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Zusammenfassung

Bohmsche Mechanik [4], 8 19, 20], 22, 26] ist eine Quantentheorie {iber Teilchen
in Bewegung (d.h. iiber Teilchenbahnen), die empirisch dquivalent zur orthodo-
xen Quantenmechanik ist, wenn immer letztere eindeutige Vorhersagen macht
[20]. Da auch die Newtonsche Mechanik eine Theorie iiber Teilchenbahnen ist,
ldsst sich die Frage nach dem klassischen Limes in der Bohmschen Mechanik
somit besonders einfach und klar formulieren: Wann sehen Bohmsche Bahnen
wie Newtonsche Bahnen aus? Als ersten Schritt hin zu einer umfassenderen Ant-
wort auf diese Frage zeigen wir im ersten Teil dieser Arbeit, dass die Bohmschen
Bahnen, die zu semiklassischen Wellenpaketen (wie sie in [25] von Hagedorn de-
finiert wurden) gehoren, in einem angemessenen Skalenlimes zu der klassischen
Bahn konvergieren, auf der sich der Ortserwartungswert des Wellenpakets bewegt
(Kapitel [2).

Es gibt eine weitere Situation wo wir bereits wissen, dass sich Bohmsche Bah-
nen klassisch verhalten: Ein Teilchen, das an einem kurzreichweitigen Potential
gestreut wird, bewegt sich asymptotisch frei, d.h. seine Geschwindigkeit wird fiir
t — oo konstant [34]. Im zweiten Teil dieser Arbeit (Kapitel |3) erweitern wir
dieses Resultat auf den Fall von N nicht wechselwirkenden, moglicherweise ver-
schriankten Teilchen (wie z.B. in einem EPR-Experiment). Vor allen Dingen aber
benutzten wir diese Erweiterung, um eine der grundlegenden Fragen der Streu-
theorie zu beantworten: Wie kann man die Wahrscheinlichkeit bestimmen, dass
Teilchen in einem gegebenen Raumwinkel detektiert werden?

In orthodoxer Quantenmechanik werden diese Wahrscheinlichkeiten mit Hilfe
der S-Matrix-Theorie berechnet, wobei die tiefere Begriindung der S-Matrix-
Theorie allerdings ein in der Literatur viel diskutiertes Problem ist. Wir be-
sprechen frithere Versuche, die Detektionswahrscheinlichkeiten aus grundlegen-
den Prinzipien abzuleiten, und begriinden, inwiefern sich der Mehrteilchenfall
vom Einteilchenfall so stark unterscheidet, dass er neuer Methoden bedarf. Mit
Hilfe des asymptotisch klassischen Verhaltens der Bohmschen Bahnen zeigen wir
schlieflich, dass die Bohmschen Detektionswahrscheinlichkeiten zum {iblichen S-
Matrix-Ausdruck konvergieren wenn der Abstand zwischen den Detektoren und
dem Streuzentrum unendlich grof} wird.
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Chapter 1

Introduction

1.1 A very brief overview

This work consists of two parts. In the first we are concerned with the classical limit
of Bohmian mechanics per se: We prove a result about the Bohmian trajectories of
semiclassical wave packets. In the second we apply a special instance of the classical
limit to many particle scattering theory: We derive the detection statistics of N non-
interacting, possibly entangled particles from first principles.

The key question of the classical limit is: How does the classical world of everyday’s
experience as it is described by Newtonian mechanics emerge out of quantum mechanics?
Since orthodox quantum mechanics contains no particle trajectories while Newtonian me-
chanics is solely about particle trajectories, to answer this question one usually needs to
either introduce in classical mechanics an observer and a commutative algebra of observ-
ables or to restrict the emergence of classical behavior to the time development of phase
space densities.

Bohmian mechanics [4], 8, 19, 201 22} 26], however, is a theory of particles in motion (i.e.
a theory of particle trajectories) that is experimentally equivalent to quantum mechanics
whenever the latter makes unambiguous predictions [20]. Thus, using Bohmian mechanics
the question of the classical limit becomes as simple as it could possibly be: Under
which circumstances are the trajectories of the particles of a system (close to) Newtonian
trajectories? As a first step towards an answer to this question we show that in an
appropriate scaling limit the trajectories associated with semiclassical wave packets (as
defined by Hagedorn in [25]) tend to the classical trajectory tracked by the mean position
of the wave packet (Chapter [2)).

There is a second situation where we already know that Bohmian trajectories look like
classical ones: Whenever a particle is scattered by a short range potential it becomes free
asymptotically in the sense that its Bohmian velocity becomes constant as ¢t — oo [34].
In Chapter [3] we extend this result to the case of N non-interacting, possibly entangled
particles (like, for example, in an EPR experiment). More importantly, we use this
extension to answer one of the fundamental questions of scattering theory: How can one
determine the probability that particles are detected in a given solid angle?
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In orthodox quantum mechanics this is computed from S-matrix theory. The justi-
fication of S-matrix theory from first principles, however, is a recurrent problem in the
literature. We discuss earlier attempts to derive the scattering probability from first
principles and explain how many particle potential scattering is so different from one par-
ticle potential scattering that it calls for new methods. With the help of the asymptotic
classicality of the Bohmian trajectories we prove that the Bohmian detection probability
converges to the usual S-matrix expression whenever the distance between detectors and
scattering potential tends to infinity.

We give a more detailed overview at the beginning of Chapter [2] and Chapter |3| each.

1.2 Bohmian mechanics

In Bohmian mechanics [4, 8, 19, 20, 22} 26] the state of IV spinless, non-relativistic particles
is described by their (normalized) quantum mechanical wave function v (z,t) € L?(R3Y),

where € = (x1, ..., zy) € R, ¢t € R, and by their actual configuration (positions)
X = (X4, ..., Xy) € RN, The wave function evolves according to the Schrodinger
equation
0
(e, 1) = Hia, 1) (1.1)
and governs the motion of the particle by (=1, ..., N)
d

—X;Z’(:co,t) = v}z’ (X¢(w0,t),t) =:

1.2
dt m (1.2)

Elm (V”Z)(Xw(azo,t),t))
I/J(Xd}(:ljo,t),t) ‘
Here x is the particles’ configuration at time t = 0, my is the mass of the [th particle and

V, is the gradient with respect to @;. In (1.1)) H is the usual non-relativistic Schrédinger
Hamiltonian

H= —Z%A, +V(x) =: Hy+ V(x) (1.3)

with the non-relativistic real valued potentiall] V.

The dynamical system defined by Bohmian mechanics is naturally associated with a
family of finite measures P¥(:?) given by the densities p?:!)(x) := |¢)(x, t)|> on configura-
tion space R3V. If at time ¢t = 0 we start with a random distribution on the configurations
x of the system with density p, = p¥*?, for any other time ¢ transports this to a
distribution with density p, = p¥(¥). This property is called equivariance. More precisely,
let ®f, : R — RV be the flow map of (1.2), i.e. X¥(zo,t2) = B}, (X¥ (o, 11)).
Then the measure P¥(9 is transported to PYC? = Pr(-0) . (cp;/jo)fl = P00 . (IJZ)Z’J. We
say that the functional 1(-,t) — P¥C!) from wave functions to the finite measures P¥(-!)
is equivariant if for all ¢ € R

U(-,0) _ -0 Y _ ot
Py = PO of, = pren. (1.4)
N 2
'More rigorously: H is a self-adjoint extension of H|cee () = — > JL—mlAl—i—V (with V : Q C R3N — R)
=1

on the Hilbert space L?(Q2) with domain D(H).
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On the family of measures P¥(*Y) we bestow the role usually played by the stationar
“equilibrium measure”: We call P¥(Y) the quantum equilibrium measure and say that a
property is typical, resp. holds for typical initial configurations g, if it holds for P¥(-0)-
almost all ¢, € R3V. By equivariance this notion of typicality is time independent. For
an extensive treatment of quantum equilibrium and how it entails the usual quantum
measurement formalism (including the collapse of the wave function) see [19, 20].

Viy
(

nodes of the wave function 1, one might wonder whether the dynamic system of Bohmian
mechanics is well defined. However, for a wide class of (sufficiently regular) potentials
V and initial wave functions 1 P¥-almost sure global existence of Bohmian mechanics
was proved in [B] and [39]. In particular, typical Bohmian trajectories do not run into
the nodes of the wave function. Both our settings below (Chapters [2/ and |3 fall into the
scope of Corollary 3.2 in [5] resp. Corollary 4 in [39].

Since the Bohmian velocity field 'v;/} = millm ( ) becomes obviously ill defined at the

Proposition 1. Let V € C®(Q,R) with Q C R3N such that R? \ Q consists of at most
finitely many points (i.e. the real valued potential V' has got at most finitely many singu-
larities). Further let V- = Vi + Vo where Vi is bounded below and Vs is Hy-bounded with
relative bound a < 1. Finally, assume that the initial wave function v is a C*-vector

of H, v € C*(H) := () D(H"), and is normalized. Then there exists a unique global
n=1
solution of (1.2) for PY-almost all initial configurations xo € R3Y.

For a proof see Corollary 3.2 in [5] resp. Corollary 4 in [39]. In fact they are more
general than Proposition (1| (they allow for more general singularities of the potential and
are formulated in terms of quadratic forms instead of operators). The set of admissible
initial wave functions C*(H) is dense in L*() and invariant under the time evolution
e~ Therefore it is a core, i.e. a domain of essential self adjointness of H. Examples for
C>-vectors are eigenfunctions and wave functions 1) € Ran(Pg, g,)) of “finite energy”,
where Pip, g, denotes the spectral projection of H to the finite energy interval [E;, Es].
Since © and R3*V differ at most by a set of Lesbegue- and thus P¥-measure zero we shall
in the following no longer distinguish between them.

2Since in most cases the velocity field defined in (1.2]) will be explicitly time dependent one cannot
expect to find a stationary measure.






Chapter 2

Trajectories of Semiclassical Wave
Packets

Under which circumstances are the Bohmian trajectories of the particles of a system (close
to) Newtonian trajectories? In this chapter we study this question in the case of a system
with three degrees of freedom only, so Schrodinger’s equation (I.1)) and the Bohmian
equation of motion read

i u(@.t) = Hof@.t) = — 1= Al t) + V(@) ).

ot
? (o, 1),
iX“’(azo,t) =v" (X¥(z0,1),t) = Elm (21/()%(5(80 t;f)t)t)) ;XY (x0,0) =

dt m

with  and X¥ in R%. Here one should not so much think of a single particle but rather
of a macroscopic body in an external potential V' whose center of mass coordinates @
can be dynamically decoupled from its inner degrees of freedon[!] Only for simplicity we
henceforth call X% and v the position respectively the wavefunction of a “particle”.

Usually, physicists consider classical behavior of a quantum mechanical system as
ensured by the limit A — 0, meaning by this

h<<A07

where A is some characteristic action of the corresponding classical motion (see, e.g., [7,
30, 36]). We prefer, however, to use another, equivalent standard condition of classicality
which involves the length scales of the motion (see, e.g., [29]): Suppose the de Broglie wave
length A is small with respect to the characteristic dimension L determined by the scale
of variation of the potential V. Then on the macroscopic scale given by L the behavior
of the system should be close to the behavior of a classical system in the same potential
V. This is very reminiscent of how geometrical optics can be deduced from wave optics.
We regard this condition, i.e.,
AL L,

1See e.g. [3], Section 3, for conditions under which this is possible.

5
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as the most natural condition of classicality since it relates in a completely transparent
way a property of the state, namely its de Broglie wave length A, and a property of the
dynamics, namely the scale of variation of the potential L (cf. [3]).

It is a priori not clear how the scale of variation L of a given potential V' should be
defined. One way to circumvent this problem is to consider an arbitrary potential V' and
to rescale it as Ve(x) := V(ex). Then the limit ¢ — 0 corresponds to the limit of slow
variation of V¢ no matter exactly how the scale of variation is defined.

Since we want to compare quantum and classical dynamics on the scale the poten-
tial lives on, we change from microscopic coordinates (x,t) to macroscopic coordinates
(x',t") = (ex,et). Then the time-dependent Schrodinger equation becomes (1% (x',t') :=
5’%&(%, %/) where £72 is just a normalization factor)

e2h?

s,
iehg@be(m’, t')y = H Y (x' 1) = —%A’ V(2 ) + V(a) vt (2 1) (2.1)

while the Bohmian equation of motion reads

€ 5 £ e AX,w6 ! ! !
i/x'w (2, ') = v (XY (xp, 1), 1) = SO (vw ( o <,$°’t)’t)) ;
dt m e (X (g, ), 1)

X" (xf),0) = x .

(2.2)

Hence, in macroscopic coordinates, the limit ¢ — 0 is mathematically equivalent to the
limit A~ — 0. From now on we use natural units A = m = 1. Moreover, since we shall
stick to the macroscopic scale, we change the notation: For the remainder of this chapter
(z,t) denotes the macroscopic (and no longer the microscopic) coordinates. For ease of
notation we also write X instead of X¥".

We shall study the scaling limit ¢ — 0 of the Bohmian trajectories associated with a
special class of initial wave functions ®%(a(0),n(0),-) in a sufficiently smooth potential
V. The ®5s are the semiclassical wave packets defined by Hagedorn in [24, 25]. Roughly
speaking they are "narrow” non-isotropic three dimensional generalized Hermite func-
tions (generalized Hermite polynomials of order k := ki + ko + k3, k € N3 multiplied by
a Gaussian wave packet) centered around some classical phase space point (a(0),n(0)).
"Narrow” means that their standard deviation is of order y/¢ both in position and mo-
mentum. Moreover, Hagedorn [24], 25] showed that they give a good approximation to
the Schrodinger time evolution in the sense that, up to an error of order /¢ in L%-norm,
the solution ¥ (x,t) of with initial data ¥f(x,0) = ®%(a(0),n(0),x) is given by
®%(a(t),n(t),x). Here (a(t),m(t)) is the corresponding classical phase space trajectory,
that is the solution of the Newtonian law of motion with initial data (a(0),n(0)) (see

subsection [2.1.2)).

For this class of initial wave functions we show that for ¢ — 0 PY9-almost all
Bohmian trajectories stay arbitrarily close to the corresponding classical trajectory a(t)
and that the rate of convergence is of order y/z: For all T > 0 and v > 0 there exists
some R < oo such that

PO ({a, € R? | max | X (xo,t) —a(t)] < RVe}) >1—7
€fo,



for all € small enough (cf. Theorem [1).

