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DISCUSSION: WHY BOHM'S THEORY SOLVES 
THE MEASUREMENT PROBLEM* 

TIM MAUDLINt 

Department of Philosophy 
Rutgers University 

Abraham Stone recently has published an argument purporting to show that 
David Bohm's interpretation of quantum mechanics fails to solve the measure- 
ment problem. Stone's analysis is not correct, as he has failed to take account of 
the conditions under which the theorems he cites are proven. An explicit presen- 
tation of a Bohmian measurement illustrates the flaw in his reasoning. 

Given that David Bohm's interpretation of quantum mechanics was rather 
roundly ignored by the philosophical community for some time, it is grat- 
ifying to find a discussion of it recently in the pages of this journal. Un- 
fortunately, Abraham Stone's "Does the Bohm Theory Solve the Mea- 
surement Problem?" (1994) contains some severe misunderstandings and 
misstatements regarding the theory. This note is intended to set the record 
straight. 

Stone makes two sorts of observations about Bohm's theory. One is 
that the particle trajectories postulated by the theory may not be unique 
(i.e., other trajectories, given by a different dynamics, could give the same 
empirical predictions). That claim will not be considered in this note. It is 
irrelevant to the stated subject of the paper, since the fact that other the- 
ories might solve the measurement problem in no way impeaches the ca- 
pacity of Bohmian mechanics to do so. The more radical claim contained 
in Stone's paper is that Bohm fails to solve the problem at all. That as- 
sertion rests on a manifold of confusions. Let me briefly review the rele- 
vant background. 

Since Bohm's theory posits no real collapse of the universal wave func- 
tion, and since the uncollapsed universal wave function is never actually 
employed in making any experimental predictions, the theory faces the 
task of showing when, why, and how it is legitimate to ascribe wave func- 
tions to subsystems of the universe and to use those wave functions to 
make statistical predictions (via Born's rule). This problem is solved by 
the notion of the effective wave function of a subsystem. Stone follows 
Diirr, Goldstein and Zanghi (1992) in his discussion, and we can do no 
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better than to directly quote their paper. Suppose we isolate some set of 
particles in the universe as the x-system, and regard the remainder of the 
universe (the "environment") as the y-system. Then the universal wave- 
function, which is defined over the configuration space of all the particles, 
can be written T(x,y) and the actual configuration of the particles as (X, Y). 

[W] e say that a subsystem ... has effective wave function x (at a given 
time) if the universal wave function TP = T(x,y) and the actual co- 
ordinates Q = (X, Y) (at that time) satisfy 

T(x,y) = W(x)O(y) + '-(x,y) 
with D and T- having macroscopically disjoint y-supports, and 

Y E supp ). 

Here, by the macroscopic disjointness of the y-supports of () and T- 
we mean not only that their supports are disjoint, but that there is a 
macroscopic function of y whose values for y in the support of ( 
differ by a macroscopic amount from its values for y in the support 
of T. (ibid., 864) 

Since Bohm's equation for the trajectories of particles is local in config- 
uration space, when the two conditions listed above obtain, the value of 
T-(x,y) plays no role in determining the contemporaneous change in par- 
ticle positions (since Y is not in its support). The trajectories of particles 
at that time are determined entirely by the part V(x)D(y), which (by 
assumption) factorizes into a function of x and a function of y. Dtirr, 
Goldstein and Zanghi then show, in some detail, why Bohm's theory 
makes the same predictions for the x-system as one would get using the 
usual quantum mechanical formalism on xV(x). They further show that it 
is impossible to improve on those predictions for the following reason. In 
order to improve on the prediction, one would have to know more about 
the actual positions X of the x-system particles than can be inferred from 
the effective wave-function W(x). But no amount of investigation of the 
environment (the y-system) at that time can provide more information 
about the positions of the x-particles. That is, when the two conditions 
stated above hold, conditionalizing on the effective wave function \(x) 
screens off the positions of the x- particles from all further information 
about D(y) or about Y. 

Stone correctly reports this result: 

If, as we are assuming, all "information" in the environment is en- 
coded in the positions of its particles, then the most the environment 
can ever "know" about a system, prior to measuring it, is the proba- 
bility that the measurement in question will come out a certain way- 
the probability given by Born's rule. (op. cit., 263, boldface emphasis 
added) 
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After repeating this result again several times, Stone continues: 

By now we know clearly that something is wrong. Besides the obvious 
questions about the physical nature of particles whose positions carry 
no information[!], the whole course of our argument seems to contain 
a basic flaw. We assumed that anything worth calling "informa- 
tion"-in particular, any recording of the outcome of the measure- 
ment-was stored in the configurations of the Bohm particles. But we 
have just proven that these configurations cannot store any informa- 
tion at all. (ibid., 264) 

This passage contains Stone's argument that Bohm's theory does not solve 
the measurement problem. 

The obvious answer to his complaint is that no one ever showed that 
in Bohm's theory particle positions cannot store information about other 
particle positions, only that at the beginning of a measurement the positions 
of particles in the environment store no more information about the par- 
ticles in the measured system than is reflected in the effective wave function. 
At the beginning of a z-spin measurement on an x-spin up electron, nothing 
in the environment can determine whether the incoming electron's position 
is such as to yield an up or down result. We get that information exactly 
by coupling the position of the incoming particle to the position of (say) 
a macroscopic pointer. The Bohmian account of such a coupling is per- 
fectly straightforward: the dynamics, when applied to the measurement 
situation, implies that for certain initial electron positions the pointer will 
go one way, for others, another (see Albert 1992, chapter 7 for a clear 
analysis). At the end of the measurement, the positions of particles in the 
pointer contain information (in the usual sense of information) about the 
initial position of the electron. A measurement device exactly creates cor- 
relations between positions of particles, such that one can infer from the 
final state of the positions of particles in the measuring device what 
the initial state of the measured system was. Bohmian particle positions 
(in a measurement situation) carry exactly the information that we want 
them to. 

