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Definition of Bohmian mechanics

Bohmian mechanics is a non-relativistic theory of point particles moving
in 3-space along trajectories.

N particles in 3-space, at positions Qi (t) ∈ R3 at time t. Equation
of motion (a.k.a. “guidance equation”):

dQi

dt
=

~
mi

Im
∇iψ

ψ

(
Q1(t), . . . ,QN(t), t

)
depending on some wave function ψ(t) : R3N → C.

Time evolution of ψ(q1, . . . ,qN , t) given by the Schrödinger
equation

i~
∂ψ

∂t
= −

N∑
i=1

~2

2mi
∇2

i ψ + V (q1, . . . ,qN)ψ

The initial configuration Q(t = 0) =
(
Q(0), . . . ,Q(0)

)
is typical

relative to the |ψ(0)|2 distribution, i.e., looks as if chosen randomly
in R3N with |ψ(0)|2 distribution.
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Conservation of |ψ|2

Equivariance theorem

If Q(t = 0) is random with |ψ(0)|2 distribution, then Q(t) is random
with |ψ(t)|2 distribution for all t ∈ R.

Proof: The equation of motion can be rewritten equivalently as

dQi

dt
=

ji
ρ

(
Q(t), t

)
with the quantities known in QM as the probability density ρ = |ψ|2 and
probability current

ji =
~
mi

Im
[
ψ∗∇iψ

]
.

As a well-known consequence of the Schrödinger equation, they satisfy a
continuity equation

∂ρ

∂t
= −

N∑
i=1

∇i · ji .

But this equation coincides with the equation for probability transport by
the Bohmian motion. �
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Another basic property

When ψ factorizes,

ψ(q1, . . . ,qN) = ϕ(q1, . . . ,qM)χ(qM+1, . . . ,qN) ,

then it follows that the motion of one subsystem (Q1, . . . ,QM) is
independent of the configuration or wave function χ of the other:

dQi

dt
=

~
mi

Im
∇iϕ

ϕ
(Q1, . . . ,QM) for i ≤ M

(as long as ψ factorizes).
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The key fact about Bohmian mechanics

As a consequence of the definition of the theory:

Observers inhabiting a Bohmian universe (made out of Bohmian particles)
observe random-looking outcomes of their experiments whose statistics
agree with the rules of quantum mechanics for making predictions.
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A theory like this was believed to be impossible

Werner Heisenberg in 1958:

“We can no longer speak of the behavior of the
particle independently of the process of
observation.”
“The idea of an objective real world whose
smallest parts exist objectively in the same sense
as stones or trees exist, independently of whether
or not we observe them [...], is impossible.”

Heisenberg was wrong. Bohmian mechanics is a
counter-example to the impossibility claim.

W. Heisenberg
(1901–1976)
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Example: the double-slit experiment

Picture: Gernot Bauer (after Chris Dewdney)

Shown: A double-slit and 80 possible paths of Bohm’s particle. The wave
passes through both slits, the particle through only one.
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Most paths arrive where |ψ|2 is large—that’s how the interference
pattern arises. If one slit gets closed, the wave passes through only one
slit, which leads to different trajectories and no interference pattern.
Bohmian mechanics takes wave–particle dualism literally: there is a wave,
and there is a particle. The path of the particle depends on the wave.
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Limitations to control

As a consequence of the definition of the theory:

Observers or agents in a Bohmian universe (made out of Bohmian
particles) can prepare a system to have a particular wave function ϕsys,
but they cannot prepare the system’s configuration Qsys to be a
particular configuration X , unless ϕsys(q) = δ(q − x). In fact, they
cannot prepare Qsys any more accurately, or any differently, than being
random with distribution |ϕsys|2.