At first glance this looks like an easy corollary to Hagedorn’s L2-results. After all, they
imply that for every time ¢ € [0, 7] not just the main support of ®3(a(t),n(t), ) but also
that of ¢ (x, t) lies in a ball with radius ~ /¢ centered around the classical position a(t)
at that time. But beware: This only implies that for € small enough the set of initial
positions @y of Bohmian trajectories X (xg,t) that do not deviate more than order /e
from the classical trajectory a(t) at some arbitrary but fized time ¢ € [0,7] has (nearly)
full P¥:(-%-measure. It does not imply that the set of initial positions &, of Bohmian
trajectories X (xg,t) that stay /z-close to a(t) for all times ¢t € [0,T] has (nearly) full
PYk(9-measure. There is still the possibility that the Bohmian trajectories “take turns”
to escape the proximity of the classical trajectory a(t): While for every time t € [0, 7
most of the Bohmian trajectories are close to the classical trajectory a(t), nevertheless
(nearly) every Bohmian trajectory may leave the vicinity of a(t) at some time ¢ € [0, T

(see Figure [2.1).

Figure 2.1: What might go wrong.

So we need more controll over the Bohmian trajectories X (x,t) than available from
L?-results. In view of this can be achieved by evaluating the wave function 7, and
its gradient pointwise. Thus the main technical result of this work is Lemma : i (x,t)
and 5 (a(t),n(t),-) are close not only in L:norm but also pointwise and the same is true
for their gradients.

For its proof we use a Gagliardo-Nirenberg inequality (i.e. a Sobolev-type inequality)
that allows us to estimate the supremum norm of (V)5 — (V,)®5 by its L:-norm and
the L2-norm of its second derivatives. The main difficulty then is to compute the lat-
ter. In particular, we have to commute differentiation (respectively p = —ieV) with
the Schrodinger time evolution e~ =7 without loosing too many orders of . This is
further complicated by the fact that 1y, — ®j, carries a rapidly varying phase factor of
the form e={"®-® which blows up the estimates for the derivatives. To remedy this we

use Gagliardo-Nirenberg not directly on 5 — ®% (resp. V.95 — V,P%) but rather on
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e~ t(mz—a) (5, — D%,). This, however, means that in the end we even have to comput
the higher order terms || D% ™2~ (s — &%) ||, = e~ %l||(p — n)* (v5 — %) ||2 instead
of | D (g, — @5 [|l2 = e~ 1||p* (¢, — @3) || (see subsection [2.4.3).

The remainder of this chapter is organized as follows. In section [2.1] we give the
mathematical setup: We briefly recount the different dynamics (classical and quantum)
we want to compare (subsection and introduce Hagedorn’s wave packets (subsection
2.1.2). Section contains our results about the classical behavior of the Bohmian
trajectories and Lemmal[l]about the pointwise closeness of ¢§(x, t) and %, (a(t), n(t), ). In
section 2.3/ we have collected some remarks and a short outlook on possible generalizations
of our results. Last but not least we give the proofs (section [2.4)).

2.1 Mathematical framework

2.1.1 Dynamics

In this subsection we collect the different kinds of particle dynamics we wish to compare.
We look at particle motion in a macroscopic potential V : R?® — R, which we always
assume to be in C*°(R3). Since we will habitually need to restrict the growth of the
potential and its derivatives, we give the following

Definition 1. We say that V € C*®°(R3,R) is in Gy if for all multi-indices o € N3

max || DV < Cy (2.3)
o] <4

for some Cy < oo and if multiplication by V maps the Schwartz space S(R3) into itself,
i.e. if Vf€S(R?) forall f € S(R¥). Here D* denotes the (weak) derivative 921902093

Tyl Tx2 T3 ”

Remark 1. The (quite mild) requirement that V' maps S into itself is needed to get
P¥-almost sure global existence of Bohmian mechanics [5l, 39] for initial wave functions
€ S (c.f. the beginning of the proof of Theorem . The boundedness of V' and its
derivatives will be needed in the proof of the pointwise closeness of (V)¢ and (V)5
when we commute p with e~ ",

The classical dynamics is given by Newtonian mechanics, so the classical state of a
particle at the macroscopic time ¢ is given by its classical position and velocity at that
time, which we denote by (a(t),n(t)). For any given initial value (a(0), n(0)) it is the
(unique global) solutionﬂ of the usual classical equations of motion:

a(t) = n(t).
H(t) = —VV (a(t)) .

ZWe use the usual multi-index notation, D* = 9{1952952.
3Since lmax ID*V||s < Cy, global existence and uniqueness of solutions to (2.4) is a standard result.
=2

af -

(2.4)
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The quantum dynamics is given by Bohmian mechanics, so the particle’s quantum me-
chanical state is given by its quantum mechanical position and wave function,
(X (20,),9(-,t)) (cf. section [1.2). In macroscopic coordinates and natural units
Schrodinger’s equation and the Bohmian equation of motion read respectively (cf. the
beginning of this chapter)

iegp(e.t) = e v(e,t) = (<56 + V(@) vle0 D
and
V¢( (m()a )at)

iX(azo, t) = v¥ (X (xo,t),t) = elm <

dt ) , X(mo, O) =Xy . "

w(X(w()? t), t)
By U#(t) we denote the unitary propagator generated by H*¢:

d ?
—U(t)|j=o = ——H* 2.
SV (Olimo =~ (25)

To mediate between classical and quantum dynamics we follow Hagedorn [25] and
use a second, “semiclassical” time evolution for the wave function, namely a Schrodinger
evolution with truncated potential. To this end we Taylor-expand the potential V' and
introduce the following abbreviations.

Definition 2. For anyl <m € N, V € C™(R?) define

m—1

1

O./'
al=0

Vi (2, a) a)(x —a) (2.6)

and

Vi 0,0) 1= ¥ @,0) = Vo (0) = LDV (@)@ —ar ()

Then the truncated, time dependent (quadratic) Hamiltonian
2

He(1) = He(a(t) = —%A 4 Voo (z, alt)) (2.8)

is the generator of a second unique unitary propagator, which we denote by U (t,s):

d 5 _ i 1€
SO (1) e = —H(5) (2.9)

For a proof see [25].
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2.1.2 Hagedorn’s wave packets

In this subsection we recount the definition and the basic properties of Hagedorn’s (n-
dimensional) wave packets [24, 25]. They are semiclassical wave packets that form an
orthonormal basis (ONB) of L?(R") and come endowed with their very own time evolution,
which is such that their mean position and momentum track a classical trajectory in phase
space while their standard deviation is of order 1/ both in position and momentum. In
fact we shall see that this time evolution is just that given by the truncated Hamiltonian
He.

Like the eigenfunctions of the n-dimensional harmonic oscillator Hagedorn’s wave
packets can be constructed with the help of raising and lowering operators [25].

For this let Ay, By € C™*" such thatﬁ

Af)BO - BSA() - 0,

2.10
ABy + BiAy =21 (2.10)

and let (A(t), B(t)) € C™" x C™" be the solution| of (V) denotes the Hessian of V)
(2.11)

with initial data (A(0), B(0)) = (A, By). Then also A(t) and B(t) fulfill (2.10). Moreover,
(2.10) implies that

A and B are invertible ,
BA™! and AB™! are symmetric, (2.12)

Re(BA™Y) = (AA*)™" and Re(AB™Y) = (BB*) " .

For a proof see [25].

Next define (formal) vectors of lowering resp. raising operators acting on Schwartz
space S(R™):

1 .
A(A,B,e,a,m) := \/—2_6 [Bt(:n —a)+iA'(p — 77)]
) 1 ) o (2.13)
A(A7B7€7a777) :\/_2_E[B (w_a’)_ZA (p_n)]
They fulfill the commutator relations (7,1 € {1,... ,n})

['Aj? Al] = [A;ka Aﬂ =0,
[Aj7 Aﬂ — U5t -

Here p = —ieV is the momentum and « is the (macroscopical) position operator.

4 At is the transposed of A, A* its adjoint and A its complex conjugate.
5Since max |D*V |0 < Cy, such a solution exists and is unique.
=3

o N
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Remark 2. Note that A and A* are only formal vectors. In particular, A* is the vector
consisting of the adjoint components of A; that is why in the definition of A* we find A*
and B* instead of the probably expected B resp. A.

Then Hagedorn’s wave packets are given by

Definition 3 (Hagedorn’s wave packets). Lete > 0, k € N" and let a(t), n(t) be solutions
of (2.4) and A(t), B(t) solutions of (2.11]) with initial data Ao, By fulfilling (2.10)). Define

OL(x,t) = Pp(A(L), B(t),e,a(t),n(t), ) = \/%A*(A, B,e,a,n)k®5(x,t)  (2.14)

where the ground state ®f is given by
f(x, 1) := o (A(t), B(t), £, a(t),n(t), )

_ LS (me)”3 1 -1 i
_eES()mexp —g<(m—a),BA (sc—a)>+g<n, (x —a))|,

(2.15)

t
S(t) = [ [3n*(s) — V(a(s))]ds denotes the usual classical action and (-, -) is the canonical

0
scalar product on C™.

Since it appears only as a global (if time dependent) phase factor we choose not to
denote dependence on S(t).

The basic properties of Hagedorn’s wave packets we shall need in the course of our
analysis are collected in the following two propositions.

Proposition 2. Let e >0, a, n € R" and A, B € C"*™ such that (2.10) holds. Then

(i) Hagedorn’s wave packets {®y | k € N} form an orthonormal basis (ONB) of
L*(R™). The lowering resp. raising operators act on them as follows:
AJ(A7 B7 g, a, n)q)k (A7 B7 €,a,n, 33) =V qu)k/ (Aa B7 €,a,n, 15) )

2.16
Ai(A, B,e,a,m)® (A, B, g,a,n,z) = \/kj + 195 (A, B,¢,a,m, ) . (2.16)

where k?l = (]{31, N kj—la kj - ]_, k?j+1, ce ,kn), E = (k?l, ey kj—l, k}j—f—l, kj+17 ey kn)

(ii) The ®ps can be written as generalized Hermite functions, i.e. as products of gen-
eralized Hermite polynomials and the ground state ®q: Let {€1,€5,...,e,} be the
standard ONB of R™ and A = RaUy the polar decomposition of A (i.e. Ry = v AA*
and Uy is unitary). Ther[

(I)k(AaB7€7a’7n7m) -

273 r—a
Hk (UAa RA1—> (I)O (A7 B7 €, a,n, w)
|
VE! Ve (2.17)

with Hk(UA; a:) . :Hk(UA/éla~--7UA/€\£a"'7£JAé\na'~-7UAé\n; m)

S/

' vV
k1 times k, times

Note that R;" is well defined by (2.12).
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Here the H,, (V1,.. ., U ) (m € Nyvy,... v, € C") are the generalized n-
dimensional Hermite polynomials defined by Hagedorn in [24):

Ho(x) =1, Hi(vy; @) :=2(vy, ),

Hoy (v, ..., 0, ) =2 (v, T ﬁm_ Vi,...,Up_1; T
(v1 ) ( m1> 1(v1 1; ) (2.18)
-2 Z <’Um, T_Ji>ﬁm_2(’l)1, e ,/’Gi, vy Um—1; $) .
i=1

(i11) For any multi-index o € N (we abuse notation and write (-, -) also for the scalar
product on L*(R"))

z—a\"
( \/E ) (I)k(AaBaeva’anam)

:Z <(I)k’(UAa L, 1,0,0, m)? (RAm)aq)k<UA7 1,1,0,0, $)> (I)k" (Aa B7 €, a,r,T

[k—K'|<|a
|k—K'|+|a| even

) (219)

and

(p;g") (A, B, e, )

:Z (O (1,Up, 1,0,0, ), (Rpp)*Pr(1,Up, 1,0,0,x)) Py (A, B,e,a,n, :c) )

|k—K'|<|a
|k—K'|+|a| even

(2.20)

For a proof of (i) see [25] (Theorem 3.3). For a proof of (ii) see [24] (cf. also Remark
3.2 in [25]). Parts of (iii) can be found in [24] (Remark 2) and [25] (equation (2.41)). For
the sake of completeness we give a short synopsis of the proof of (iii) in subsection [2.4.4]

Proposition 3. Let ¢ > 0, let a(t), n(t) be solutions of (2.4)) and A(t), B(t) solutions of
(2.11) with initial data Ao, By fulfilling (2.10). Then

(i) Hagedorn’s wave packets @, evolve according to the Schrodinger evolution with the
truncated (quadratic) Hamiltonian H® defined in subsection . That s for any
t,seR

@ (x,t) = US(t, s)®5(x, s) . (2.21)

Moreover, they track the classical phase space trajectory (a(t), n(t)) in the sense
that (for allt € R),

(2.22)
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and for any multi-index o« € N there are Cy < oo and Cy < oo (depending on k, «
and the matriz norm || A(t)|| resp. on k,« and ||B(t)||) such that

lo
(& = a(t))* Py, 1), < Cre2

la|

(P — m(t)"®5 (@, 1), < Coc'5.

(2.23)

Here || - ||2 denotes the L*-norm.

(i) The ®%s and their gradients scale in € as follows: For all T > 0 there are constants
C < 00, C" < oo (depending on k, A(t) and B(t)) such that

5@, 1) = =@k (A1), B(£),1,0,0, w—_a@f))‘

NG

< 5_%C<1 + M)ke_;c<w—;§(ﬂ)2 _ 0/6_% (224)
< N -
and
c i . p—n() .
[Vi(@, 1) = —n(t)Di(a,1)] =2 T()cbk(w,t)\
(2.25)

< e (ird)o(1+ BB o= ¢ oe(iey)

NG

for allt € [0,T] and € R™. Remember that with the usual multi-index notation
k=lk|l=Fk +...4 k.

For a proof of (i) see [25]. Note that (2.22) and ([2.23)) are direct consequences of Propo-
sition [2f (iii) and the fact that the ®%s are orthonormal. (ii) follows from Proposition
(ii) by a straightforward calculation (cf. subsection 2.4.4). The idea is that, as generalized
n-dimensional Hermite function, every ®f is a product of a (generalized n-dimensional

Hermite) polynomial of order &k in the components of m_Taa(t) and a normalized Gaussian

wave packet centered at a(t) and with width ~ /2. Thus the £~7 is in fact just a nor-
malization constant. Regarding ([2.25)) one should think of p_T”E(t) as a liner combination
of a lowering and a raising operator, so we end up with having to estimate a polynomial
of order k + 1 times a Gaussian.

2.2 Bohmian trajectories of semiclassical wave
packets

We return to n = 3 and consider Hamiltonians H* = —S A + V(z), D(H?) C L*(R?),
with V' € Gy and wave functions ¢, (x, t) that are solutions of the Schrodinger equation
(2.1)) with initial wave function ¢ (x,0) = &% (=, 0):

Ve(x, t) = U (t)Dy(x,0) for all t € R.
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For these wave functions we get that in the limit ¢ — 0 P¥(-)-almost every Bohmian
trajectory becomes classical in the sense that it stays close to the corresponding classical
trajectory for arbitrary long time.

Theorem 1. Let V € Gy. Then

(i) the Bohmian trajectories X (xo,t) exist uniquely and globally in time for PVk(-0)
almost all initial positions o € R3,

(ii) for all T > 0, > 0 and all multi-indices k € N* there exists some R < oo and
some gy > 0 such that

PYECO) ({zy € R? | max | X (xo,t) —a(t)] < RVE}) >1—7 (2.26)

te[0,7)

for all 0 < e < gg.