Let us go through a measurement in detail. Suppose the environment 
can itself be divided into a measuring device and the rest of the universe 
such that d(y) = Xready(u),(v), where Xready(u) is the wave function of a 

measuring device in its ready state and 0(v) is the wave function of the 
rest of the universe. The actual coordinates Y similarly split into the po- 
sitions U of the particles in the measuring device and the positions V of 
the rest of the universe. Of course, U is in the support of Xready(u) and V 
is in the support of ,(v) since Y is in the support of 0(y). So the initial 
wave function of the universe is w(x)Xready(u)(v) + l-(x,u,v), with U and 
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V in the supports of Zready(u) and 4(v). The effective wave function of the 

x-system is V/(x). 
Now suppose (for simplicity) that xy(x) is non-zero in two separated 

regions (with equal amplitude), and the measuring device is constructed 
to determine which region the particle is in. It might contain two detectors 
and a pointer, hooked up such that if one detector is triggered the pointer 
swings to the right, and if the other is triggered the pointer swings to the 
left. So 

I(x) = 1/V\/2tlright(X) + l/V\/2ileft(X), 

where a particle in the support of right(x) will cause the pointer to swing 
to the right and one in the support of Xleft(x) will cause it to swing to the 
left. In terms of wave functions, this means that vright(X)xready(u) will evolve 

(via Schr6dinger's equation) to Vright(X)Xright(u) and 1left(X)Xready(u) will 

evolve to eft(x)Xleft(u), where Xright(u) and Xleft(u) are the wave functions of 
a pointer pointing to the right and left respectively. So the initial wave 
function 

{ l/\/2jright(X) + 1/\/2Xleft(X) } Xready(U)(V) + I(X,U, v) 

will evolve into 
{ l/\/2Vright(X)Xright(u) + 1//2/left(X)(left(u) } J (V) + ' 

-(X, , V). 

Typically, T'-(x,u, v), (the evolution of WT(x,u, v)), will still have a support 
disjoint from { 1l//21Vright(x)Xright(u) + 1/\/2\left(X)Xleft(U)} i (v), and the 
actual positions U and Vwill be in the support of { l//2XVright(x)Xright(u) + 

1/\/2Wleft(x)Xleft(u)} I'(v). So what is the effective wave function of the x- 

system at the end of the measurement? 
Given only the information above, we cannot say. { l/V/2Xright(X)Xright(U) 

+ 1/V2Wleft(x)Xleft(U )} 4'(v) does not itself factorize in the right way to 
define any effective wave function for the x-system. But (as can be easily 
checked) if U is in the support of Xright(u), then the new effective wave 
function is vright(x), and if U is in the support of Xleft(u) the new effective 
wave function is vleft(x). Further, given the dynamics, if U is in the support 
of Xright(u), then X is in the support of vright(X), and if U is in the support 
of Xleft(U) then Xis in the support of Veft(X). In plain English, if the pointer 
points to the left then the particle is to the left and the new effective wave 
function of the particle has its support to the left, and similarly if the 
pointer points to the right. The position of the pointer carries information 
about the position of the particle, and it is only because the pointer points 
where it does that a new effective wave function exists. 

Where did Stone go wrong? First, he simply dropped without comment 
the essential qualification, "prior to measuring it," from his initial for- 
mulation. Second, he forgot that the analysis he cites only holds when the 
conditions for the existence of an effective wave function are met. After 
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the measurement, the effective wave function of the measured object is not 
the (Schrodinger) time development of its initial wave function. Indeed, 
the point of a measurement is to take a situation where the wave functions 
of the system and environment factorize (v(x)(D(y)) to one where they are 
entangled. So one cannot repeat the arguments that work for the initial 
effective wave function to argue that after the measurement there is no 
information about the position of the x-system's particles contained in the 
y-system's positions (after one conditionalizes on the Schrodinger time 
development of the initial effective wave function). If one could so argue, 
then Stone would be right, and Bohm's theory would solve nothing. But 
Stone nowhere states, nor takes account of, the conditions under which 
Dilrr et al. prove their theorems, making no mention of the effective wave 
function at all. 

Stone seems to think that particle positions in Bohm's theory are phys- 
ically meaningless. He compares them to "imaginary points" (ibid., 265), 
saying that it does not much matter whether they move faster than light. 
But far from being imaginary, the particle positions are the heart of the 
theory, they specify the world as we know it. Further, without them the 
effective wave function cannot be defined (note the function of Y in the 
definition). 

If the conditions for a system having an effective wave function are sat- 
isfied at some time, we in the environment cannot, at that time, know more 
about the positions of particles in that system than is given by its effective 
wave function. If we want to know more, we couple the system to a mea- 
suring device which correlates the positions of particles in the measured sys- 
tem to those in the measuring system. Bohm's dynamics shows how this is 
done, and that the measuring device will indicate different outcomes with 
the right (Born) probabilities (calculated from the initial effective wave 
function). If we want to know what happened to the measuring device (e.g., 
which way the pointer went), we look at it, thereby correlating positions of 
particles in our brains with the pointer position. If getting the state of our 
brain correlated with previously unknown external conditions is not getting 
information about the world, then nothing is. 

Bohm's theory solves the measurement problem completely and without 
remainder. 
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