Qk(t) often called “hidden variable”—better: uncontrollable variable

Roderich Tumulka Bohmian Mechanics



Heisenberg’s uncertainty relation in Bohmian mechanics

When the wave function is narrow then the spread in velocity is large.
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Another mathematical way of thinking of Bohmian
mechanics

The configuration Q = (Q1, . . . ,QN) moves in configuration space R3N

according to
dQ

dt
= vψ(t)(Q(t)) ,

where vψ, the velocity vector field for ψ, is

v =

(
j1
ρ
, . . . ,

jN
ρ

)
Note that at any fixed time, vψ(Q) depends only on ψ(Q) and ∇ψ(Q)
(while over time, other parts of ψ may propagate, reach Q, and influence
Q).
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Collapse of the wave function in Bohmian mechanics

The wave function of system and apparatus together does not collapse
(but evolves according to the Schrödinger equation).
However, some parts of the wave function become irrelevant to the
particles and can be deleted because of decoherence: Two packets of ψ
do not overlap in configuration space and will not overlap any more in
the future (for the next 10100 years).
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Evolution of ψ in configuration space of particle + detector:
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Collapse of the wave function in Bohmian mechanics

If two packets of ψ do not overlap in configuration space and will
not overlap any more in the future (for the next 10100 years), then
only the packet containing Q will be relevant to the motion of Q
(for the next 10100 years).

So the other packets can safely be ignored from now on (although
strictly speaking, they still exist) ⇒ collapse of ψ

Probability that ψ collapses to this packet =

probability that Q lies in this packet =∫
packet

|ψ|2 = ||packet||2

Thus, the standard collapse rule comes out.
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How Bohmian mechanics solves the problem of
Schrödinger’s cat

The wave function is indeed the superposition

ψ = ψdead + ψalive .

However, the particles form either a dead cat or a live cat. (Indeed, the
configuration Q has probability distribution |ψ|2.)

So, there is a fact about whether the cat is dead or alive.
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What does the cat example mean?

It’s often called a “paradox,” but that is too weak—that sounds like
“get used to it.”

Basically, it’s an argument: Cat + atom belong to a quantum
system of 1025 electrons, protons and neutrons, with a wave function
ψ governed by the Schrödinger equation.
Since the Schrödinger equation is linear, we have that, after 1 hour,
the wave function is a “superposition” of the wave function of a
dead cat and that of a live cat:

ψ = ψdead + ψalive .

However, in reality the cat must be either dead or alive.

John S. Bell: “The problem is: AND is not OR.”

Also known as “the measurement problem of quantum mechanics.”
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Measurement problem

Consider a quantum measurement of the observable A =
∑

n αn|n〉〈n|.

|n〉 ⊗ φ0
t→ |n〉 ⊗ φn

(φ0 = ready state of apparatus, φn = state displaying result αn)

⇒
∑
n

cn|n〉 ⊗ φ0
t→
∑
n

cn|n〉 ⊗ φn

But one would believe that a measurement has an actual, random
outcome n0, so that one can ascribe the “collapsed state” |n0〉 to the
system and the state φn0 to the apparatus.

Conclusion from this argument:

Either ψ is not the complete description of the system,

or the Schrödinger equation is not correct for N > 1020 particles,

or there are many worlds.
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Bell (1982):

“In 1952 I saw the impossible done. It was in
papers by David Bohm. Bohm showed explicitly
how parameters could indeed be introduced, into
non-relativistic wave mechanics, with the help of
which the indeterministic description could be
transformed into a deterministic one. More
importantly, in my opinion, the subjectivity of the
orthodox version, the necessary reference to the
observer, could be eliminated.”

John S. Bell
(1928–1990)
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History

1924: Einstein toys with the idea that photons
may have trajectories obeying an equation of
motion similar to that of Bohmian mechanics.
John Slater joins him.

1926: Louis de Broglie discovers Bohmian
mechanics, calls it “pilot-wave theory.”

1945: Nathan Rosen (the R of EPR)
independently discovers Bohmian mechanics.

1952: David Bohm independently discovers
Bohmian mechanics. He is the first to realize
that the theory is empirically adequate.

David Bohm
(1917–1992)
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Is Bohmian mechanics the only realist theory of QM?