For the proof we shall use that the probability that a Bohmian trajectory crosses a
certain surface (here the moving sphere Sg z(a(t))) is bounded by the quantum proba-
bility flux across this surface (see subsection [2.4.1)). So we will need pointwise estimates
on the quantum probability current density j% = v%|[y§|? = elm[(5)* V)], that is
on Y5 and Vg, In [24] 25] Hagedorn showed that the semiclassical time evolution of
the wave packets ®%(x,t) = U= (t, 0)®%,(x,0) is a good approximation for the Schrodinger
time evolution ¢ (x,t) = U%(t)®5(x,0); in L:norm the error is of order /¢ better than
the leading order term ®g. That the same holds true also pointwise is the main technical
result of this work.

Lemma 1. Let V € Gy. Then for all multi-indices k € N3 and all T > 0 there exists
some constant C < oo such that

1

max ||77Z)IE<:( 7t) - (I)i:( 7t)Hoo < Ces (2'27)
tel0,7)
and
max || [VUR(- ) = V(1) |, < C= 1. (2:28)
te[0,T]
Here || - ||oo = sup | - | denotes the sup-norm (not just the L>-norm).

xcR3
For the proof see subsection [2.4.3]

Remark 3. Note that on the macroscopic scale the wave packets’ supremum norm

|5 |00 tend to infinity for ¢ — 0. More precisely, by ([2.24) and 2.25) ||95/lcc ~ 1
resp. || [VOL| [|co ~ e~1. Thus the pointwise errors (2.27) and (2.28) are indeed of order
\/€ better than the leading order terms.
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Theorem [I] is a result about a particle’s typical Bohmian trajectory, i.e. about its
position. But what about its velocity?

While we believe that a statement analogous to (2.26) is true also for a particle’s
velocity, i.e.
PO (@0 € B | max [0 (X (@0, t),0) ~ ()| SCVED >1=7 (229
teo,
for some C' < oo and all € small enough, there is a major technical difficulty in proving
it for general k € N3. The problem is that we cannot sufficiently controll the Bohmian

velocity field v¥% = eIm <le§2) in the vicinity of the wave function’s nodes. For ([2.29)
k

we need that

_ =Yg — indil
- |Vl
— evaluated on a typical Bohmian trajectory X (xg,t) — is well behaved (i.e. of order 1/2).

13

For the numerator we can find an upper bound that scales like £~1 and holds even for
all z € R®. Regarding the denominator we know that for & small enough |¢g| ~ |Pg|

pointwise (Lemma (1) and that by (2.25) |®(x, )| = e75[@k(A(t), B(t), 1,0,0, =H)|

scales like e~ 1. So we indeed get what we desire as long as the trajectory X (xo,t) does not
come too close to a node of 5, resp. O, (as long as |®k(A(t),B(t), 1,0,0, W)‘ >
d>0):

Lemma 2. Let V € Gy. Then for all T > 0,6 > 0 and all multi-indices k € R3 there
exists some C' < oo and some €9 > 0 such that for all 0 < e < g

v’k (z, 1) —n(t)] < CV/e (230)
for allt € [0,T] and all
€ Gi(t) = {zc R | |&5(x, 1) > 5*25} . (2.31)

For the proof see subsection [2.4.2] So the real difficulty consists in showing that a
typical Bohmian trajectory stays away far enough from the nodes of ¢5: For all T' >
0, v > 0, k € N’ there exists some d7x(y) > 0 such that

PACO ({mg € B | |04 (X (0. 1).1)| > = Hors(n) for all b € 0.7]}) > 1 (232)

for all € small enough. Now, we already know the following. Since the Bohmian trajec-
tories X (xo,t) exist uniquely and globally in time for P¥+:%)-almost all initial positions
xo € R? (Theorem[l] (7)), a typical Bohmian trajectory cannot run into a node of ¢§, (where
the velocity field is ill defined, see also the end of section: Forally >0, >0, ke N3
there is some 05, () > 0 such that

PUCO ({@g € R | [U5(X (o, 1),1)| > 0j(7) for all t € R}) > 1 — . (2.33)

While this is a weaker statement than (2.32)), by taking apart its proof in [6] one should
be able to extract the e-dependence of d3() and thus to sharpen (2.33) to (2.32) (the
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proof in [39] is too abstract for that purpose). This, however, is beyond the scope of this
Workﬂ While we do not prove for general k € N3, for the ground state k = 0 it is
an easy corollary to Theorem [I] and Lemma [2] Since ®f is just a Gaussian, it does not
possess any nodes. Neither does ¢§ (for € small enough). Thus:

Corollary 1. Let V € Gy. Then for all'T > 0 and all v > 0 there exists some R < o0
and some €9 > 0 such that

5 (+,0) —_ <
P ({:13 €R3 | max [X (o, 1) — a(t)| < Rz

(2.34)
A max [0¥5(X (20, 1), 1) — n(t)] < R\/E}> S>1—7

te[0,T)

for all 0 < e < &g.

For the proof see subsection [2.4.2]

The above notwithstanding, we remark that Theorem (1| indeed does give rise to a
(somewhat weaker but empirically satisfying) statement on Bohmian velocities for any k €
N3. Since a typical Bohmian trajectory may not deviate too much from its corresponding
classical one, at least the time-averaged Bohmian velocity has to stay close to its classical
counterpart. More precisely, for any macroscopic time interval 0 < 0t < % define the
time-averaged Bohmian and classical velocities (t € [0t, T — 6t])

t-+ot
€ 1 5
vk (@, 1) = o5 v’k (X (z0, 5), 5) ds,
t—ot
1 t-+ot
malt) = 557 [ s,
t—ot

Now suppose &g € R? is such that max | X (xo,t) — a(t)] < Ry/c. Then

t€[0,T)
t4-0t
Vi
V5 (X0, 1) — Mg (t 2&’ /’U% (@0, 5),5) — ﬂ(s))d‘s‘
t—ot
1
< o5 [1X (@0, t +6t) — alt + 3] + | X (20, t - 6t) — alt - 51)|]
R
<
— ot

So by Theorem 1| (i7) we immediately get

"Note that because of |g| ~ |®%], the nodes of 1§ are essentially those of (the generalized Hermite
functions) ® and thus those of the generalized Hermite polynomials Hy, (U A Bag) E= a(t ) (cf. -

Therefore |node of ¥ (x,t) —a(t)| ~ v/, i.e. the nodes of ¥ live on the same scale as a typlcal Bohmian
trajectoy and there is no “simple” scaling-like proof of (2.32]).
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Corollary 2. Let V € Gy. Then for all T > 0, v > 0 and all multi-indices k € N? there
exists some R < oo and some €y > 0 such that for any 0 < 0t < %

) . R
PO ({mo € BT _max o (@0 t) —ma()] < £VE}) >1-7 (239

te[ot, T—ot

for all 0 < e < g.

Note that measuring macroscopic velocities generically involves some kind of macro-
scopic time averaging (as, for example, when calculating an object’s velocity by measuring
its time of flight across a given distance). So Corollary [2|in fact implies that empirically
the Bohmian velocity along a typical trajectory cannot be distinguished from its classical
counterpart in the limit € — 0.

2.3 Some remarks and a short outlook

We have presented results on a single “particle”, that is on the center of mass of a single
macroscopic body in an external potential. We remark that our method works also for
more than one such “particle”, i.e. in higher dimensions n = 3N, N > 1. Since we use
an instance of Gagliardo-Nirenberg (a Sobolev-type) inequality to prove the pointwise
estimates of Lemma one would, however, need L?-estimates for higher order derivatives
of 17, — ®%. As explained at the end of the overview at the very beginning of this chapter
this necessitates commuting correspondingly higher powers of p with the Schrodinger time
evolution e~ =¥ which then leads to more severe restrictions on the potential V', namely
that also higher (than fourth) order derivatives of V' must be uniformly bounded.

In this context note also that Lemma [1|is most probable a stronger result than neces-
sary to get Theorem [I] Remember that we prove that a typical Bohmian trajectory stays
in a neighborhood of the classical trajectory a(t) by showing that the probability flux out
of this neighborhood is negligible. So we in fact need pointwise estimates analogous to
and and thus control over the Bohmian velocity field resp. the flux only in
a sufficiently big neighborhood of the classical trajectory a(t), ¢t € [0,T]. In other words:
Since we expect typical Bohmian trajectories to stay close to a(t), we should have no
need of knowledge on the velocity field far away from a(t). But then also the potential
far away from a(t) should not play too big a role, i.e. it should be possible to replace the
requirement of uniform boundedness of the potential and its derivatives by boundedness
on an appropriate compactum. The latter, however, is already a consequence of the po-
tential’s regularity.

So far we have talked only about Bohmian trajectories made by wave functions that are
initially a Hagedorn wave packet ®7,. But what about more general wave functions? What
are the next steps towards a more general classical limit of Bohmian mechanics? In [3]
Allori et al. outlined a general program for the classical limit of Bohmian mechanics where
they also argued that one should be able to reduce the case of general initial wave functions
to that of semiclassical wave packets (like, for example, Hagedorn’s). Summarized the
idea is that due to the (for ¢ — 0 dominating) dispersive character of the free Schrodinger
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evolution a general initial wave function should evolve into a so called local plane wave
on a microscopic time scale. Here a local plane wave is essentially a sum of semiclassical
wave packets that evolve “side by side” without appreciably interfering with each other.
Since a particle’s actual Bohmian position is always in the support of one wave packet
only, this implies that one should be able to neglect the “empty” wave packets’ effects
on the particle’s evolution, that is that one should be able to effectively collapse the
local plane wave to just one semiclassical wave packet. Allori et al. also took care of
the caveat that this simple scheme generally breaks down at the “first caustic time”
of the classical dynamics: Remember that this is the first time at which the classical
action becomes multivalued which corresponds to a crossing of classical trajectories in
configuration spaceﬂ Since the semiclassical wave packets (that make up the local plane
wave) follow the classical trajectories, they will interfere and one can thus no longer neglect
the “empty” wave packetsﬂ. It is at this point where one has to abandon the idealization
of the isolated particle and invoke the effects of the environment (i.e. decoherence) to get
a stable collapse of the local plane wave to the wave packet containing the particle’s actual
position.

A prominent example for the formation of local plane waves is given by the free
Schrodinger evolution respectively by the asymptotically free Schrédinger evolution in
scattering situations. In chapter [3] we show that this indeed yields classical behavior of
the Bohmian trajectories (Theorems [2] and []).

2.4 Proof

2.4.1 Proof of Theorem (1]

(1) is a direct consequence of Proposition [1|if we can show that the initial wave function
Pe(-,0) = P5(-,0) is a C*®-vector of H®, 9% (-,0) € C*(H®) = ﬂ D ((H*®)"™). Note that
V € Gy guarantees that H® maps the Schwartz space S(R3) 1nto itself. Consequently
S(R3) C C*=(H?). Since obviously ®5(-,0) € S(R?), we are done.

We proceed with the proof of (ii). Let v > 0. For ¢ > 0 and R > 0 define

e = {a:o R’ | max [X (0. 1) ~ alr)| < R\/E}.

tel0, T

Our task is to show that, for suitable R and ¢, the measure of (G%)° is smaller than 7.
The idea is to show that P¥9-almost no trajectory starts outside a ball with radius
~ /2 and center a(0) (easy L*result) and to use the quantum probability flux to see
that a trajectory with starting point in this ball nearly never leaves a \/e-neighborhood

8In confining potentials this typically happens.
9Put differently: At the “edges” of a confining potential the dispersive character of the free Schrodinger
evolution is no longer dominating, so the local plane wave structure breaks down.
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of the classical trajectory a(t). Thus we write
PrAce (<GE )
< Y0 ({zr; € R*| |@o — a(0)| > RVE})
+ PO (L | |z — a(0)| < Rve A 3t € (0,T]: | X (z0,t) — alt)] > Rye})
= PO (Ba(a(0)) + B (M, 2(a(0)))

(2.36)
Regarding the first summand note that ¥ (-,0) = ®3(-,0) and that by (12.24)
—al(t
5 (,0)] = =~ @i, (A1), B(1), 1,0,0, ‘”TZ())‘
for any ¢t € R. Substituting y = m%'a(o) this in particular yields (y := |y|)
PUCO (B z(af / |5 (2, 0)” d*x = / |2&(A(0), B(0),1,0,0,y)* d .

|z—a(0)|>R\/ y=>R

Since ®x(A(0), B(0),1,0,0,-) is square summable (in fact it is normalized) we see that
there is some R’ < oo independent of & such that

PY(9) (Bg (a(0))) < (2.37)

DO [ 2

for all R > R'. Thus we are left with the task to find a suitable estimate for
PUCO (M, (a(0))).

Since X (xg,t) (as a solution of (2.2)) is continuous in ¢, z¢ € Mﬂ\/g(a(())) implies
that X (xo,t) crosses the moving sphere Sy z(a(t)) at least once and outwards in (0, T7.
Therefore PV (-0 (MT _(a(0))) is bounded from above by the probability that some tra-

jectory crosses Sg z(a (t)) in any direction in (0,7]. In Subsection 2.3.2 of [6] Berndl
invoked the probabilistic meaning of the quantum probability current density

T (a,t) = (§°(@.1), [l 1))
= (0¥ (@ D@ D, (@ D) = (lm(v* (@ ) V(. 1), b, 1))

to prove that the expected number of crossingﬂ of a smooth surface ¥ in configuration-
space-time by the random configuration-space-time trajectory (X (-,¢), t) is given by the
modulus of the flux across this surface,

/|J¢(a;,t) Ul do,

where U denotes the local unit normal vector at (x,t) (see also the argument given in
[5], p. 11.). Since any trajectory (X (zxo,t), t) crosses ¥ an integral number of times

10T his also includes tangential ”crossings” in which the trajectory remains on the same side of 2.
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(including 0 and oo) this expected value gives an upper bound for the probability that
(X (xo,t), t) crosses X. So in our case we obtain

PYi(-0) (Mg ﬁ(a(()))) < / )ﬂi(m,t)-U do (2.38)
T
where
Yr={(z, t)| t€[0,T], x € SR\[(a(t))}
and U = m(é\ —(n(t), ) do = \/1 ), &,)° eR2dQ) dt. Here we have

used spatial polar coordinates centered at a(t) so that €, = (cos ¢ sin @, sin ¢ sin 6, cos )
and df2 = sinf dp df. Thus

[TV (2, t) - Ul do = | (5% (z,t) — [vi (. )*n(t), &)] cR2dQ
< |3k (@, 1) — V5 (@, 1) (1) | R*dQ

where §%(x,t) — [ (2, t)>n(t) is evaluated at points (z,t) € X5. By the definition of
4% and since 1(t) is always real

|3 (@, 1) — [ (a, O)Pn(t)| = [Im (V)" (2, 1) (VR (@, t) — in(t)vg (. )]
< [Yk(@, )] eV (@, t) — in(t) (e, 1)]

< (193, 0)| + i@, 1) — Oi(@. )] ) (<] VVila,t) - Vi, 1)
+0(0) [ (@, 1) — (@, 1) + [V (@, 1) — in(t) i (. 1)])
Then by (2.24), and Lemma [1]
3% (@, 1) — il ()|

k 2
3 t _1lo(lz=a®)] 1
Ce™ 1 (1+ —la: \/CEL( )‘) e 20( Ve ) +(Ce 4
—_— k+1 1 xz—al(t 2
Ce i+ Ce i (1 + lz = al®)] a(t)|) e_ico =) ]

1

<C [5_1(1 + R)%“e_%(m2 + 5_5}

(2.39)

<

where we have used that n(t) is continuous and thus bounded on [0, T and that (x,t) € 35
entails % = R. Plugging this into (2.39)), we see that

| JVk (2, 1) - Ul do < C [(1 4 R)PH5OR JE] R2dQ) .

