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Two Parts:

I From Orthodox Quantum Theory to
Bohmian Mechanics

II From Bohmian Mechanics to Orthodox
Quantum Fields
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Quotes with small (but non zero) relation with the
talk

It may perhaps now be expected that I define
extension [space] to be either substance or accident
or else simply nothing. But not at all so: for it has a
certain mode of existence proper to itself, which
suits neither substances nor accidents. (Newton, De
Gravitatione)

. . . what can be said at all should be said
clearly. . . (Wittgenstein, Tractatus)
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What the true definition of Pragmatism may be, I
find it very hard to say; but in my nature it is a sort
of instinctive attraction for living facts. (C. S. Peirce,
Harvard Lectures on Pragmatism)

. . . pragmatism is, in itself, no doctrine of
metaphysics, no attempt to determine any truth of
things. It is merely a method of ascertaining the
meanings of hard words and of abstract concepts.
(C. S. Peirce, Pragmatism)
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Part I: From
Orthodox Quantum
Theory to Bohmian
Mechanics
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Orthodox Quantum Theory

• Prob(Z ∈ ∆|ψ) = 〈ψ, PA(∆)ψ〉
A s.a. operator [ |〈ψ|α〉|2 ]

• ψ0 → ψt unitary evolution
when no measurements are
performed

• ψ → ψα collapse after
measurement with result
Z = Zα
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Orthodox Quantum Theory

“what is ψ” → “what is the role of ψ”

In a recent admired work on Analytic Mechanics it
is stated that we understand precisely the effect of
force, but what force itself is we do not understand!
This is simply a self-contradiction. . . . if we know
what the effects of force are, we are acquainted
with every fact which is implied in saying that
a force exists, and there is nothing more to
know (C. S. Peirce, “How to make our ideas
clear”)
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Orthodox Quantum Theory

ψ has a role in the behavior of macroscopic
objects (“measurement instruments”)
during “quantum measurements”.

State

(Z, ψ)

ψ = ψ(q1, . . . ,qN
), Z: macroscopic variable
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Local beables (PO)

The local beables (primitive ontology) are

the mathematical counterparts in the theory to
real events at definite places and times in the
real world (as distinct from the many purely
mathematical constructions that occur in the
working out of physical theories, as distinct
from things which may be real but not localized,
and as distinct from the ’observables’ of other
formulations of quantum mechanics, for which
we have no use here.) [J.S. Bell]
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Local beables (PO)

This is a pretentious name for a theory which
hardly exists otherwise, but which ought to
exist. The name is deliberately modelled on ’the
algebra of local observables’. The terminology,
be-able as against observ-able, is not designed to
frighten with metaphysic those dedicated to
realphysic. It is chosen rather to help in making
explicit some notions already implicit in, and
basic to, ordinary quantum theory. For, in the
words of Bohr, ’it is decisive to recognize that,
however far the phenomena transcend the scope
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of classical physical explanation, the account of
all evidence must be expressed in classical
terms’. It is the ambition of the theory of local
beables to bring these ’classical terms’ into the
equations, and not relegate them entirely to the
surrounding talk.
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Bohmian Mechanics

Complete state description (Q,ψ)

ψ as above, Q: microscopic variable, e.g.,

Q = (Q1, . . . ,QN
)

Q
i
positions of particles (LB)

BM is fundamentally about microscopic
LB (particles, or fields or strings ...), what
we call PO (primitive ontology). The role of
ψ is to govern the motion of the PO.
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Bohmian Mechanics

The equations of motion

dQk

dt
= ~
mk

Im
ψ∗∇kψ

ψ∗ψ
(Q1 . . . ,QN

)

i~
∂ψ

∂t
= Hψ

[
H = −

N∑
k=1

~2

2mk
∇2
k + V

]
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Bohmian Mechanics
Implications of BM

1. the wf of a (sub-)system

2. quantum randomness

3. operators as observables

4. absolute uncertainty

5. collapse of the wave packet

6. formal scattering

7. familiar (macroscopic) reality
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Bohmian Mechanics
Quantum Randomness

Ψ WF universe
ψ wf subsystem

1
N

N∑
k

δ(q−Qk) ≈ |ψ(q)|2

PΨ (exceptions| preparation)

small for N large
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Bohmian Mechanics

