Lösung des 10. Tutoriumsblatts

Aufgabe 1.

a) Die Aussage ist wahr: Gilt nämlich $b \mid a_1$, also $a_1 = b \cdot k$ für ein $k \in \mathbb{N}_0$, und $b \mid a_1 + a_2$, also $a_1 + a_2 = b \cdot \ell$ für ein $\ell \in \mathbb{N}_0$ (wobei natürlich $\ell \geq k$ sein muss), so folgt

$$a_2 = (a_1 + a_2) - a_1 = b \cdot \ell - b \cdot k = b \cdot (\ell - k),$$

also $b \mid a_2$. Man sollte noch bemerken, dass $\ell - k$ in \mathbb{N}_0 ist, da $\ell \geq k$ gilt.

- b) Die Aussage ist ebenfalls wahr: Gilt nämlich etwa $b \mid a_1$, also $a_1 = b \cdot k_1$ für ein $k_1 \in \mathbb{N}_0$, so folgt $a_1 \cdot a_2 = (b \cdot k_1) \cdot a_2 = b \cdot (k_1 \cdot a_2)$, also $b \mid a_1 \cdot a_2$. Der Fall, dass stattdessen $b \mid a_2$ gilt, wird entweder genauso behandelt, oder man bemerkt, dass er sich aus dem schon bewiesenen Fall ergibt durch Vertauschen von a_1 und a_2 . (Vgl. dazu den Lösungsvorschlag zum 3. Übungsblatt, Aufgabe 3 b).)
- c) Die Aussage ist **falsch**: Beispielsweise für b = 12, $a_1 = 3$ und $a_2 = 8$ gilt zwar $b \mid a_1 \cdot a_2$ (denn $12 \mid 24$), jedoch weder $b \mid a_1$ noch $b \mid a_2$ (denn $12 \nmid 3$ und $12 \nmid 8$).

Aufgabe 2. Wir beweisen alle diese Aussagen durch Induktion nach n.

a) Induktionsanfang. Für n = 0 ist ist $4n^3 - n = 0$ und $3 \mid 0$.

Induktionsschluß $n \to n+1$. Es sei $n \ge 0$, und es gelte $3 \mid (4n^3 - n)$ (Induktionsvoraussetzung). Zu zeigen ist, dass $3 \mid (4(n+1)^3 - (n+1))$.

Es ist

$$4(n+1)^3 - (n+1) = 4(n^3 + 3n^2 + 3n + 1) - (n+1)$$
$$= 4n^3 - n + 12n^2 + 12n + 3$$
$$= (4n^3 - n) + 3 \cdot (4n^2 + 4n + 1)$$

Nun gilt $3 \mid 3 \cdot (4n^2 + 4n + 1)$ und nach Induktionsvoraussetzung $3 \mid (4n^3 - n)$, also $3 \mid [(4n^3 - n) + 3 \cdot (4n^2 + 4n + 1)]$, und damit $3 \mid (4(n+1)^3 - (n+1))$, was zu zeigen war.

b) Induktionsanfang. Für n = 0 ist ist $5^n + 7 = 1 + 7 = 8$ und $4 \mid 8$.

Induktionsschluß $n \to n+1$. Es sei $n \ge 0$, und es gelte $4 \mid (5^n+7)$ (Induktionsvoraussetzung); zu zeigen ist, dass $4 \mid (5^{n+1}+7)$. Es ist

$$5^{n+1} + 7 = 5 \cdot 5^n + 7$$
$$= 4 \cdot 5^n + 5^n + 7.$$

Nun gilt $4 \mid 4 \cdot 5^n$ und nach Induktionsvoraussetzung $4 \mid (5^n + 7)$, also $4 \mid [4 \cdot 5^n + 5^n + 7]$, und damit $4 \mid (5^{n+1} + 7)$, was zu zeigen war.

c) Sei $a \in \mathbb{N}_0$ fest gewählt. Wir zeigen: Für alle $n \in \mathbb{N}_0$ gilt $6 \mid (a^{2n+1} - a)$ durch vollständige Induktion (nach n).