Thus by (2.38)
T 2n .
Pt (M /d / /desm(Q)CR? [(1+R)2k+1e,%m{2 —i-\/g]
’ (2.40)
<2rTC [RQ(l + R)?He —loR? +RQ\/E} _ %
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for R big and € small enough.
Together (2.37) and (2.40)) give the desired result:

PAC (GR) = 1 =P ((GR)) > 1 -y

for all R big and all £ small enough.

2.4.2 Proof of Corollary [1] and Lemma

With Lemma [2| we can use the fact that the ground state ®f possesses no nodes to prove
Corollary

Proof of Corollary [1. Let v > 0 and T" > 0. By Theorem [I] there exists some R < 0o
and some gy > 0 such that

Po({w € B | max [X(@0,) - alt)] < RVE}) > 17
te|0,

for all 0 < & < gy. Now let &y € R? such that Han;g] | X (g, t) — a(t)] < Ry/e. Then with
te|0,
the help of (2.12)) (2.15)) gives

95X (0, 1), 1)| = (me) 3| det(A(1))| 72 ¢ e (X (ool RBOAOT O 07l

(12.12))

=7 (me) 71| det(A(1)| 7 e
> (me)~ 1| det(A(t))| "3 e~3IAOI*R

Since A(t) is continuous (it solves (2.11))) and always invertible (cf. (2.12)),

min |det(A(t))|"2 > 0 and min [|A(¢)]|2 > 0. So there exists some d > 0 such that
te[0,T] te[0,T]

in |®5(X (xo,t),t)| > e 16
tIeI[lol,Iil“]| 0( (w07 )7 )| € 140,

i.e. such that X (xo,t) € G, 5(t) for all ¢ € [0, T]. Then by Lemma

[0 (X (@0, 1),t) —n(t)] < CVe

for some C' < 0o and all t € [0,7]. O

So we are left to prove Lemma
Proof of Lemma [2, Since V € Gy implies not only V € C®(R?) but also ¢§(x,0) =
®5,(,0) € C*(H*) (see beginning of proof of Theorem 1)), one can use methods of elliptic
regularity to show that ¢ (x,t) € C°(R3 x R) (Lemma 6.1 in [5]). Thus v¥k(z, ) is well
defined and C* on (R* x R) \ WV where N = {(z,t) € R®* X R | ¢ (x,¢) = 0} is the set of
nodes of ¢,. Now let ¢ € [0,T],x € G, 5(t). Then by the definition of Gy, 5(t) and
Lemma [I]

(@, 1) > |05 (2, 1)| — [Y5(z,t) — B (x, 1) > e 10— CVE) 270z >0 (241)

N S
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for all € > 0 small enough, i.e. x € Gj;(t) guarantees not only &g (x,t) # 0 but also

Ui (x,t) # 0 and thus that v¥k(z,t) = 5Im(v¢’“(( t))) is well defined. So we may write

0¥k (@, 1) — n(t)] = ‘Im(gv¢i(m’22< g )i <x,t>>‘

< eIV, 1) = VO (=, 8)| + n(t) [V, 1) — (@, )| + [V Ph(, 1) — in(t) Py (. 1)|
B CACA '

Using (2.25)), that is

|€V<I)i,(zc,t) o Zn@)q)i:(wvt” < Cgfi )
([2.41)) and Lemma [I| we get (n? :=maxn(t) < oo since n(t) is continuous)

te(0,7]
€ 2 1 1
[0k (2, 1) — n(t)| < 55% [Ce™ it 4 Cple™i + Cei] < Cy/e
for all t € [0,T] and = € G, 5(), i.e. we are done. O

2.4.3 Proof of Lemma [

We give a rough outline of the proof of (2.27) (that of (2.28]) is completely analogous).

Using Cook’s method (aka Duhamel’s formula) our starting point is (remember H*— H® =
Vs)

t

Vi@, 1)~ (@, 1) = [UF(1) — T°(1,0)| @ (e, 0) = — / Ut~ 5)Va (. a(s)) By (., 5)d s

o

This gives the desired result ([2.27) if |UV3®% /|0 ~ 1. Indeed, we shall show (Lemma
that for every m € N

max_[|US(t — 8)Viu(-, a(5)) @5, (-, 8) || < C371.

s,t€[0,T7]

That ||V, @5 [|s ~ 2 1 is comparatively easy to see. To get rid of the unitary (on L*(R?))
time evolution US(t — s) = e <H#°(=%) we use an instance of the Gagliardo-Nirenberg

inequality ([23] B1I], see (2.48) below) and p = —ieV,

3
UV Pl oo < C|UV,, P H2 maxHDO‘UEV L5
, (2.42)
=Ce~ 2HV <I>5H2 maXHpO‘UEV DLl5 -

Then ||UsV,®% || ~ £3 71 if |peUs Vsl ~ £™ 5"

The latter, however, is false in general. Remember that V,,(x, @) is the mth remainder
term of the Taylor expansion of V' about a, that is roughly V,,(x,a) ~ (x — a)™. Since
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£72 acts on @ as a combination of lowering and raising operators (cf. Proposition (iii))

this means that
V@ ~es > B,
|k —k|<m

Moreover, since by Proposition |3} E p*PL ~ n*®3,, this implies that even

1PV @ill2 ~ €% [[p* @i [l ~ €2 [ @5 [lo ~ %
. la|
is of order e~ 2 worse than what we need.
To circumvent this impasse we use a trick: We substract the leading order, that
is instead of p*®;, we contrive to use (p — n)ai)fc,, which by Proposition (3 I is exactly
of order s’ better than p*®:,. Indeed, since e~ == DUV, 05| = UV, P5| and

[pe =AUV, 85| = |(p — n)°UsV;, @5, instead of (2.42) we may also write
3
[0Vl < O3V @5 max [|(p —n)" UV @[5

Thus [|UsVn®% [l ~ 231 if [|(p — 1) UV @5 |2 ~ ™2

y The latter is the content of Lemma |4 and is proven in two steps. First we use
= H® — V, the fact that [H®,U¢] = 0 and brute force to commute p° and U® and

consequently show that indeed ||p®UcV,,®% |2 ~ [|[P*Vim®5|l2 ~ €% . Since 77( ) is bounded

on [0,7] this implies that also ||(p — n)O‘U‘EV D% |2 is at least of order e>. In a second

step we apply Cook’s trick once more to construct a bootstrapping argument that allows

m+|al

us to sharpen this non-optimal estimate to the desired ||(p — n)*UV,,®%|l2 ~ ¢ 2

We now give the details of the proof. As mentioned above our starting point is
(tel0,1])

t

Yp(x,t) — Op(x, t) = —E/Ue(t —s)Vs(z,a(s))Py(x, s)d s. (2.43)
: 0

A priori equality in - holds in the sense of L?-functions, i.e. for almost every & € R3,

only. In the course of our proof (Lemma I below) we shall however see that UsV3®5,

is continuously dlfferentlableiﬂ with respect to & and that U°V3®5, and VU 51/3435 are

bounded for all s,¢ € [0,7] and & € R®. So by dominated convergence also 15 — ®% (and

thus v%,) is continuously differentiablﬁ with

Vi (2, 1) — VO (2, 1) = —év/Uf(t — §Va(m, al(s)) T (x, 5)d s
(2.44)

t

_ —gO/VUE(t—s)‘/})(m,a(s))@i(m,s)ds

"When we say that some f € L? is r times continuously differentiable we of course mean that there
is some f € C" such that f(x) = f(x) for almost every x. Since, however, such a f is always unique, we

can safely identify (the equivalence class) f with (its smooth representative) f
12Tn fact even ¢§ € C>°(R? x R). See the beginning of the proof of Lemma
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Moreover, by continuity ([2.43)) and([2.44)) hold in fact pointwise for all = € R3.
Let us state our results on (V)UV3%.

Lemma 3. Let V € Gy and T > 0, m € N, k € N3. Then U¢(t — 5)V,u (-, a(s))®%(, s)
is continuously differentiable for all s, t € [0,T] and there exists some C' < 0o such that

max_[|[US(t — $)Vin(-, a(s)) D5 (-, 8|, < Ce? 3 (2.45)
5,t€[0,T
and
max || [VU(t = 5)Vin(-, a()Bil5)] oo < Ce i, (2.46)
s,te

Then, plugging (2.45)) and (2.46) into (2.43) and (2.44) immediately yields Lemma [1]

1.e.

max {[¢ (-, 1) — Pf(-, )]l < L ma |U=(t = $)Va (-, a()) D5(- 8)], < CTe™

te[0,T) T £ s,tel0,T)

and

max || [Vip(-, 1) = V(- )] [l <— max || [VU(t — s)V3(-, a(s)) P (-, s)| [|

t€[0,T) s,t€[0,T]
< CTe 1.

As explained in the outline above to prove Lemma [3| we need L?-estimates of
(p —n)*UV,,®%. They are collected in

Lemma 4. Let V € Gy. For every T >0, m € N and k € N3 there ezists some C' < oo
such that

max |[(p — ()" U(t = 5)Vin(-, a(s)) D5+, 5), < C=™5°

5,t€[0,T7

for all multi-indices 0 < |a| < 3.

(2.47)

Remark 4. For m = 0 and s = 0 Lemma [4 in particular implies

max [|(p —n(6))* ¥i(-, )], < Ce'

t€[0,T]

for some C' < oo and all 0 < |a| < 3. So we have, for example, that regarding momentum
not only the ®5(x,t)’s but also the ¢ (x,t)’s standard deviation is of order /e. Since
the momentum operator p is unbounded thls 1s not a consequence of Hagedorn’s results
U5 — Pill2 ~ e and ||(p — n(t))” PLll, ~ € 5 ([24, 25]; see also Proposition .

With Lemma [4] we may go on to the

Proof of Lemma [3l
Let

gfn,k<w, t,s) = U(t — s5)Vin(z, a(s)Py(z, 5),
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and

gfn,k(wa t, 5) = €_i<"7(t),m—a,(t)>

gfn,k<m7 ta S)'

We use an instance of Gagliardo-Nirenberg’s inequality [23, BI]:  For every
n € N and [ > % there is some C < oo such that for every f € WH-3(R")
= {f € L2(R") | max|[ D7 < o)

N 30 -2
7]l < ©(max | D*fll2) ™ Il (2.43)

Moreover, f € C"(R") for all 0 <r <1 — .

First, to prove (2.45) we apply (2.48) to gy, .. Since |g;, p(z,t, )| = |G, 1(T:t,5)]
(2.48) with n = 3 and [ = 2 gives

€ -t = a° .
S;rel%?%] Hgm,k< ) 78)HOO S,?El%%ﬂ Hgm,k( 7t7 S)HOO

3 1
< C\rorii)é HDagfn,k('at?S)Hg Hg;z,k<'7ta S)Hél :

(2.49)

So we need to calculate [|[D*g5, ,||2 for multi-indices o € N°* with | = 0 and|a| = 2.
Note however, that

|a|

Da’gvfn’k(;p, t,s) = Z (Oé) (Dﬁe_a”l(t),m—a(t») Da—ﬁgfmk(x7 t,s)
181=0

) ‘O‘| Qa Z /6 Z Oé—,B
—2(n(t), z—a(t €
e S0 () (<) (Lp)  distet

18=0

NE
! -1 z—a a
(g) et mma®) (p — y(t)* g, (2, 1, 5)

and thus by Lemma

m—|a|

DG (-t = ¢l — ) ¢ (-t < (2
max DG e 2, 8)[l2 = € . (P —n()" grop(,t,8)][2 < Ce 2 (2.50)

With (2.49) this yields (2.45)):
m—2

&
. <
o N9ma (2t 8) oo < Ce 2

The proof of (2.46]) is analogous. By (2.48]) (with n = 3 and [ = 2)

max [1Vger(t8)] | < Sma He*é(’”l(t),:cfa(t)>Dﬁgfn’k(.7t’ S)HOO
181=1

i 3 1
< Cmag [ D000 DGE (- 1) [ max [ D75t )]
|Bl=1

W

3 1
1t91 = (O™
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However by Lemma [ we get

| Dee 2O z=a poge | (-t )|, = e D (p — (1) p g5 (- 1, 8)]],
<D (] (o= m(0)™* g5, )|, + i O] (P = 0(0)" Gl 1.5)]),)
< Cce"

and thus ([2.46]). O

Remark 5. Instead of the Gagliardo-Nirenberg inequality (2.48)) we could also use canon-
ical Sobolev inequalities. However, then we get results that are not of optimal order in
&,

2 1
JUVa®5lle < C[ 3 el (o — m(e) UV 53 < O

|ar|=0

and

3 1 SO
| VU@l oo < C[ 3 =7 (0 = m(t) U Vi3 3| < %2,

laf=0

Note that also this weaker results suffice to get convergence to classical behavior in the
sense of Theorem [If — but with a lower rate of convergence. More precisely, instead of
(2.26)) one gets

PYC0) ({x € R? | H%XHX(%, t)—a(t)| < Rei}) >1—7.
te

We conclude the proof of Lemma [I] with the
Proof of Lemma [4. We expand the notation of Lemma [3] to:

;,k(ma S) =V (CB a’(s)) @2((2, S) resp. f(sm,l),k(m’ S) = VmJ (CB, a’(s)) Cbi(a:, 3) )

£

I k(®,t,8) = US(t — 3) f, (, 5) resp. Iompyse(Ts by 8) = Ut = ) [y (T, 8) -
In the following we set || - || = || - |- We first prove the weaker result (|a| < 3)

Jax [|(p—m(t)" gh (-, 5)] < Cez (2.51)

and then use a bootstrapping argument to arrive at ([2.47)).
Since n(t) is bounded on [0, T, instead of (2.51)) it suffices to prove that

