematik I für Physiker

Prof. Dr. Dürr

Blatt 10

Falls Korrektur erwünscht, geben Sie das Blatt bitte in Ihrer Übungsgruppe ab.

10.1 Beweisen Sie:

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \sin(\beta)\cos(\alpha)$$

und

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta).$$

- **10.2** Seien $f: \mathbb{C} \to \mathbb{C}$ und $g: \mathbb{C} \to \mathbb{C}$ stetig in \mathbb{C} . Zeigen Sie: $f \circ g$ ist stetig.
- **10.3** Es sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit $\lim_{h\to 0} (f(x-h) f(x+h)) = 0$ für alle $x \in \mathbb{R}$. Ist f stetig? (Beweis oder Gegenbeispiel)
- **10.4** Zeigen Sie, dass $f: \mathbb{C} \to \mathbb{C}$ mit f(z) = |z| stetig ist.
- **10.5** (a) Sei $I = [a, b] \subset \mathbb{R}$ und $f: I \to I$ stetig. Zeigen Sie, dass ein $x \in I$ existiert mit f(x) = x.
 - (b) Sei nun $F: \mathbb{R} \to \mathbb{R}$ und es gelte $\forall x, y \mid F(x) F(y) \mid \leq C \mid x y \mid$ mit $C \in [0, 1)$. Betrachten Sie die Iteration $x_{n+1} = F(x_n)$. Zeigen Sie, dass es für diese Iteration einen eindeutigen Fixpunkt gibt. Es existiert also genau ein $x \in \mathbb{R}$ mit F(x) = x.

 ${\it Hinweise:}$ Untersuchen Sie zunächst, ob diese Folge ein Cauchyfolge ist. Zeigen Sie dann, dass Fstetig ist.

10.6 Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und für ein $x_0 \in \mathbb{R}$ gelte $f(x_0) > 0$. Zeigen Sie, dass es eine Umgebung $U_{\epsilon}(x_0) = \{x \in \mathbb{R} : |x - x_0| < \epsilon\}$ von x_0 gibt, mit f(x) > 0, $\forall x \in U_{\epsilon}(x_0)$.