Operators as Observables

macroscopic variable

Z = F (Q)
Prob(Z ∈ ∆|ψ) = 〈ψ, PA(∆)ψ〉
A s.a. operator
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Bohmian Mechanics
When the cogency of Bohm’s reasoning is
admitted, a final protest is often this: it is
all nonrelativistic. This is to ignore that
Bohm himself, in an appendix to one of the
1952 papers, already applied his scheme to
the electromagnetic field. And application
to scalar fields is straightforward. However
until recently, to my knowledge, no
extension covering Fermi fields had been
made. Such an extension will be sketched
here. (J.S. Bell, “Beables for quantum field
theory”)
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Part II: From
Bohmian
Mechanics to
Orthodox Quantum
Fields
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(Towards) a General
(Bohmian) Theory of Motion

Configuration of the local beables of the
theory

Q

WF
Ψ = Ψ (q)

evolving according to

i
∂Ψ

∂t
= HΨ , (1)
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Equivariance (statistical transparency)

From (1)

∂|Ψ |2

∂t
(q, t) = 2 Im

[
Ψ ∗(q, t) (HΨ )(q, t)

]
(2)

If
H = −1

2
∆ + V (Schrödinger Hamiltonian) (3)

Then

2 Im
[
Ψ ∗(q, t) (HΨ )(q, t)

]
= −div

[
ImΨ ∗(q, t)∇Ψ (q, t)

]
(4)

so that (2) becomes

∂|Ψ |2

∂t
= −div (v |Ψ |2) with v = Im Ψ ∗∇Ψ

Ψ ∗ Ψ
. (5)

⇒ deterministic motion with velocity v = vΨ,H(q)
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Ψ −→ |Ψ |2

Schrödinger evolution

y yTransport along the Bohmian flow

Ψ t −→ |Ψ t|2

Equivariance is an expression of the compatibility
between the Schrödinger evolution for the wave
function and the law Q̇ = v(Q) governing the motion
of the actual configuration.

Abstract characterization

L|Ψ t|2 = ∂|Ψ t|2

∂t
(6)

where L(•) = −div (v •) is the generator of a Markov
deterministic process.
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There are other motions, stocastic motions, with
different generators that satisfy (1), but they are not
minimal (in a suitable precise mathematical sense)

Examples:

(a) Q = (Q1, . . . ,QN
) (N particles)

(b) Q = B(r) (Bosonic Field)

(c) Nelson Stochastic Mechanics (actually a
2-parameter family with different diffusions
constants and drifts) for particles or bosonic
fields (not minimal)
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What if H is not of Schrödinger’s type?

Eq. (2)

∂|Ψ |2

∂t
(q, t) = 2 Im

[
Ψ ∗(q, t) (HΨ )(q, t)

]
is always valid. Find the minimal Markov generator
L such that

L|Ψ t|2 = 2 Im
[
Ψ ∗(q, t) (HΨ )(q, t)

]
Integral Operators Correspond to Jump
Processes

If
(HΨ )(q) =

∫
dq′ 〈q|H|q′〉Ψ (q′) . (7)
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Then the minimal Markov generator is

Lρ(q) =
∫

q′∈Q

(
σ(q|q′)ρ(q′)− σ(q′|q)ρ(q)

)
dq′ , (8)

with rates

σ(q|q′) =
[
2 ImΨ ∗(q) 〈q|H|q′〉Ψ (q′)

]+

Ψ ∗(q′)Ψ (q′)
. (9)

Process Additivity

LH0+HI
= LH0 + LHI
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QFT

Fermions and Bosons

F (r) fermionic fields; B(r) bosonic fields are the
building blocks of the Hamiltonian.

[B(r), B(r′)] = 0 , [F (r), F (r′)] 6= 0
Beable: fermion number ( [N(r), N(r′)] = 0)

The distribution of fermion number in the world
certainly includes the positions of instruments,
instrument pointers, ink on paper, ... and much
much more. (J.S. Bell, Beables for quantum field
theory)
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Configuration q:

n(r) = eigenvalues of Fermion number F ∗(r)F (r)

H0 = FREE DIRAC ⇒ L0 (deterministic motion of n(r))

n(r, t) =
N∑
k

δ(r−Qk(t))

Structure of HI (simplest model)

HI =
∫
d3rB(r)F ∗(r)F (r)
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It is an integral operator in the fermion number
representation ⇒ LI = jump process

The “L0 + LI”-motion looks like this

paths, the world line patterns of our models are to be
regarded as describing the possibilities for what might
actually happen (in a universe governed by that model).