8?61%)%] 1P g5 1, 8)|| < Ce? (2.52)

for some C' < oo and all |a| < 3. For that we first get rid of the (unitary) time evolution
U®, i.e. we express [|[p®gs, .|l in terms of ||f5 |, |H®f7 4]l and [[(H®)*f5, .ll. We then
mimic the proof of (2.38) in [25] to find estimates for the latter.
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Since U* is unitary
||gfn,k('at78)” = ||fr€n,k<73>|| : (253)
Since p = —ieV is self-adjoint, by Schwarz’s inequality and (2.53)

(NI

m%X ||p gm,k('a L, S)H = m]a‘X <gfn,k:('a t, S)’ p?.gfn,k(a L, 8)>

o
< (Ifre s I g5 s 8 9)1)

max [[pgh, (£, )| < 17wt 9)]

(2.54)

(ST

and

1
max [P gk 1 5)|| < (g i £ ) 1P g7 (-, S -

m
2

Thus we get (2.52) if we can show that || f2, .||, [p%¢5, .|l and [[p*gs, .|| are of order e
Write p? = 2(H® — V). Since [H®,U¢] = 0 and V is bounded by Cy (cf Definition [1),

1?95 s, $) | = 2/ (H= = V) g5 (- 8 5)
<2 [[[HU(t = 8) fri (s )+ 1V ool g, £ )] (2.55)
<2[IH £l + Cvll frkl 9] -

In the same way
1D g5 1o+ £ )| = AN (HT = V)2g5, (-t )|

< 4P )]+ 2V e+ IV a9
I VIge a9
I s+ 2N e 1+ CE a9
4ol (VY. ) g9+ SIAV o)

Since V' € Gy implies that also VV and AV are bounded by C\/, this yields

1" g5 e, $) I = 41 (" = V)2g5, 4 (1, 5|

=, [H(H‘f) ol 8) |+ 20V [|HE £, 9)] + Cur(Cy + >uffnk< 9l
+ 0y (150 ) 10250 1 9)) 2
235)

4[H(H€)2 o9+ 20V [ HE F i 9) + O (G + )Hffnk-( s

N

+ V200 || 5k G (1HE £, (o 8) |+ Coll £ 1 G 8))
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Thus we get (2.52)) if we can show that || f¢, .|, [[H®f5, |l and [|(H®)? fe, .|| are of order
£ . We mimic the proof of (2.38) in [25] and introduce the following splitting (R > 0):

1ok )P = [ |Vin(z, a(s) Py, 5)|"d*x + / |Vin(@, a(s))®5, (@, 5)dPe = T + 11
lz—a(s)|<R |lz—a(s)|[>R
Recall Definition [2] i.e. that V,, is the remainder

- Lovi@e-ar= Y L0 E@a) @ - oy

al=0 |o|=m

Vin(x,a) =

where {(x,a) = a+ A(x — a) for some A € (0,1). Remember also that a(s) is continuous
in s. Since V is C'*° this implies

max [(D*V)(a(s))] < o0
jaf<m—1

and

max max DaV z, a(s < 0.
25 e (07 )

Since ||V ]|o < Cy, there thus is some C' < oo such that for all s € [0, T

o Sy Az as)f
Va(@,a()] < Vil + | max [(DV)(@()| 3> ==,

|o]<m—1 =0 |al=l
= (3 |:1: —a(s)])
<Cy + [ max |(D” 1 E < Cedlrmals)l
s€[0,7T =0
laj<m—1 =

and

max |Vp.(x,a(s))| < Cle — a(s)|™

j@—a(s)|<R

where we have used that % = n! for all n-dimensional multi-indices o € N". Substi-
laj=t

tuting y := w_;g(s), with the above and (2.24]) we get

C

I<c / (14 )k e v =Vegy < Ce™ve
R
NG
and

8my2m(1 + y)Qk eny2dy < Ce™

IA
Q
o\ﬂm
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for some C < co. So

max || f7, (-, 8)| = O(e?). (2.56)
s€[0,T]
To estimate || H®f5, .|| write

Hefr o, 5) = Vin(x, a(s)) H* @y (x, 5) + [HT, Vi (, a(s))]| P (x, s) .

With Ey = 1n(s)? 4+ V (a(s)) and [H®, V,,] = —ie (VV,, p) — %(AVm) this gives (where
there is no risk of confusion we suppress dependence on @ and s respectively a(s))

2

Hefrop = Eafp + Vi(H® — Egq)®%, —ie (VV,,, p) &3, — —(AV ) D5,
1
Eclffmk + §Vm<p2 - 772)@2 + Vm(V(CC) - V(a’))q)i:

2
— 2 (VV, 1) @ — i (T, p = ) B = S (AVa);

1
Eafrge+ 5Vin(p = 1) @)+ Vin (0, p = m) D} + Vi Vi D,
2

— e (VViny 1) @ = i€ (Vi p = 1) i = S (AV)O.

Now, by (2.20) we see that (p — n)®5, is /¢ times a (vector of) linear combination(s)
of ®,’s with |k — k'| = 1 and (p — n)*®5, is ¢ times a linear combination of ®,’s with
|k — k'] € {0,2}. Thus H®f;,  is a sum of terms of the form

Cn)fiw = C(n)VE Dy,

where C(n) is either a constant or some function of 9, [k — k| < 2 and V¢ is a wild card

for Vi, €V, V/EVims VinVa, €(0;Vin), €2(0;V;) or e2(92Vn) (7 = 1,2,3). Note that

m—1

(D°Vy)(x, @) = (DV)(x) — Z 51' (D°V) (a)D*(x — a)”

m—\a|—1

— (D°V)(x) - Z .

5 (Dﬂ’mv) (@)(z — a)” = (D°V)p_jo(x. @),
SO ‘772 is either V,,,V; or of the form g%ffw where the “new” potential Vis a plageholder
for V, 0,V or 8?‘/ and [,r € N are such that [—r > 0. Now, since V' € Gy implies V € C*

and ||V ]| < |max||D°‘V||oo < Cy, not only the proof of ||V, V1®%, || = O(£™3) but also

that of || V;,_ @5, || = O(e"7) is completely analogous to that of (2.56). Therefore, ||f; o

is either of order ™2 (VE = V,,V4) or of order ™2 < % (VE = e2V,_,), that is we
get

Hefr, < C) N frw =0(e? 2.57

max | s < > max |C(n W o Co9)ll = O(%). (2.57)

Finally, ||(H5) okl = O(e7) clearly follows if we can show that, for each of the

above ffn oo [HEfS | is (at least) of order e%. The proof of the latter, however, is

mk’
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completely analogous to that of (2.57). Just note that this time we get up to fourth order

derivatives of V' as “new” potentials ‘7, which is why in the definition of Gy, we required
that || DV || < Cy for |a| < 4.

So we have shown that (2.52)) and thus also (2.51) holds. To get (2.47) we split V,,
into V,,, = Vim + Ving1 (cf. Definition . Then by (2.51))

| (0 —n()" g5 n(: 1, 8
<|[(p—nt)"g
<[ (p—nt)"g

To estimate (p — n)® g% . hote that by definition

(m,m),

m,m),k('ata S)H + || (p - ”7(t>)a gfn—l—l,k("ta S)H (258)
m+1

(,t,9)|| +Ce 2.

m M

—~

m,m),k

gfm’m%,c(zc, t,s) =U(t — $)Vim(x, a(s)Py(x, s)
1

=erU(t—s) Y El (D?V) (a(s)) (w_—;f("”))ﬁcp;(m, s)
Bl=m c

NG
independent of € and uniformly bounded on [0, T] (cf. (2.19)). Since also (D°V) (a(s))
is uniformly bounded on [0, 7] (V € C*(R?) and a(s) continuous in s) it thus suffices to
estimate

B
and that (u) @5, is a finite sum of ®%,s with |k — k'| < m and coefficients that are

€% (p—n(t))" Us(t — 5)@ (x, 5)
for |k — k'| < m. For this we use once more Cook’s method, i.e.
t
/UE(t Vs (&, a(r) B, (@, 7) dr

s
t

€ Z g
=&, (x,t) — E/g&k/(m,t,T) dr .

s

Since by (2.51) || (p —n(t)" g5, (. 7)|| < Ce3, changing the order of differentiation
(p = —ieV) and integration in

(3 3 (3 /L
Us(t — 5)P% (x, 5) = Py (x, t) — .

t t

I = )" [ guttr)ar = | [ (- n(o) gt dr]

S

is justified by dominated convergence and we thus get (for any s,t € [0, 7))

) (p = ) VSt~ 5)P (5)]

t
< o=@ O+ <5 [ 1= m0) g7 o
m|al p—’r](t) ¢ e mEL
<eg 2 VE w( )| +e = OT.
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By (12.23)) this yields
) £ 0‘| m+1
SE | (p — n(0)" US(t = )i, 9)]| < € (757 + 2757
and thus also
a ¢ mil
12— n()" gimm) tS)||<C’( 2™ )

Putting this into (2.58) we see that we can sharpen (2.51)) to
m+|al m m
max ||(p — n(t))" g5 k(- 1. 5)|] <C< g —l—aTH) < e
5,t€[0,T]
Repeating this bootstrapping argument several times we finally arrive at
m+|al

la] m+|af
?Q%HP n(t)" g (- t8H<C( R )

ie. at (2.47).

2.4.4 Completing the proofs of Propositions [2] and 3
Proof of Proposition [2] (iii). We start with the proof of (2.19). Since the ®s form

an ONB this is equivalent to showing that
x—a\”
®, (A, B,e,a,n,x
) k ( n )> (2.59)

<(Dk' (A>Bv‘€7avn7w)> ( \/E
(P (Ua, 1,1,0,0,x), (Rax)*Pr(Ua, 1,1,0,0,x))

for all k, k', o € N" and
(D (Un, 1,1,0,0, ), (Raz)*Pr(Ua, 1,1,0,0,2)) = 0

for all k, k', a € N™ with |k — k'| > |a| or |k — k'| + || odd. Since the scalar product is

sesquilinear the latter is equivalent to proving that
(P (Ua, 1,1,0,0, ), 2*Pg(Ua, 1,1,0,0,2)) =0 (2.60)

for all k, k', o € N" with |k — k'| > |a| or |k — K| + |a| odd
Writing @y, as generalized Hermite function (cf. (2.15)) and (2.17)) we get

<q)k’ (AaBagaa’anaw) ) (w\;ga) Dy (A7Ba5>aa7l7$)>

n

_ (me)72
[det(A)] ViRl
a r—a @ — M,RGBA_I T—a n

/Hk:’UAaRA \/—)Hk(UA,RA \/g)<\/g)e<¢5 ( )‘/g>d$

) (Ray)® e ¥ d"y

k+k

Ray="2 2772 .
v Hy (Ua; ) He(Uas y

= w2
VE'K!
R”
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In the last step we have used (2.12), i.e. Re(BA™!) = (A4A*)~! = R,?, and %

_ _n 2 ) _
= m = 1. Note that Re(U;') = 1 and thus 7 2¢7% = ‘det([z)‘e {y, Re(Ua)y)

= |®¢(Ua, 1,1,0,0, Ry y)|2 So, using (2.17) once more, we see that

r—a

<q)k/(A7Bagaa’7n7w>7 ( \/g ) (I)k(A7B787a7naw>>:
- <(I)k:/<UA7 ]]-7 17 07 07 $), (RAw)aq)k(UAv ]]-7 17 07 07 w)> )

i.e. that (2.59)) holds.

To prove ([2.60)), note that with the help of (2.13)) we may write & as a sum of lowering
and raising operators (cf. [25] (3.28)):

1 _
x = NG (UaA*(Ua,1,1,0,0) + UsA(Ua, 1,1,0,0)) .

Then (12.60)) follows by a straightforward induction on |«|.

Finally (2.20) is an easy consequence of (2.19) (resp. of (2.59)) and (2.60))) and the fact
that (see [24] Lemma 2.2 resp. [25] (3.19))

(fsq)k (Av B? g, a,nn, )) (5) - (_i)ke_é‘(a’n)q)k (B, A7 e,n, —a, €>

where the scaled Fourier transform F, is defined as

(F) (O = (2re) F [ e ey,
Then, using Plancherel’s theorem, F. (p)) (€) = & (F-4) (€) and (2.59),
D —1N\“
<(I)k:’ (AJ B7 €,a,n, $) ) <7> (I)k (A7 BJ €,a,nn, .’L')>
= ik/_k <q)k/ (B7 A7 g,n, —a, 5) 9 (%) q)k (Ba A7 g,n,—a, €)>
= Z'kl_k <q)k/<UBa ]]-a ]-) 07 07 5)7 (RBE)a¢k(UBa ]]-a ]-7 07 07 €)>
= <q)k/<17 U37 17 07 07 .’B), (RBp>aq)k<]la U37 17 07 07 .’,C)> .

Similarly, we can use (2.60) to get
(@ (1,Up,1,0,0,2), p"®x(L, Us, 1,0,0,)) = 0

for all k, k', o € N with |k — k'| > |a| or |k — k'| + || odd. Thus (2.20) holds. 0

Proof of Proposition |3| (ii). According to part (ii) of Proposition

. 273 L xz—alt E
D% (x, )| = Hee (UA(t); RA(lt)T())‘ D5 (x, t)]

VE!
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and

‘VHk (UA(t Ryl TZ’@))‘ | (z, )]

(e 5y ) [ L] |

By the definition of Hy (equations (2.17)) and (2. 18|)) we see that Hi(Ua; R_l “"Ta(t)) is
a(t)
=

a polynomlal of kth order in the components of = with coefficients dependmg on A(t)

resp. A(t)~!. Since A(t) is continuous and invertible for all ¢ € R (cf. (2.11]) and (2.12)),

i.e. since 0 < min [|A(¢)|| and max ||A(¢)|| < oo, this implies that there is some C' < 00
te[0,T) te[0,7)
such that

0 (Vs Bty T2 < (14 %)k

and
-1 z—a(l) 1 |z — a()][\*!
el SV B I G = A
[ H (Vs Rty 7 )| < \/EC<1+ N )
for all ¢ € [0,T]. Similar, by (2.15)) there is some C' < oo (depending also on B(t)) such
that (remember Re(BA™!) = (AA*)™1)

|q)6(il}',t)| = (—8 2<z a(t) Re t)_l)m_\/ug(t)>
| det(A(?))]
1 _ t n 1 lz—a(t)|
s @0(A(t),3(t),1,o,o, "”—jg”)\ < ropbo(z=2)
and
’ % ) 1-’B—a<t> - <w a(t) Re(B(t)A(t) )wf\/ag(t)>

for all ¢ € [0,T]. Thus

(1)) = =~ @k (A1), B(1), 170,0;"3—_0/(0)‘

NG
k
n - _1p(le=al
<eio (14 BB mpo(=x)
Ve
and
i (gl lz —a(t)\* ,;C<|m—a<t>\)2
Vo (x,t) — —n(t)d,(x,t)| < (5+ 2)0 14 = 0 2 7z 7
Vo0~ i) <= e (14 220
i.e. we get the first parts of (2.24) and (2.25). Noting that sup(1 + r)ke"2"" < oo (for

r>0
every k € N) gives the rest. O






Chapter 3

On the Detection Statistics of Many
Particle Quantum Scattering

In this chapter we use the asymptotically classical behavior of Bohmian trajectories in
scattering situations to derive from first principles the detection probability of particles
in a given solid angle.