Induktionsanfang. Für n = 0 ist $a^{2n+1} - a = a - a = 0$ und $6 \mid 0$.

Induktionsschluß $n \to n+1$. Es sei $n \ge 0$, und es gelte $6 \mid (a^{2n+1}-a)$ (Induktionsvoraussetzung); zu zeigen ist, dass $6 \mid (a^{2(n+1)+1}-a)$.

Es ist

$$a^{2(n+1)+1} - a = a^{2n+3} - a$$

$$= a^{2} \cdot a^{2n+1} - a$$

$$= a^{2} \cdot (a^{2n+1} - a + a) - a$$

$$= a^{2} \cdot (a^{2n+1} - a) + a^{3} - a$$

$$= a^{2} \cdot (a^{2n+1} - a) + (a^{3} - a).$$

Nun ist nach Induktionsvoraussetzung 6 | $(a^{2n+1}-a)$), und nach 5.10 der Vorlesung gilt auch 6 | (a^3-a) , also ist nach 5.8f) auch 6 | $[a^2 \cdot (a^{2n+1}-a) + (a^3-a)]$, also gilt 6 | $(a^{2(n+1)+1}-a)$, was zu zeigen war.

Aufgabe 3.

a) Es ist

$$a = (731)_9 = 7 \cdot 9^2 + 3 \cdot 9^1 + 1 \cdot 9^0 = 7 \cdot 81 + 3 \cdot 9 + 1 = 595$$

(dieses Resultat kann man natürlich auch als $(595)_{10}$ schreiben). Zur Darstellung von a=595 im 4-adischen Zahlensystem bestimmen wir zunächst die größte Potenz von 4, die nicht größer ist als die Zahl a: Wegen

$$4^{0} = 1,$$

 $4^{1} = 4,$
 $4^{2} = 16,$
 $4^{3} = 64,$
 $4^{4} = 256,$
 $4^{5} = 1024 > a$

ist dies $4^4 = 256$, wir werden also fünf Ziffern (für die Stellen mit Wert 4^0 , 4^1 , 4^2 , 4^3 und 4^4) benötigen. Nun dividieren wir, unter Verwendung unserer Liste der Potenzen von b = 4, wiederholt mit Rest:

$$595 = \mathbf{2} \cdot 4^4 + 83$$

$$= \mathbf{2} \cdot 4^4 + \mathbf{1} \cdot 4^3 + 19$$

$$= \mathbf{2} \cdot 4^4 + \mathbf{1} \cdot 4^3 + \mathbf{1} \cdot 4^2 + 3$$

$$= \mathbf{2} \cdot 4^4 + \mathbf{1} \cdot 4^3 + \mathbf{1} \cdot 4^2 + \mathbf{0} \cdot 4^1 + 3$$

$$= \mathbf{2} \cdot 4^4 + \mathbf{1} \cdot 4^3 + \mathbf{1} \cdot 4^2 + \mathbf{0} \cdot 4^1 + 3 \cdot 4^0.$$

also $a = 595 = (21103)_4$.

b) Es ist

$$a = (10010101)_{2}$$

$$= \mathbf{1} \cdot 2^{7} + \mathbf{0} \cdot 2^{6} + \mathbf{0} \cdot 2^{5} + \mathbf{1} \cdot 2^{4} + \mathbf{0} \cdot 2^{3} + \mathbf{1} \cdot 2^{2} + \mathbf{0} \cdot 2^{1} + \mathbf{1} \cdot 2^{0}$$

$$= 128 + 16 + 4 + 1$$

$$= 149 \quad (= (149)_{10})$$

 $^{^0}$ Ein direkter Beweis dieser Aussage lässt sich, zumindest wenn man die Eigenschaften der Primfaktorzerlegung kennt, folgendermaßen führen: Es ist $a^3-a=a\cdot(a^2-1)=(a-1)\cdot a\cdot(a+1)$ ein Produkt von drei aufeinanderfolgenden natürlichen Zahlen. Von diesen ist aber stets mindestens eine durch 3 teilbar und mindestens eine gerade; ihr Produkt enthält also die Primfaktoren 2 und 3 und ist damit durch 6 teilbar.