No. Other theories that work:

Other trajectories

Nelson’s (1968) stochastic mechanics (diffusion paths with drift
given by vψ)

Collapse theories [Ghirardi, Rimini, Weber 1986; Bell 1987; Pearle
1990]

Many worlds (perhaps) [Schrödinger 1926; Everett 1957]

But Bohmian mechanics is (arguably) the simplest and (in my humble
opinion) most convincing one.
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Spin

Bohmian mechanics with spin

ψ(t) : R3N → (C2)⊗N . Equation of motion:

dQi (t)

dt
=

ji
ρ

(Q(t), t) =
~
mi

Im
ψ∗∇iψ

ψ∗ψ
(Q(t), t)

where φ∗ψ =
2N∑
s=1

φ∗sψs inner product in spin-space

No “actual spin vector” (unlike actual position) needed, no rotational
motion needed.

“the velocity distribution of the atoms is Maxwellian’’ 

 

“the entropy of the system increases”

8. Probability & Typicality 

Brownian motion

E = {ω|ω2(T )/T = D}

E =

E =

Examples of typical events: 

  N Stern-Gerlach Experiments

E = “relative frequency of spin up = p”
(p the quantum prediction)

•

• •

•

•

!

!

Tuesday, June 16, 2009

Stern–Gerlach experiment

Wave packet ψ =
(
ψ↑
ψ↓

)
splits into two packets, one

purely ↑, the other purely ↓. Then detect the
position of the particle: If it is in the spatial
support of the ↑ packet, say that the outcome is
“up.”
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Identical particles

It may seem essential for identical particles that the particles at time t1

cannot be identified (matched) with the particles at time t2, and thus
that Bohmian mechanics can’t possibly work with identical particles. But
it does!

For N identical particles, we assume in Bohmian mechanics the same
symmetrization postulate as in standard QM: ψ(q1, . . . ,qN) is either a
symmetric or an anti-symmetric function.

If we take the particle ontology seriously then

the appropriate configuration space of N identical particles is
not the set R3N of ordered configurations (Q1, . . . ,QN)
but the set of unordered configurations {Q1, . . . ,QN},

NR3 =
{
Q ⊂ R3 : #Q = N

}
=
(
R3N \ {collisions}

)
/permutations.

And indeed: If ψ : R3N → C is symmetric or anti-symmetric then vψ is
permutation-covariant and thus projects consistently to a vector field on
NR3. For general (asymmetric) ψ, this is not the case.
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Extending Bohmian mechanics to quantum field theory

Two approaches:

1 “Field ontology”:
Instead of an actual configuration (Q1, . . . ,QN) of particles,
postulate an actual field configuration Φ(x); the quantum state is a
wave functional Ψ[φ] on the ∞-dimensional space of all field
configurations φ = φ(x). Equation of motion

∂Φ

∂t
= Im

[ 1

Ψ[Φ]

δΨ

δφ

∣∣∣
φ=Φ

]
2 “Particle ontology”:

Trajectories for photons, electrons, positrons, etc.
Particles can be created and annihilated.
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Particle creation in Bohmian mechanics

[Bell 1986, Dürr, Goldstein, Tumulka, Zangh̀ı 2003]

Natural extension of Bohmian
mechanics to particle creation:

Ψ ∈ Fock space =
∞⊕

N=0

HN ,

configuration space of a variable
number of particles

=
∞⋃

N=0

R3N

jumps (e.g., n-sector → (n + 1)-
sector) occur in a stochastic way,
with rates governed by a further
equation of the theory.

t

x

(a) (b)

t

x

Q(t !)

Q(t +)2

Q(t !)

1Q(t +)

2

1

(c) (d)

(a) (b)
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Limitations to knowledge

“Absolute uncertainty” theorem

For the inhabitants of a universe governed by Bohmian mechanics, it is
impossible to know the position of a particle more precisely than the |ϕ|2
distribution allows, where ϕ is the (conditional) wave function of the
particle.