Whatever the pattern of world lines may look like, it
can be described by a time-dependent configuration Qt !
Q"t# moving in the configuration space Q of possible
positions for a variable number of particles. In the case
of a single particle species, this is the disjoint union of the
n-particle configuration spaces,

Q !
[1

n!0

Q$n%: (1)

Since the particles are identical, the sector Q$n% is best
defined as R3n modulo permutations, R3n=Sn. For sim-
plicity, we will henceforth pretend that Q$n% is simply
R3n; we discuss R3n=Sn in [10]. For several particle spe-
cies, one forms the Cartesian product of several copies of
the space (1), one for each species. One obtains in this way
a configuration space which is, such as (1), a union of
sectors Q$n% where, however, now n ! "n1; . . . ; n‘# is an
‘-tuple of particle numbers for the ‘ species of particles.
For QED, for example, Q is the product of three copies of
the space (1), corresponding to electrons, positrons, and
photons; thus, a configuration specifies the number and
positions of all electrons, positrons, and photons [13].

Let us explore what Q"t# looks like for a typical world
line pattern (see Fig. 2). Q"t# will typically have disconti-
nuities, even if there is nothing discontinuous in the world
line pattern (Fig. 1), because it jumps to a different sector
at every creation or annihilation event. Between such
events, Q"t# moves smoothly within one sector.

It is helpful to note that the bosonic Fock space can be
understood as a space of L2 (i.e., square-integrable) func-

tions on
S

nR
3n=Sn. The fermionic Fock space consists of

L2 functions on
S

nR
3n which are antisymmetric under

permutations.
A Bell-type QFT specifies such world line patterns, or

histories in configuration space, by specifying three sorts
of ‘‘laws of motion’’: when to jump, where to jump, and
how to move between the jumps. Before we say more on
what precisely the laws are, we elucidate one consequence
of the laws: if at t ! 0, the configuration Q"0# is chosen at
random with probability distribution j!0j2, then at any
later time t, Q"t# has distribution j!tj2. This property we
call equivariance. The main consequence is that these
theories are empirically equivalent to their corresponding
QFTs. This conclusion has been explained in detail in [14]
for Bohmian mechanics and the predictions of nonrela-
tivistic quantum mechanics, and the same reasoning ap-
plies here. It involves a law of large numbers governing
the empirical frequencies in a typical universe, and
involves the recognition that the variables that record
the outcome of an experiment are ultimately particle
positions (orientations of meter pointers, ink marks on
paper, etc.).

In a Bell-type QFT, the state of a system is described by
the pair "!t; Qt#, where !t is an (arbitrary) vector in the
appropriate Fock space and may well involve a superpo-
sition of states of different particle numbers. As remarked
before, !t can thus be viewed as a function !t"q# on the
configuration space Q of a variable number of particles.
[For photons, whose position observable is represented by
a positive-operator-valued measure (POVM), !t can be
represented by a wave function !t"q# satisfying a con-
straint.] !t evolves according to the appropriate
Schrödinger equation

i "h
d!t

dt
! H!t: (2)

Typically H ! H0 &HI is the sum of a free
Hamiltonian H0 and an interaction Hamiltonian HI.
It is important to appreciate that although there is an
actual particle number, defined by N"t# ! #Q"t# :!
$number of entries in Q"t#%, or Q"t# 2 Q$N"t#%, ! need
not be a number eigenstate (i.e., concentrated on one
sector). This is similar to the situation in the usual
double-slit experiment, in which the particle passes
through only one slit although the wave function passes
through both. And as with the double-slit experiment, the
part of the wave function that passes through another
sector of Q (or another slit) may well influence the
behavior of Q"t# at a later time.

The laws of motion for Qt depend on !t (and on H).
The continuous part of the motion is governed by a first-
order ordinary differential equation

dQt

dt
! v!t"Qt# ! Re

!'
t "Qt# " _̂q!t#"Qt#
!'

t "Qt#!t"Qt#
; (3)

Q(t −)

Q(t +)2

Q(t −)

1Q(t +)

2

1

(c) (d)

(a) (b)

FIG. 2. Schematic representation of the configuration space of
a variable number of particles. (a)–(d) show the sectors Q$0%

through Q$3%. A configurational history Q"t# jumps to the next
higher sector at each creation event and to the next lower sector
at each annihilation event. The history shown corresponds to a
world line pattern such as that of Fig. 1(a).
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Bohmian Mechanics and Quantum Field Theory
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We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more
or less any regularized quantum field theory there is a corresponding theory of particle motion, which,
in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory
is about. Corresponding to the nonconservation of the particle number operator in the quantum field
theory, the theory describes explicit creation and annihilation events: the world lines for the particles
can begin and end.