The central quantity in a scattering experiment is the cross section, whose derivation
is based on the probability that particles are detected in a given solid angle. To calculate
this probability one usually relies on two things: First, one uses the asymptotic S-matrix
formalism. The working physicist’s justification for this is that “an experimentalist gen-
erally prepares a state ... att — —oo, and then measures what this state looks like at
t — +o0” (cf. [41], p. 113), pretending that the asymptotic expressions are “all there
is” — as if they weren’t the asymptotics of some other expression, however complicated,
describing the scattering process as it really is, namely happening at finite distances and
at finite times. Second, one ignores the presence of detectors, i.e. one neglects possible in-
fluences of the detection process on the statistics of the detection. In short, one calculates
the unmeasured statistics.

Clearly a justification of the S-matrix formalism must be based on a physically real-
istic, i.e. finite, setup that contains the S-matrix formalism as an appropriate limit case
and it must consider the possible influence of the detection process on the measured re-
sults. Concerning the former, there have been various attempts to base the S-matrix
formalism on realistic expressions. In section we briefly discuss two such approaches,
namely Dollard’s scattering into cones, and the flux across surfaces theorems, which have
received much attention in recent years. However, both these approaches do not come to
grips with the physically realistic situation which succinctly can be summarized by the
observation that the scattered particles arrive at the detectors at random times. Within
Bohmian mechanics this is easily described (although not easily computed!). In a first
step we calculate the exit statistics of Bohmian particles through surfaces which we may
think of as detector surfaces, but we ignore the detectors as parts of the physical system.
In a second step we address the exit statistics when the detectors are physically present.

35
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Our first object is therefore the joint first exit statistics, i.e. the probability
P (the first exit of the Ith particle is in RY;, [ =1,..., N), (3.1)

where ¥; C S? are subsets of the three-dimensional unit sphere and the RY; := {x € R? |
= Rw, w € %;} denote the corresponding pieces of the spherical surface with radius
R covering the solid angles >;. The relevant parameter is the distance R of the detectors

from the scattering center. More precisely let X ;/)(wo, tgf’R) € R? denot the position of

the [th particle at the first exit time tfff’R when it leaves the ball x; < R for the first time
(cf. (3.17)). We shall prove that

lim P¥ (Xf’(a:o, Diry e RSy VI € {1,...,N}> :/. /

R—o00
Cs, Csy

~ 2
Doua(k)| dhy -+ dhy (3.2)

where k = (ky,...,ky) € R¥* and Cy, := {k; € R? | ’,:—ll € Y} is the cone given by ¥
(see Figure . Furthermore ~ denotes the Fourier transform and 1), is the outgoing

asymptote corresponding to the scattering wave function ¢). Note that the right hand side
of (3.2)) is the formula resulting from the S-matrix formalism.

Cl?2,t)

Figure 3.1: Sketch of the scattering situation for N = 2.

We remark that our theorem is formulated in terms of the realistic spatial limit rather
than a temporal one, as it is often done in scattering theory (see also [33] for a note on
this).

The idea for proving (3.2)) is rather simple and, from a Bohmian point of view, the
most immediate one: One expects that for large times, i.e. far away from the scattering
center, the particles’ trajectories become classical straight lines. In fact we shall show

that for large times the velocity Xw(zco, t) = (X;p(wo, t),... ,lez\),(wo, t)) converges to the

asymptotic velocity
X" (2, 1)

vY = lim =

Tn this chapter we switch back to the default notation of section
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which is lzzoutP—distributed ie. for A e RN

PY (v € A) = / |thout (k) |2 N E. (3.3)
A

Moreover, we shall show that the difference between actual and asymptotic velocity is so
well behaved, that the exit statistics for large R is given by the asymptotic velocity. With
the distribution (3.3)) this then leads to (3.2)).

The asymptotic form of the velocity field is no surprise since (as is well known)

lim He_thzZJ — (it)_%eié{/z\om <E> H =0
100 t
and thus at least in the L?-sense 9)(+, t) is close to the local plane wave (it)_%e’%f Dout (2).
For large times the latter yields a velocity field of straight paths. Now one can expect that
under certain conditions this closeness in L? results also in a closeness of the corresponding
velocity fields.

In a second step we analyze the exit statistics (the detection statistics),
P¥ (the Ith particle hits a detector surface RY;, [ =1,...,N) , (3.4)

when the detectors are physically present. The effect of detection is of course backscatter-
ing through the interaction with the detector and the collapse of the wave function. We
do not elaborate on the backscattering, which is already present in one particle scattering,
and which will be argued to be small. On the other hand the effect of collapse cannot be
argued away, collapse will happen, and when the particles’ wave function is entangled, as
it is generically the case, one must show that the collapse does not affect the exit statis-
tics we discussed above. The problem is the following: As was stressed before, particles
arrive at the detectors at random times. When the first particle is detected the other
particles are still on their way. But the detection of the first particle collapses the wave
function. Why doesn’t that affect the motion of the as yet undetected particles? In view
of Bell’s nonlocality this question possesses no trivial answer. The answer lies within the

22~

“quasi”-product structure of the local plane waves (it)_%elzft Yout (%) that the scattered
wave functions tend to in the scattering regime. In these local plane waves all particles
move on straight lines and remain to do so even after the collapse. Indeed we shall proveﬂ

that, analogous to (3.2),
lim PY (X[ (zo, ] (x0)) € R VI €{1,2,...,N})

R—o0
Cs, Csy

where the position X [*(a,tf(x)) of the [th particle at the first exit time ¢(xy) when
it leaves the ball z; < R (i.e. hits one of the detector surfaces that among them cover

~ 2
'l/Jout(k)‘ dsk’l cee dSkN , (35)

2We again use natural units 7 = m; = 1 where p = k = v.
3For ease of notation we in fact prove (3.5 only for N = 2. The generalization to N > 3 is, however
straightforward, cf. footnote @
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RS?) for the first time is now calculated using the collapsed wave function (see subsection
3.4.2)).

This remainder of this chapter is organized as follows. We briefly discuss Dollard’s
scattering into cones and the flux-across-surfaces theorems as attempts to justify the S-
matrix formalism (section [3.1)). We describe the mathematical framework, that is the
setup of many particle potential scattering (section . In section we state our
result on the asymptotically classical behavior of the unmeasured Bohmian trajectories
of N scattered particles (Theorem [2)). Section contains our main results: We state
and prove the unmeasured instance of the first exit statistics theorem (Theorem , give
the asymptotically classical behavior of the measured Bohmian trajectories of N scattered
particles (Theorem [4]) and state and prove the measured instance of the first exit statistics
theorem (Theorem [5]). We give a short outlook (section on the extension to the case of
interacting particles. Finally, we prove our results on the asymptotically classical behavior
of Bohmian trajectories, i.e. Theorems [2] and [4] (section [3.6)).

3.1 Previous works on the foundations of scattering
formalism

First works on a deeper justification of the asymptotic S-matrix formalism go back to
Dollard [15,[16]. With his scattering-into-cones theorem he gave a first connection between
position and momentum space:

lim [ d®z... / Pay |Y(x, b)) = /d3k1... / Phy

t—o00
Cs Cx

2

2z}\out (k)

Y

1 Csy Csy N

i.e. the probability of finding the scattered particles at large times in the cones Cy,, ...,
Cy, is given by the probability that the momenta of the outgoing asymptotes lay in the
cones Oy, ..., Cy,, respectively. However, the connection to resp. the left hand side
of is still missing. Crucial in this context is that the time of detection is random and
not given by the experimenter. Only R is given. Thus one has to consider a spatial rather
than a temporal limit. While the latter may be technical convenient, it is not mirroring
the actual physical situation.

For the case of one particle, the next step was taken by Combes, Newton, Shtokhamer
[10] who proposed the so called flux-across-surfaces theorem (FAST). It states that

Jim //jw(m,t)-dadtzppm //W(w,t)-daut:/

0 RY 0 RY Cyx,

—~ 2
Dous ()| &'k,

where the quantum mechanical probability current density (short the flux) j¥ is given by

jw(w7t) = Im (W(w,t)vw(w’t)) .

Hence, asymptotically the flux points outwards and the integrated flux gives rise to the
asymptotic S-matrix formalism. It is hard to resist to identify the first exit probability,
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i.e. the left hand side of (3.2) (with N = 1), with the integrated flux, i.e. with

7/j¢(w,t) - dodt .

0 RY

For general R, however, this is not true. In general the integrated flux is not positive
and therefore not a probability (in fact not even the integrated absolute value of the flux
is a probability). Only asymptotically (for large R) does the integrated flux turn into a
probability. But the probability of what? If the meaning of the integrated flux is, at least
in the usual quantum formalism, not clear for finite R, how can one possibly divine its
meaning for R — oco?

This loophole is closed in Bohmian mechanics, where the integrated flux has got also a
non-asymptotic meaning. For that one introduces the number of crossings of a trajectory
through an oriented surface. If one denotes by N;fg(RZ AT) the signed crossings through
RY. during the time interval AT, i.e. the difference between outward crossings and inward

crossings, one can show that (cf. also subsection [2.4.1))

EY(NY (RS, AT)) / / (x,t) - dodt, (3.6)

sg
AT RY

where do = Zdo is the infinitesimal surface element. Similarly one has thatﬁ

EY(NY, (RS, AT)) //L] (z,t) - do|dt, (3.7)
AT RY

where Ngﬁt denotes the total crossings through R, i.e. the sum of outward crossings and
inward crossings. Hence, with the FAST
Jim E¥(NY, (RS, [0,00))) = lim EY(N3(RS,[0.00).

This means that the scattered particle crosses distant surfaces only outwards and thus
at most once. Then one can easily show that holds (see [17], Section 3, and [13,
1), 12, 22] for more details). It is this non-asymptotic meaning of the flux in Bohmian
mechanics together with the FAST, which in the one-particle case leads to a satisfying
exit statistics theorem. First proofs of the FAST can be found in [I3] [I1), 12]. More results
are in [38, B7]. The most recent result on the FAST including a review of the existing
results can be found in [18].

The corresponding problem for the N-particle case, however, is different: It was shown
in [21] that there the quantum flux looses its significance. That is so because each particle
has got its own exit time and thus a multi-time setup is needed. In such a setup, however,
it is no longer possible to establish an N-particle statement corresponding to or
(3.7), which is basic for the exit statistics theorem if one wants to use the flux. This
is why one has to take an alternative approach like the direct use of the asymptotically
classical behavior of the Bohmian trajectories presented above.

4The proof can be found in [5], pp. 34-37, see also [17], Section 3, for a heuristic approach.
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3.2 N-particle potential scattering

We consider a system of N non-interacting particles with configuration space R3" and

Hamiltonian
N

H=Hy+V(z), V(z)=>) V(=) (3.8)

=1

where each V] is a short-range scattering potential V; € (V),, (n € N):
Definition 4. Forn e N V € (V), if

(1) V e L*(R3 R),

(i) V is C* except, perhaps, at finitely many singularities,

(iii) there exist 6 > 0, C' >0, Ry > 0 such that

V()| < Cla)™"° for x> Ry,

[NIES

where () := (1 + (-)%)2.

Then the potential V' (x) is Hyp-bounded with arbitrarily small bound and H is self-adjoint
on D(H) = D(Hy) = W2(R®N) with W2(R3N) = {f € L2(R*) : [|k2f(k)|2d*Nk < oo}
the second Sobolev-space (Kato’s theorem, see, e.g., [32] Theorem X.16). Since there is
no interaction we may also write

H= ZHZ = Z ( - %Al + W(CL‘[)) = Z (H(),l + Vl(a:l)) .
=1 =1 =1

In the following, we abuse notation and do not distinguish between, say H; as a multi-
particle operator (defined on L?(R3Y)) and H; as a one-particle operator (defined on
L*(R?)). Now, for every [ € {1,..., N}, the wave operators Q4 ; : L?(R*) — Ran(Qy,)

Qy ;= s- lim elite—Hout

t—=o0

e

existE] and are asymptotically complete (see, e.g., [33]), i.e.
Ran(Qi,Z) = Hcont(Hl) = Ha.c.(Hl) )

where Heons (F;) resp. Hae.(H;) denotes the spectral subspace of L*(R?) that belongs to
the continuous resp.the absolutely continuous spectrum of the Hamiltonian H;. Thus
L*(R?) is the orthogonal sum of H, . (H;) and H, . (H;) (the subspace that belongs to the
pure point spectrum of H;), Ha..(H;) and H, . (H;) are invariant under the time evolution
Ui(t) = e7™i* and for every scattering wave function ¢ € H, . (H,;) there exists a unique
outgoing/incoming asymptote

¢out/in,l = Q;}ﬂﬁ (39)

5s-1im denotes the limit in L2-sense.
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that evolves according to the free time evolution e~*o.t

tlgl:noo He_iHO’ltl/}out/in,l - e_iHlt¢|| =0.

, i.e. for which

Since H contains no interaction potentials the time evolution U(t) = e~*# on L*(R3")
trivially factorizes,

u)=TJu) =]e ™",
=1

=1
and there is a natural splitting of L?(R3Y),

L(R™N) = Q) L*(R?) = (X) (Ha.c.<Hl) ® Hp.p‘<Hz>) = H(H) @ Hresi(H),

=1
where

N

HS(H) = ® Ha.c.(HZ)

=1

and & is defined by the canonical isomorphism between L?(R3Y) and ®f\i1 L*(R?). Then
Hs(H) and H,e(H) are invariant under the time evolution U(t) = e "t and H,(H)
contains the "pure* scattering wave functions, i.e.those wave functions for which all N
particles are free asymptotically (for ¢ — 4-00) while H,es(H) contains those wave func-
tions where either all or at least some particles stay bound. For simplicity we restrict
ourselves to the case where the initial wave function is a pure scattering wave function,

Y € Hs(H). Then the relevant wave operators are QiN) = sl.t—ilm eflte=itht - Tndeed,

observe that v
Q;N) = H Qs
=1

which implies that Ran(Q(iN) ) = Hs(H) and that for every pure scattering wave function
1 € Hs(H) there exists a unique outgoing/incoming asymptote

Yout/in = (Qﬁ“)_l % (3.10)

that evolves according to the free time evolution e~*70?,

3.3 Asymptotic behavior of Bohmian trajectories in

scattering situations

We first present the result on the asymptotically classical behavior of the Bohmian trajec-
tories we wish to employ in the proof of the exits statistics theorem . It is an extension
of that for one particle in [34]. In Definition |5 we define the set GWV) of “good” initial
wave functions, for which we can proof our results. This set is optimized for generality
and occurred in a similar form already in [18, 34] (for N =1).
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Definition 5. A function f: R — C is in G, if

f € H(H)NC>™(H),
P e L2RY),  Be{N+1LN+2...2N}, ne{0,1,2,...,4N — 3},
Narfe LARY), ne{2N,2N +1,...,3N}.