Inhabitants of a Bohmian universe cannot measure the trajectory of a
particle to arbitrary accuracy without influencing it. That is, when the
accuracy is high, the trajectory of the particle is not the same as it would
have been without interaction with the measuring apparatus. This is a
limitation to knowledge.
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And what about this experimental finding?

sarily gives up the option of observing the other
(1–6). However, it is possible to “weakly” mea-
sure a system, gaining some information about
one property without appreciably disturbing the
future evolution (7); although the information ob-
tained from any individual measurement is lim-
ited, averaging over many trials determines an
accurate mean value for the observable of interest,
even for subensembles defined by some subse-

quent selection (perhaps even on a complementary
observable). It was recently pointed out (8) that
this provides a natural way to operationally de-
fine a set of particle trajectories: One can ascer-
tain the mean momentum of the subensemble of
particles that arrive at any given position, and, by
thus determining the momentum at many posi-
tions in a series of planes, one can experimentally
reconstruct a set of average trajectories. We use
a modified version of this protocol to reconstruct
the “weak-valued trajectories” followed by single
photons as they undergo two-slit interference. In
the case of single-particle quantum mechanics,
the trajectories measured in this fashion repro-
duce those predicted in the Bohm–de Broglie
interpretation of quantum mechanics (9, 10).

Weak measurements, first proposed 2 decades
ago (7, 11), have recently attracted widespread
attention as a powerful tool for investigating fun-
damental questions in quantum mechanics (12–15)
and have generated excitement for their potential
applications to enhancing precision measurement
(16, 17). In a typical von Neumann measure-
ment, an observable of a system is coupled to a
measurement apparatus or “pointer” via its mo-
mentum. This coupling leads to an average shift
in the pointer position that is proportional to the
expectation value of the system observable. In a
“strong” measurement, this shift is large relative
to the initial uncertainty in pointer position, so
that significant information is acquired in a single
shot. However, this implies that the pointer mo-
mentum must be very uncertain, and it is this
uncertainty that creates the uncontrollable, irrevers-
ible disturbance associated with measurement.
In a “weak” measurement, the pointer shift is
small and little information can be gained on a
single shot; but, on the other hand, there may be
arbitrarily little disturbance imparted to the sys-
tem. It is possible to subsequently postselect the
system on a desired final state. Postselecting on

a final state allows a particular subensemble to
be studied, and the mean value obtained from
repeating the weak measurement many times is
known as the weak value. Unlike the results of
strong measurements, weak values are not con-
strained to lie within the eigenvalue spectrum of
the observable being measured (7). This has led
to controversy over the meaning and role of weak
values, but continuing research has made strides
in clarifying their interpretation and demonstrat-
ing a variety of situations in which they are clearly
useful (16–21).

In our experiment, we sent an ensemble of
single photons through a two-slit interferometer
and performed a weak measurement on each pho-
ton to gain a small amount of information about
its momentum, followed by a strong measure-
ment that postselects the subensemble of pho-
tons arriving at a particular position [see (22) for
more details]. We used the polarization degree
of freedom of the photons as a pointer that
weakly couples to and measures the momentum
of the photons. This weak momentum measure-
ment does not appreciably disturb the system,
and interference is still observed. The two mea-
surements must be repeated on a large ensemble
of particles in order to extract a useful amount
of information about the system. From this set
of measurements, we can determine the average
momentum of the photons reaching any partic-
ular position in the image plane, and, by repeat-
ing this procedure in a series of planes, we can
reconstruct trajectories over that range. In this
sense, weak measurement finally allows us to
speak about what happens to an ensemble of
particles inside an interferometer.

