Präsenzübungsblatt 2

zur Vorlesung Grundlagen der Mathematik I

Kreuzen Sie genau alle richtigen Antworten an:

1.	Wenn	für	alle a	$\in A$	gilt:	$a \in B$.	dann	schreibt	man	dafür
	1101111	101	COLLEGE CO		D-1-0.	$\alpha \subset \mathcal{L}$	accitii	DOIL CLO C	III	actual

a) $A \in B$

b) $A \subset B$ c) A = B d) $A \cup B$

2. Welche der folgenden Objekte sind Elemente von
$$\mathbb{Z} \times \mathbb{R}$$
?

a) (1,1) b) (0.5,-1) c) $\{2,3\}$ d) $(-4,\pi)$

3. Seien
$$A, B, C$$
 Mengen. Dann ist $A \setminus (B \setminus C) = \dots$

a) $(A \setminus B) \setminus C$ b) $(A \setminus B) \cup (A \setminus C)$ c) $(A \setminus B) \cup (A \cap C)$ d) $(A \cup B) \setminus C$

4. Seien
$$A, B, C$$
 Mengen und gelte $C \subset A \land C \subset B$. Dann folgt:

a) $C \subset A \cap B$ b) $C \subset A \cup B$ c) $C \subset A \times B$ d) $C \in A \cap B$

5. Seien
$$A,B,C$$
 Mengen. Die Menge $(A \cup B \cup C) \setminus (A \cap B \cap C)$ ist die Menge aller Elemente, die ...

a) ... in nicht allen 3 Mengen A, B, C liegen.

b) ... in mindestens 2 der Mengen A, B, C liegen.

c) ... in höchstens 2 der Mengen A, B, C liegen.

d) ... in 1 oder 2 der Mengen A, B, C liegen.

6. Sei $A := \{1, \{2, 3\}, 4\}$. Dann gilt

a) $\{2,3\} \subset A$ b) $\{2,3\} \in A$ c) $\{\{2,3\}\} \subset A$ d) $(2,3) \in A$

7. Sei
$$A = \{\sharp, \flat\}$$
 Dann ist $A \times A = \dots$

 $a) \quad \{(\sharp, \flat), (\flat, \sharp)\}$

b) $\{\emptyset, \{\sharp\}, \{\flat\}, A\}$

c) $\{(\sharp, \flat, \sharp, \flat)\}$

d) $\{(\sharp,\sharp),(\sharp,\flat),(\flat,\sharp),(\flat,\flat)\}$

8. Welche der folgenden Mengen sind Teilmengen von
$$\mathbb{R} \times \mathbb{R}$$
?

a) \mathbb{R}

b) $\{1\} \times \mathbb{R}$ c) $\{(\pi, \pi)\}$ d) \varnothing e) $\{(x, y)|y = x^2, x \in \mathbb{R}\}$

Bonusaufgabe:

- 9. a) Formalisieren Sie die Aussage "Everybody loves somebody" unter Verwendung logischer Zeichen sowie der Abkürzung L(x,y) für "x liebt y".
 - b) Formulieren Sie die Negation obiger Aussage, erst umgangssprachlich, dann unter Verwendung logischer Zeichen.
 - c) Betrachten Sie die Aussage "Somebody is loved by everybody"; formalisieren Sie diese und untersuchen Sie, ob sie stets hinreichend (oder notwendig) für die Aussage in a) ist.