(x)

(x)

Then G = | e=H#tG™N) | Here C*(H) = () D(H™).

teR n=1

For ¢ € G™) we get the desired asymptotically classical behavior of the Bohmian trajec-
tories.

Theorem 2. Let Vi, € (V)4 and let zero be neither a resonance nor an eigenvalue of H,

(1=1,...,N). Let » € G™) with ||| = 1. Then:

(i) The Bohmian trajectories XV (xo,t) exist uniquely and globally in time for PY-almost
all initial configurations xy € R3V.

(ii) ForP¥-almost all Bohmian trajectories the asymptotic velocity tlim ¥ (Xw(wo, t), t)

XY (m(),t)

; More precisely, v¥, exists for P¥-almost all

is given by v¥ (xy) = tlim

o € RN and for all € > 0 there exist some T < oo and some C < oo such that

PY ({a; e RN | 0¥ (X (@, 1),t) — vl (o)| < Ct2 Vi > T}) >1—c. (3.11)

(iii) v% is randomly distributed with density |@/b\out(-)|2, i.e. for every measurable set
ACR¥YW

PY ({xo € R* | vl () € A}) = / |ous(B)|> d*NE . (3.12)
A

The proof of Theorem [2| can be found in subsection [3.6.1

Remark 6. Zero is a resonance of H if there exists a solution f of Hf = 0 such that
(V77 f € L*(R3) for any v > % but not for v = 0E| The occurrence of a zero eigenvalue or
resonance is an exceptional event: For Hamiltonians H (¢) = Hy+cV the set of parameters
¢ € R, for which zero is an eigenvalue or a resonance, is discrete (see e.g. [2], p. 20 and
[28], p. 589).

It is well known that, in L2-sense, the large time asymptote of a scattering wave function
22~

P(x,t) is given by ®(x,t) := (it)’%ezﬁwout (%) Moreover, one easily sees that the

Bohmian velocity field of ®(x,t) is essentially that of straight paths (cf. [34]):

'U(b(,’_c,t) — Imw — E + EImM tgg E .
q)(m’t) t t Q/Jout(y) y=2 t

t

6There are various definitions, see e.g. [42], p. 552, [2], p.20 and [28], p. 584.
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Thus the main technical difficulty in proving Theorem [2]is to show that the velocity field
of ¥(x,t) is approximated sufficiently well by that of its asymptote ®(x,t), i.e. that
YP(x,t) and ®(x,t) are close not only in the L?-sense but also in the stronger sense of
velocity fields. For that one needs detailed pointwise estimates on v (x,t) and its gradient.
They are collected in the following

Lemma 5. Let V; € (V)4 and zero be neither a resonance nor an eigenvalue of H,
(1=1,...,N). Let v € G™N). Then for all 0 < a < b < oo there exist constants T < 0o
and C < oo such that for allt >T and a <3 <b, 1=1,...,N

(e, t) — (x, )] <

(3.13)

and

3N+1

\w (@,1) — @%Cb(m t)’ <ct (3.14)

The proof of Lemma [5] can be found in subsection [3.6.3] The idea is to use the method
of expansion in generalized eigenfunctions, i.e. in functions gosr ) that are solutions of the
stationary Schrodinger equation

k2
H<P+ (93 k)= ESOJr (93 k)

with the boundary condition lim |g05rN) (x, k) — e“”‘ = 0. The generalized eigenfunctions

goSrN) diagonalize H on H,(H) as the plane waves e*® diagonalize Hy. Thus one can
define a generalized Fourier transform Connecting the outgoing asymptote 1, and the
pure scattering wave function 1 € Hg( Vlam

vl@) = 20) ¥ Lim. [ o @, kDo (R
and

Do) = 27 Lim. / (™) (@ ky(a)d™. (3.15)

Moreover,
(e, t) = (27)" 2 Lim. / e 5 oM (@, k) thous (k) d*Nk: (3.16)
We elaborate on that and the properties of the generalized eigenfunctions goiN) in sub-

section With the help of stationary phase methods will give us the desired

pointwise estimates on (V) (x,t) whenever wout and the generahzed eigenfunctions go( )

are sufficiently regular (subsection [3.6.3)).

"Lim. J is a shorthand notation for s~ lim fBR’ where s-lim denotes the limit in the L2-norm and
— 00

Bpg is a ball with radius R around the origin.
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Note, however, that it is important to impose any emerging technical conditions on the
scattering wave function ¢ rather than its asymptote 1oy, since it is the former not the
latter that is prepared in an experiment. Thus, we shall use to infer how smoothness
properties of 1) map to the desired smoothness properties of 1, (subsection , Lemma
10). Of course, also this mapping crucially depends on the regularity properties of the
generalized eigenfunctions. This regularity, however, is very poor in general. Thus one can
use only weak requirements on .., which in turn makes the application of stationary
phase methods to quite a tricky business. Nevertheless, for N = 1 the above
program was successfully carried out in [I8]. For general N and interacting particles,
however, not enough is known about the generalized eigenfunctions (cf. section . This
is why we restrict ourselves to non-interacting particles and pure scattering wave functions
1 € Hs(H). In this case we can show that 1) can be expanded in N-particle eigenfunctions

<pSrN) which are products of the one-particle generalized eigenfunctions ¢, ; (cf. equation

(3.52))) which gives us all the leverage on the gpSrN)s we need

3.4 Exit statistics

3.4.1 The first exit statistics theorem

The first task is to find a formalized expression for the (unmeasured) joint first exit
probability . To explain what is meant by “the first exit of the [th particle is in R>;”
we define the first exit time 2 (xy) at which the trajectory {X"¥(xo,t), t > 0} leaves an
open subset A C R3" for the first time:

to(xo) :=1inf {t > 0| X¥(xo,s) € AVs € [0,t) and X¥(xo,t) & A} , (3.17)

where we set t2 () = 0 if the above set is empty. 2 is a random variable on the space
R3Y of initial configurations (cf. [6], Lemma 4.2). Clearly, B,z := {x € R*" | z; < R} is
open and {X¥(xo,t), t > 0} leaves By p exactly when the Ith particle’s trajectory leaves
the open ball B = {x € R® | # < R}. Moreover, continuity of X% (x,t) in ¢ (as a
solution of (L.2)) implies X;b(mo,tgi‘R(mo)) € dBr = RS? so “the first exit of the Ith
particle is in RY;” if and only if X} (ao, t5" (g)) € RY. Hence

P (the first exit of the Ith particle is in RY;, [ =1,...,N)
—P¥ (X}Z’(mo,tgfﬂ(wo)) cRY, Vie{l,.. .,N}) .

We remark that “problematical crossings” (tangential crossings where the velocity

X zp(wo, t) is orthogonal to the orientation of RY;) have measure zero and need not concern
us, see [6], pp. 28-34.

With the above we can formulate the first exit statistics theorem.

8In fact we don’t even need to explicitly apply stationary phase methods to ([3.16) but can directly
fall back on results for the one particle case, see subsection @
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Theorem 3. Let V; € (V)4 and let zero be neither a resonance nor an eigenvalue of H,
(1=1,...,N). Let » € G with ||1|| = 1. Then:

: B
I%EI;OIP“”({QZO e RN | XV (xg, ter™(x)) € RS, 1=1,2,... ,N})
~ 2
_ /d3k1 .../d3k:N ‘@bout(k)‘ . B2

Cyxy, Cyx,

1 N

Proof of Theorem [3] Because of Theorem [2] (iii) we are done if we can show that

lim PY (Xf(-,tf;ﬂ) ERY,, 1=1,2,... ,N) =P (vl €Cy, x ... xCx,), (3.18)

R—o00

i.e. that each particle’s trajectory X}p leaves the ball By for the first time through R
if and only if the asymptotic velocity 'qul is in Cy,. For that it suffices that the actual

trajectory XV differs not too much from the “ideal” trajectory v¥ t. But this is a simple
consequence of Theorem Let ¢ > 0. Integrating (3.11)) we get that there is some
C. < oo and some T, < oo such that

pY ({zco e RN | |X¥ (20, t) — XV (20, T) — v¥.(2)(t — T)| < ONE, Vit > T}) >1- %

for all T > T.. Since Theorem 2] (i), i.e. global existence of Bohmian mechanics, guarantees
that P¥-almost no trajectory reaches spatial infinity in finite time we also know that

Pw({mo eRN | sup | X(xo,t)| < CTE}) ~1-

0<t<T. 3

for some Cr. < co. Moreover, by Theorem (iii) and since oy € L2(R3Y)

€

PY (vl <b.) = / o (k)2 Nk > 1 — 3

k<be

for b. > 0 big enough. So, noting that

‘Xw(mo,t) - ’Ufo(wo)t‘ < sup | XY(o,1)| + v (o) Tt < Cr. + b1,
0<t<T.

for 0 <t < T,
(Xw(mo,t) - vffo(:vo)t‘

< | X (o, 1) = X (w0, T2) — v (20) (t — T0)| + | X ¥ (o, Tn)| + v (w0) T
< CANt+Cr. + b1

for t > T. and PY(ANBNC) > PY(A) + PY(B) + PY(B) — 2 for all measurable sets
A, B,C C R*N we finally see that
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pY ({azo € RN | X (o, 1) — vl (wo)t| < Co(1+ V), Wt > o}) S1-¢  (3.19)

for some C, < oc.

Now the idea of the proof is straightforward: If 0 # v% lies in Cs, X ... X Cx,, the
“ideal” trajectory 'UZ’O ,t of the [th particle crosses the surface RY); at time v%. Thus the

oo,

“ideal” time of crossing grows linear with the distance R. As does the distance between
the point where 'Ui)o,zt crosses RY); and the boundary of RY};. However, since the difference
between the actual and the “ideal” trajectory grows only sublinear in time, it also grows
sublinear with R, if evaluated at the “ideal” time of crossing. So if R is big enough, the
distance between the point of crossing of the “ideal” trajectory and the boundary of RY,
is larger than the distance between X Zp and 'Ufo,zt at the “ideal” time of crossing. Since

the trajectory is continuous in ¢ this implies that X 7’ crosses RS? first in RY);, if and only

if ”fo,z lies in Cf, (see Figure . To render this idea more precise, we introduce two
sets M¢ and M(.:

Me = {2y € RN | 0 #£ ¥ (20) € Cx, x Cx, % ... x O } N Go
MY, = {mo € R™ | 0 # v (o) € (C, x C, x ... x Cx,) } NGe

where

Go = {azo € RN | X¥ (o, 1) — vl (o)t| < C(1+ V), ¥t > o}

and Oy, X ... x Oy, = 621 X ... X UEN denotes the closure of Cy, x ... x Cy,. We shall
show that

(i) forall C >0
o€ Me = 3R >0: XV (wy,to"(w)) € RS, VR>R, 1e{l,... N},
woe M, = 3R">0,1e{l,....N}: X' (2o, t5"(x0)) ¢ RS, VYR > R",

(ii) for all € > 0 there exists a C. < oo such that
PY (Mc.) > PY (v, € Cy, x ... x Oy ) — €,
PY(M{ ) >1—P% (v, € Cs, x ... x Cs,) —€.

Then, for all € > 0,
(@)
lim P¥ (X;"(mo,tf;ﬂ(mo)) €RY,1=1,2,... ,N) > PY(Mg,)
(i)
> PY (v, €Cs, x...xCxy) —¢
and

lim PY (Xf(wo,tg’R(azo)) eRNVIe{l,... ,N})

R—o0

—1- lim w(az e{1,...,N}: XV(o, t2" () ¢ Rzl)
(1) (i0)
Sl—]Pﬂp(M/CE)<P¢(U&ECZIX...XCZN)+E,
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which together gives (3.18)).

47

Now to the proof of (i) and (ii). (ii) is a direct consequence of (3.19)) and the fact that
by Theorem [2[ (iii) the image measure wa (A) == P¥(v¥% € A) is absolutely continuous

with respect to Lebesgue measure:

PY (Mc,) >PY(0#£ v, €Cs, x...xCsy) —e=P" (v, € Cx, x...xCxy) —¢

and

Pw<M/C€) >P¢(()7évg’o € (CEl X ... XCZN)C) —g:]Pﬂ/’(vgo c (021 < XCEN)C) -
:1—]1)1!)(’010/)06021 X---XCgN)—g

for some C, < oo.

Thus we are left with (i). We just prove the first implication. Since
(Coy x Cg, x ... x CO5y)° = (Cong, X Cs2 X ... x Cg2) U.. .U (Cg2 X ... X Cs2 x Cga5, )
and R(S?\ %)) C R(S%\ %)) = (RX))° the second implication is in fact a consequence of

the first.

Figure 3.2: Real and “ideal” trajectory.

Let ¢y € My and C > 0. We show that for
every [ € {1,..., N} there is an R} < oo such
that X}’b(wg,tgfﬁ(zco)) € Ry, for all R > R).
Then (iii) holds with R’ = max{R},..., Ry }.
Since 0 # ,U:fo,l € Cy, and Cy, is open, there
exists a cone (s around the axis 'U:fo,z with
apex in the origin and apex angle 0 < 6 < 7
such that C;5; C Cy,. By the definition of
M the trajectory X;p(wo, t) stays in the ball
around 'Ug’o’lt with radius C(1 + v/¢). This
ball fits entirely into the cone Cjs whenever
vffoyl(a:)tsiné > CO(1 + +/t). Obviously the
latter holds for all ¢ big enough, ¢t > t, for
appropriate 0 < t; < co. Soif R} = vffo’l(a:o)ts
+C(1 + /ts), the (continuous!) trajectory
X}b(wo,t) — just like the “ideal” trajectory
Ui}o,zt — leaves the ball Bg for the first time
through the surface RY; for all R > R;. More-
over, this clearly happens at a finite time.
Hence, X}p(mo,tgﬁﬂ(wo)) € RY, for all R >
R, and we are done.

O
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3.4.2 Extension to measured statistics

All of the above concerns unmeasured statistics: We did not take into account the effects
a detector in a real life experiment might have on the scattered particles (resp. their wave
function). In N-particle scattering the presence of detectors could affect the exit statistics
in two ways, the first pertaining also to one-particle scattering (N = 1), the second unique
to “real” multi-particle scattering (N > 2).

First, in order to detect anything at all every detector must interact with the scattered
particles, i.e. due to their interaction potential the presence of detectors might change the
time evolution of the scattered particles’ wave function and thus the particles’ trajectories
even before any particle hits a detector ("backscattering®). Second, once one of the scat-
tered particles hits a detector the particles’ wave function will collapse, which (since the
wave function typically is entangled) might result in a change in the remaining particles’
motion.