DOI: 10.1103/PhysRevLett.93.090402 PACS numbers: 03.65.Ta, 03.70.+k, 11.10.–z

Despite the uncertainty principle, the predictions of
nonrelativistic quantum mechanics permit particles to
have precise positions at all times. The simplest theory
demonstrating that this is so is Bohmian mechanics
[1–3]; in this theory the position of a particle cannot be
known to macroscopic observers more accurately than the
j j2 distribution would allow. A frequent complaint about
Bohmian mechanics is that, in the words of Steven
Weinberg [4], ‘‘it does not seem possible to extend
Bohm’s version of quantum mechanics to theories in
which particles can be created and destroyed, which
includes all known relativistic quantum theories.’’

To remove the grounds of the concern that such an
extension may be impossible, we show how, with (more
or less) any regularized quantum field theory (QFT), one
can associate a particle theory—describing moving par-
ticles—that is empirically equivalent to that QFT. In
particular, there is a particle theory that recovers all
predictions of regularized QED [5].

However, we will not attempt to achieve full Lorentz
invariance; that would lead to quite a different set of
questions, orthogonal to those with which we shall be
concerned here. But we note that though the theories we
present here require a preferred reference frame, there can
be no experiment that would allow an observer to deter-
mine which frame is the preferred one, provided the
corresponding QFTs are such that their empirical predic-
tions are Lorentz invariant.

The theories we present are based on the work of Bell
[7] and our own recent results [8–10]; in [8] we study a
simple model QFT, and in [9,10] we give a detailed
account of the mathematics needed for treating other
QFTs. While Bell replaced physical 3-space by a lattice,
we describe directly what presumably is the continuum
limit of Bell’s model [9–12]. Since Bell’s proposal was the
first in this direction, we call these models ‘‘Bell-type
QFTs.’’ The trajectories we use as the world lines consist
of pieces of Bohmian trajectories, or similar ones. A

novel element is that the world lines can begin and end.
This is essential for describing processes involving par-
ticle creation or annihilation, such as, e.g., positron-
electron pair creation. Our description of such events is
the most naive and natural one: the world line of the
particle begins at some space-time point, its creation
event, and ends at another (see Fig. 1). The models thus
involve ‘‘particle creation’’ in the literal sense.

The patterns of world lines are reminiscent of
Feynman diagrams, and the possible Feynman diagrams
correspond to the possible types of world line patterns.
Note, however, that the role of Feynman diagrams is to
aid with computing the evolution of the state vector !,
while the world lines here are supposed to exist in addi-
tion to !. Unlike Feynman diagrams, which are compu-
tational tools not to be confused with actual particle

FIG. 1. Two patterns of world lines as they may arise from
some Bell-type QFT. (a) The world line of a photon (dashed
curve) starts at an emission event (at time t1) on the world line
of an electron (solid curve) and ends at an absorption event (at
time t2) on the world line of another electron. (b) An electron-
positron pair (solid curves) is created at the end point of a
photon world line.

VOLUME 93, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S week ending
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(here also boson number is a beable)
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Possibilities

(1) Only fermion number is a beable (Bell)

(2) Fermion number & bosonic fields (Bohm)

(3) Fermion number & boson number

(4) Only boson number

(5) Only boson fields (Struyve)

All except 3 have asymmetry between bosons
(photons) and fermions (electrons)

[not all scintillations on a screen are a sign that
there is a particle]
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Open problems Many!!!

Somebody should work on them!

(1) Make clear the various possibilities listed above

(2) Use axiomatic frameworks (such as Wightman’s)
to improve what we did.

(3) Use modern renormalization methods to study
the limits starting from a well defined theory with
cut-offs.

(4) Try to understand the geometry of (non-Abelian)
gauge theories from the Bohmian point of view.

(5) q = g3 (quantum gravity ).

(6) . . .
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Morals

For those who do not like field operators:

The field operators are just what the doctor ordered
for the efficient construction of a theory describing
the creation, motion, and annihilation of
particles.(DGTZ, Bohmian Mechanics and Quantum
Field Theory )

For those who like only field operators:
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But I insist that my concern is strictly professional.
I think that conventional formulations of quantum
theory, and of quantum field theory in
particular, are unprofessionally vague and
ambiguous. Professional theoretical physicists
ought to be able to do better. Bohm has shown us a
way. (J.S. Bell, Beables for quantum field theory)
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