Our quantum particles are single photons
emitted by a liquid helium-cooled InGaAs quan-
tum dot (23, 24) embedded in a GaAs/AlAs mi-
cropillar cavity. The dot is optically pumped by a
CW laser at 810 nm and emits single photons at
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Fig. 2. Measured intensities (photon counts) of
the two circular polarization components of |y〉,
measured on the CCD screen (red and blue curves),
as well as the weak momentum values calculated
from these intensities (black) for imaging planes at
(A) z = 3.2 m, (B) z = 4.5 m, (C) z = 5.6 m, and (D)
z = 7.7 m. The red and blue data points are the
intensity data with constant background sub-
tracted. The errors for the momentum values were
calculated by simulating the effect of Poissonian
noise in the photon counts. The magenta curve
shows momentum values obtained from enforcing
probability density conservation between adjacent
z planes. Because of the coarse-grained averag-
ing over three imaging planes, the probability-
conserving momentum values are not as sensitive
as the measured weak momentum values to high-
ly localized regions in the pattern with steep mo-
mentum gradients.

Fig. 3. The reconstructed
average trajectories of an
ensemble of single photons
in the double-slit appara-
tus. The trajectories are re-
constructed over the range
2.75 T 0.05 to 8.2 T 0.1 m
byusing themomentumdata
(black points in Fig. 2) from
41 imaging planes. Here,
80 trajectories are shown.
To reconstruct a set of tra-
jectories, we determined the
weak momentum values for
the transverse x positions at
the initial plane. On the basis
of this initial position and
momentum information, the
x position on the subsequent
imaging plane that each
trajectory lands is calculated, and the measured weak momentum value kx at this point found. This
process is repeated until the final imaging plane is reached and the trajectories are traced out. If a
trajectory lands on a point that is not the center of a pixel, then a cubic spline interpolation between
neighboring momentum values is used.
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REPORTS

Sacha Kocsis, . . . , Aephraim Steinberg: Observ-

ing the Average Trajectories of Single Photons in

a Two-Slit Interferometer, Science (2011),

realizing a proposal by Howard Wiseman, New J.

Physics (2007)

How was this done?
Weak measurements
on many systems with
the same wave
function.

Does this prove
Bohmian mechanics
right?
No. The experiment
would come out the
same way in collapse
theories or other
trajectory theories.
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Limitations to knowledge in quantum mechanics

Theorem in Bohmian mechanics, and a “theorem” in ordinary QM

You cannot measure a particle’s wave function: There is no experiment
that could be applied to any given particle with unknown wave function
ψ and would determine ψ (with any useful reliability and accuracy).

For example, in H = C2 there is a 2-parameter family of ψs (with
‖ψ‖ = 1 and modulo global phase), but (it can be shown) any
experiment yields essentially just 1 bit of outcome.

If you are given N >> 1 particles, each with wave fct ψ, then you can
determine ψ to arbitrary accuracy and reliability if N is sufficiently large.

If you know that a certain particle has wave fct ψ then you can prove it,
in the following sense: You can specify an experiment (with observable
PCψ) that yields outcome “1” with prob. 1 and “0” with prob. 0; if you
didn’t know ψ the prob. of “0” would be positive.

Upshot: Nature can keep a secret. She knows what the wave function is,
but doesn’t allow us to measure it.
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Limitations to knowledge

Bell (1987):

“To admit things not visible to the gross creatures
that we are is, in my opinion, to show a decent
humility, and not just a lamentable addiction to
metaphysics.”
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Nonlocality in Bohmian mechanics

dQ1

dt
depends on Q2(t), no matter the distance |Q1(t)−Q2(t)|.
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Nonlocality

Bell’s nonlocality theorem (1964)

Certain statistics of outcomes (predicted by QM) are possible only if
spacelike separated events sometimes influence each other. (No matter
which interpretation of QM is right.)

These statistics were confirmed in experiment [Aspect 1982 etc.].

Bell’s lemma (1964)

Non-contextual hidden variables are impossible in the sense that they
cannot reproduce the statistics predicted by QM for certain experiments.

Upshot of Einstein-Podolsky-Rosen’s argument (1935)

Assume that influences between spacelike separated events are
impossible. Then there must be non-contextual hidden variables for all
local observables.