Zur Darstellung von a=149 im 9-adischen Zahlensystem bestimmen wir zunächst die Potenzen von 9, bis wieder die Zahl a überschritten haben:

$$9^{0} = 1,$$

 $9^{1} = 9,$
 $9^{2} = 81,$
 $9^{3} = 729 > a.$

Nun dividieren wir, unter Verwendung unserer Liste der Potenzen von b=4, wiederholt mit Rest:

$$149 = \mathbf{1} \cdot 9^{2} + 68$$

$$= \mathbf{1} \cdot 9^{2} + \mathbf{7} \cdot 9^{1} + 5$$

$$= \mathbf{1} \cdot 9^{2} + \mathbf{7} \cdot 9^{1} + \mathbf{5} \cdot 9^{0}$$

$$= (175)_{9}.$$

c) Es ist

$$a = (17)_{20} = \mathbf{1} \cdot 20^1 + \mathbf{7} \cdot 20^0 = 20 + 7 = 27 \quad (= (27)_{10})$$

und wegen $16^0 = 1$, $16^1 = 16$, $16^2 = 256 > a$ können wir nun rechnen:

$$27 = \mathbf{1} \cdot 16^{1} + 11$$
$$= \mathbf{1} \cdot 16^{1} + \mathbf{11} \cdot 16^{0}$$
$$= (1B)_{16},$$

da ja vereinbarungsgemäß im Sechzehnersystem (Hexadezimalsystem) die "Ziffern" mit den Werten $10, 11, \ldots, 15$ durch die Buchstaben A, B, \ldots, F bezeichnet werden.

Aufgabe 4. Wir beweisen die Aussage, dass es bei n mit Einbahnstraßen verbundenen Städten immer mindestens eine gibt, von der aus man alle anderen erreichen kann, per Induktion über n. Da der Fall n = 1 trivial ist (dann gibt es keine Straßen), betrachten wir als **Induktionsanfang** den Fall n = 2: Die Städte S_1 und S_2 sind mit einer Straße verbunden, die in eine Richtung befahrbar ist. Also kann man von einer der beiden Städte in die andere gelangen, was die Behauptung im Fall n = 2 beweist.

Nun zum Induktionsschluss von $n \to n+1$: Sei $n \ge 2$ und gelte, dass bei n Städten immer mindestens eine existiert, von der aus man alle anderen erreichen kann (Induktionsvoraussetzung). Dann ist zu zeigen, das dasselbe bei n+1 Städten wahr bleibt.

Nehmen wir von unseren Städten $S_1, ..., S_{n+1}$ die ersten n heraus, so wissen wir, dass es unter diesen Städten $S_1, ..., S_n$ eine gibt, von der aus man alle anderen erreichen kann. (Das ist ja die Induktionsvoraussetzung.) Nennen wir sie S_l . Wir wissen also:

Von S_l aus kann man alle Städte $S_1, ..., S_n$ erreichen.

Nun gibt es nach Aufgabenstellung eine Straße zwischen S_l und S_{n+1} . Es gibt hier zwei Möglichkeiten zu betrachten:

- Die Straße ist in der Richtung $S_l \to S_{n+1}$ befahrbar. Dann kann man also von S_l aus alle Städte $S_1, ..., S_{n+1}$ erreichen und wir sind fertig mit dem Induktionsschluss.
- Die Straße ist in der Richtung $S_{n+1} \to S_l$ befahrbar. Dann kann man also von S_{n+1} nach S_l fahren und von dort aus weiter in alle Städte $S_1, ..., S_n$. Somit kann man von S_{n+1} aus alle Städte $S_1, ..., S_{n+1}$ erreichen und wir sind fertig mit dem Induktionsschluss.