Note: EPR + Bell’s lemma ⇒ Bell’s theorem

singlet state 1√
2

∣∣↑↓〉− 1√
2

∣∣↓↑〉
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Bohmian mechanics in relativistic space-time

If a preferred foliation (= slicing) of
space-time into spacelike
hypersurfaces (“time foliation” F)
is permitted, then there is a simple,
convincing analog of Bohmian
mechanics, BMF . [Dürr et al. 1999]
Without a time foliation, no version
of Bohmian mechanics is known
that would make predictions
anywhere near quantum mechanics.
(And I have no hope that such a
version can be found in the future.)
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There is no agreed-upon definition of “relativistic theory.” Anyway, the
possibility seems worth considering that our universe has a time foliation.

Simplest choice of time foliation F

Drawing: R. Penrose

Let F be the level sets of the function
T : space-time→ R ,
T (x) = timelike-distance(x , big bang).

E.g., T (here-now) = 13.7 billion years

Alternatively, F might be defined in terms of the quantum state vector
ψ, F = F(ψ) [Dürr, Goldstein, Norsen, Struyve, Zangh̀ı 2014]

Or, F might be determined by an evolution law (possibly involving ψ)
from an initial time leaf.
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Key facts about BMF

Known in the case of N non-interacting Dirac particles, expected to be
true also, say, one day, in full QED with photon trajectories:

Equivariance

Suppose initial configuration is |ψ|2-distributed. Then the configuration
of crossing points Q(Σ) = (Q1 ∩ Σ, . . . ,QN ∩ Σ) is |ψΣ|2-distributed (in
the appropriate sense) on every Σ ∈ F .

Predictions

The detected configuration is |ψΣ|2-distributed on every spacelike Σ.
No superluminal signaling.

As a consequence,

F is invisible, i.e., experimental results reveal no information about F .
(Another limitation to knowledge)
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Although it may seem to go against the spirit of relativity, I take
seriously the possibility that our world might have a time foliation.

However, there do exist relativistic realist theories of quantum
mechanics that do not require a time foliation: A relativistic version
[Tumulka 2006] of the Ghirardi-Rimini-Weber (GRW) collapse
theory.

The theory predicts tiny deviations from quantum mechanics that
can be tested in principle but not with current technology.

The theory is somewhat more complicated and less natural than
Bohmian mechanics.

The wave function ψΣ on the spacelike hypersurface Σ is random
and evolves according to a stochastic modification of the
Schrödinger equation.
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Bohmian mechanics for a single Dirac particle

No time foliation needed in this case.

Dirac equation:

i~γµ∂µψ = mψ or i~
∂ψ

∂t
= −i~α · ∇ψ + mβψ

Equation of motion:

dXµ

ds
∝ ψ(X ν(s)) γµ ψ(X ν(s))

or, equivalently,
dX

dt
=
ψ∗αψ

ψ∗ψ
(X, t) =

j

ρ
(X, t)

world lines = integral curves of current 4-vector field jµ = ψγµψ
world lines are timelike or lightlike at every point

|ψ|2 is conserved in every Lorentz frame.
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Foundations of QM come up in cosmology

The problem of structure formation in the early universe [Sudarsky,
Okon 2013]: A slightly non-uniform distribution of matter in space
leads, through the effect of gravity, to clumping of matter to
galaxies and stars. But the highly symmetrical initial quantum state
ψ evolves into a superposition of clumped states. No problem for
Bohm.

The problem of time in quantum gravity: According to the
Wheeler-de Witt equation (the central equation of canonical
quantum gravity), the wave function of the universe must be an
eigenfunction of the Hamiltonian, and thus time-independent. No
problem in a Bohm-type theory, as Q(t) still depends on t.

The Wheeler-de Witt wave function is a superposition of various
3-geometries. But we need to talk about 4-geometries. How do
these 4-geometries arise? (Different proposals are provided by the
Bohm-type theories, decoherent histories, collapse theories, and
perhaps many-worlds, leading to rather different conclusions about
the 4-geometry [Struyve, Pinto-Neto 2014; Das et al. 2015].)

Are there Boltzmann brains in the late universe? Bohm ⇒ no.
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Thank you for your attention
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