Regarding the first point one has to argue why the interaction between the detector
and the particle is sufficiently small. In a scattering experiment one is interested in a
good angle resolution, which is proportional to %, where Az is the spatial resolution
of the detector and R its distance from the scattering center. Hence, in the scattering
regime, where R tends to infinity, one can achieve microscopic angle resolution with
macroscopic spatial resolution. Macroscopic spatial resolution, however, corresponds to
weak interaction between detector and particle. Here we do not elaborate on this point
but just assume that the detectors are such that we can safely neglect any effects of

backscattering.

Regarding the second point the idea is to prove that the collapse of the scattered
particles” wave function due to the detection of one particle far away from the scattering
center does not noticeably alter the velocity field of the remaining particles. But then
also the remaining particles’ trajectories stay unchanged, i.e.if one of the remaining par-
ticles hits a detector it does so at the same place and time as it would have if the first
particle hadn’t been detected. And — as before — this second detection does not alter the
trajectories of the still remaining N — 2 particles. So in the end we may conclude that
the measured exit statistics is the same as the unmeasured one.

Elaborating on this idea we proceed as follows. For ease of notation we restrict our-
selves to the case of two particleﬂ. We model the collapse of the particles’s wave function
due to the detection of one particle, which leads to the definition of the particles’ mea-
sured Bohmian trajectories (Definition @ We prove that, whenever the detectors are
far away from the scattering center, for large times the velocity along a typical measured
(configuration-space) trajectory is close to the asymptotic velocity v of the correspond-
ing unmeasured trajectory (Theorem . Here corresponding means that the measured
and the unmeasured trajectory start with the same configuration xy. Finally, we show
that the closeness expressed in Theorem [ suffices to guarantee agreement of the measured
with the unmeasured exit statistics (Theorem [5)).

9If the collapse due to one particle’s detection does not alter the exit statistics there is no reason why
the collapse due to a second particle’s detection should. Indeed, the extension of our proof to N > 3 is
mostly evident. Where not we have commented on it.
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In the following let N = 2. Since we neglect backscattering, before any of the two
particles hits a detector surface the particles measured dynamics is the same as the un-
measured one, i.e. at first ip™ewed (g ¢) = oh(x, ) and X (g, 1) = XY (xo,t). By
T®(xy) denote the time at which the first particle arrives at one of the detector surfaces
(which together cover all of RS?). Say it is the x;-particle that reaches RS? first. Let
us assume that at T#(xg) the detectors perform an ideal sharp position measurement on
the x;-particle. Since its position at that time is XV (ax, T%(2)), the outcome of this
measurement will be, of course, X ¥ (g, T(,)). Then the standard calculus of quan-
tum mechanics gives us the following expression for the collapsed wave function of the

xo-particld}

(8 (le(woaTR(on))a 3327TR(930)>
) =
v (X @0, 77 (@0). - T (a0) )

wmeasured (iBQ ’ TR (m()

L2(R3,)
vesp. (> T"(o))

o~ iHa(t=T" (o) (Xi"(a:o, TH(x0)), 22, TR(:L‘O)>

v (Xt (@0, T(@0)), - T (a0) )

¢measured (

mg,t) =

2 3
L2(R3,)

Here L?(R2)) is a shorthand notation for L?(R?, d®z5). Thus the @,-particle’s Bohmian
trajectory after the collapse due to the x;-particle’s detection is given by the velocity field

Ve 1T () ( XY (o, T"(x0)), @, TR(:BO)>

v,d)measured (m27 t) — Im
e—in(t—TR(mO))”(/} (X;p(wo, TR(£O))7 2, TR(w0>>

Regarding the x-particle’s Bohmian trajectory, since we do not want one and the same
particle to be detected more than once, we assume that the detectors are such that no
detected particle may leave them (think e.g. of a photographic plate or a photomultiplier).
Then we can safely neglect the x;-particle’s evolution after T%(xy). Indeed, we shall
simply truncate it at TR(xg), X (g 1) := XY (2o, TR(w)) for all t > TE(a).

Keeping in mind that it might as well have been the xo-particle that was detected
first, with the above considerations we arrive at the following definition for the measured
Bohmian trajectories:

10 As mentioned in section in Bohmian mechanics the collapse of the wave function in measurement-
like situations is an emerging feature of the theory that holds in an effective sense. See [20] for an extensive
treatment of the emergence out of Bohmian mechanics of the measurement formalism (including operators
as observables) of orthodox quantum mechanics.
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Definition 6. Let Vi, Vi € (V)4 and let zero be neither a resonance nor an eigenvalue of
Hy, Hy. Let ¢ € G@ with |[v|| = 1.
For every R > 0 and every initial configuration x, define the time of first measurement

TH(zo) := min{t515 (xg), t525 (x)} (3.20)

? Yex

where tgf’R(a:O) 15 the exit time defined at the beginning of subsection . Further define
the measured (time evolution of the) wave function]| ¢

((a, 1) = (e i) (x) if t < TH(x)
R (o) i W (XY (0, TR(m0)), @23 T(ao), t)  if t > TR(ao), tea " (wo) < tes™ (o)
o0 o ¥z, X (azo, TR(x));t, TR (xo) ) if t > TE(x), t?fR(azo)<t§;R(wo)
¥ (XY (o, TR (o)), TH(0)) if t > TR(xo), ter ™ (20) = te " (o)

where XY is the standard Bohmian (configuration-space- Jtrajectory of the preceding sec-
tions and

(@, o3 b, o) = (e7M1e Ry (@1, @) .

Finally, the measured Bohmian (configuration-space-)trajectory is defined as the solution

of

%XR(ZBO, t) = v¥% (X (o, 1), 1), Xy, 0) = x (3.21)

where the measured Bohmian velocity field is given by

v%% (x, 1) = Im (%) .

In particular, forl € {1,2} such that tZﬁ’R(mo) = TR(xy) we have
v} (X (0, 1), ) = 0
for all t > TR (xy), i.e.
X' (2o, t) = X' (20, T" (o))
for all t > TE(xy).

We now formulate our results on the asymptotically classical behavior of the measured
Bohmian trajectories.

1Since the Bohmian velocity field is projective, we neglect any normalization constants. Further, for
ease of notation we write 2 (x,t) even when % depends only on 1 or x.
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Theorem 4. Let Vi, Vo € (V)4 and let zero be neither a resonance nor an eigenvalue of
Hy, Hy. Let v € G® with ||| = 1. Then:

(i) For all R > 0 the measured trajectories X (xo,t) exist uniquely and globally in time
for PY-almost all initial configurations z, € RS.

(ii) Let v¥ (xo) the asymptotic velocity defined in Theorem[d For R > 0, T > 0 and
C > 0 define xy to be in Vrrc whenever

TR(mﬂ) > Ta
3.22
%% (X B (xq,t),1) — Uffo(wo)‘ < % (3.22)
for all T <t < TR (xy) and
wmo R ’L/) C
X t),t) — vl < — 3.23
(X" @0:0) ) = 02y ()| £ s (3.23)

for allt > TR(xg) and | € {1,2} such that TR (xy) < tfgﬁ’R(azo). Then for all e > 0
there exist T < oo, C' < o0 and some Ry < oo such that

]P)w(VRTc) >1—¢

for all R > Ry.

The proof of Theorem [4] can be found in subsection [(3.6.1] Note that we choose to
compare the measured velocity V¥ directly to the unmeasured asymptotic velocity v%..
Theorem I (ii) should be understood as follows: If R is big enough most velocities are
already close to the unmeasured asymptotic ones even before the first particle hits a
detector. Moreover, the rate of convergence is (of course) the same as in the unmeasured
case (equation ([3.22)). After the first particle’s detection the remaining particle’s velocity
still converges to an asymptotic one, but to one that might be slightly different, namely

R
oft = tlim XTZ While the convergence rate of the remaining particle’s velocity to this
K —00
measured asymptotic velocity 'vf? is still of order \[, the difference between 'Uz and the
1

TR(:I:())
As in the unmeasured case, if we wish to control the Bohmian velocity field, we

need pointwise estimates on the (gradient of the) relevant wave function 1/)R that is on
(V) (x;t1,t2) (cf. Definition [f]). They are collected in

unmeasured asymptotic velocity v%, is of order which gives equation ((3.23]).
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Lemma 6. Let Vi, Vo € (V)4 and let zero be neither a resonance nor an eigenvalue of
Hy, Hy. Let v € G®. Then for all 0 < a < b < oo there exist constants T < oo and
C < oo such that for all ti,to > T and a < f—ll,f—j <b

=

(s b1, t2) — D@3 ty, )| < C (k)" (min{ty, t2})~

s (3.24)
(x5 b1, ts) — Pipl@sty, ta)] < C () *(tn) 2
and
L _ _3
|V1/2@/)(:1:;t1,t2)—zt1/2¢1/2(m;t1,t2)| < O (ty) ()7 (3.25)
12
Here
.(gg 3
sl &+ ) ~ r T
D(as b, 1) = (ity)(ita) 5 N0 w( L )
t1 1o
and

i:c2
@2(.’12151,252) = (th)*% eﬁ (f:lr’Qw) (wl, %, tl, 0) .
2

The proof of Lemma [6] can be found in subsection Note that the collapse
preserves the wave function’s asymptotic local plane wave structure in the degrees of
freedom belonging to the not yet detected particle: Suppose the xi-particle is detected
first. Then for large ¢ the collapsed wave function

2 (x.t) = ¢(X11p(5130, T"(x0)), @2; T" (o), t)
is approximately given by the local plane wave
Oy (XY (0, T (20)),2; T™(20), )
3 i T
= (it) 2 ew (Fi2v) (Xib(wo,TR(l‘o)); 72; T" (), 0)

with an error of order T ()~ 2t2 (second line of (3.24) and (3-25)). Since at first glance

the appearance of TR(:L'O)’%IS_Q in the latter might seem a little bit surprising, we remark
that the leading order term of

T
(Foz) (X (o, T"(x0)), = T*(a0), 0)
will be given by

‘ inlp(:cO,TR(wo))Q R X w(a} TR(:B )) T
TR 3¢ R@g ou 120 S
(T @o)) ™2 e 20 o (= = F):

so the former is of order T%(2) ™2 and thus o (XY (@o, T*(2)), 223 T (20), 1) is of order
TH(x) 2t 2.
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Having established the asymptotically classical behavior of the measured Bohmian
trajectories we may now turn to the measured exit statistics (i.e. the exit statistics in the
presence of collapse). As in the unmeasured case we first give a formalized expression
for the (joint) detection probability : We say that “the [th particle hits a detector
surface RY,” if and only if X7 (xo, tf(z0)) € RY;, where /() denotes the time at which
the Ith particle first leaves the open ball B C R® (i.e. at which {X®(x,t), t > 0} first

leaves B g, cf. subsection [3.4.1)):
t{{(wo) :=inf {t > 0| X" (o, s) € By Vs € [0,t) and X" (xo,t) & Bir} ,

where we set t/{(xy) = 0 if the above set is empty. Note that for the particle that is
detected first this should and indeed does coincide with the unmeasured first exit time
defined at the beginning of subsection and thus with the time of first measurement,
th(x0) = ter " (a0) = TR ().

Now we can formulate the measured first exit statistics theorem.

Theorem 5. Let Vi, Vi € (V)4 and let zero be neither a resonance nor an eigenvalue of
Hy, Hy. Let v € G® with ||v|| = 1. Then:

lim W({azo e RS | X/ (xo, 1Y (x0)) € RY; VI € {1,2, }})

R—o0
- /dgkl /d3k2
021 ng

Proof of Theorem|[5] The proof is analogous to that of Theorem 3} Because of Theorem
(ili) we are done if we can show that

{b\out(k) i . (326)

]%ij%oW({xo € R® | X (zo, th(zo)) € R, Vi€ {1,2, }})

(3.27)
=4 (’Ufo,z €Cyx, Vi€ {1,2}) :

Using Theorem {4 we see that, analogous to (3.19)), for every € > 0 there is some C' < oo
such that

00,1

i R(gx,),
P‘”(IXﬁ(wo,t)—w (mo)t]<{c<1+\/¥) £0<t<TR(z)

. 1=1,2
CL+ may) T (@) <t < t(xo) ) (3.28)

>1—c¢.
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Then (3.27)) follows from ({3.28]) just as (3.18)) followed from (3.19):

v 5(@o)t X35 (w0, 15 (20))

Figure 3.3: Real and “ideal” trajectories of two

measured particles.

3.5 Outlook

Suppose that the x;-particle is detected
first (TR(zo) = tor™(xo) = tF(x)).
Before this first detection both parti-
cles’ real trajectories X' are contained
in moving balls BC(H-\/Z)(’Ufo,lt) around
the ”ideal“ trajectories vfo’lt with ra-
dius growing sub-linear in time. Since
the distance between the "ideal “ trajec-
tories ’UZfo’lt and the boundary of Cy,
grows linear in time, this means that
for times ¢ big enough, ¢ > t, for some
appropriate 0 < ty < oo, both balls
Begpyn(0hit) and  Bog s (vh ot)
will be contained entirely in the cones
Cy, and CY,, respectively. For R and
thus T (zx,) big enough we may choose
t, < TH(xg) and thus guarantee that
the aq-particle (i.e. the first particle to
be detected) reaches RS? while
contained in the cone Cy,, i.e. some-
where in RY;. Now, after the detection
of the xi-particle (i.e. for t > T%(xy))
the moving ball’s radius that contains
the ay-particle’s real trajectory X%
may grow linear in time. However, since
this ball already was contained in Cy,
at time T®(xy) (and the distance be-
tween the "ideal® trajectory 'vZfo’zt and
the boundary of Cy, of course still grows
linear in time) it will nevertheless stay
contained in Cy,. Thus also the -
particle will reach RS? somewhere in

R, (cf. Figure 3.3)). O

With Theorems [3| and [5| we have presented results on the exit statistics of N non-
interacting particles. For an extension to interacting particles one needs detailed estimates
on generalized eigenfunctions also for potentials with interaction terms. Remember that
the fundamental Theorems [2] and 4] about the asymptotic classicality of the Bohmian tra-
jectories rely heavily on the detailed estimates of Lemmas 5] and [6], respectively, which in
turn are based on the method of expansion in generalized eigenfunctions. However, while
there are results about generalized eigenfunctions in higher dimensions (see e.g. [1}, 35 140])
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they hold only for potentials with sufficiently rapid decay at infinity. And potentials with
interacting terms do not fall off at infinity in certain directions: A typical potential for
a pair of interacting particles is of the form V(x) = V(x; — x2) which does not fall off
at all on the “diagonal” ®; ~ @x,. However, at least for repulsive potentials one should
be able to show that the absent fall off on the diagonal is negligible in some appropriate
sense. After all, when the particles repulse each other, their wave function will typically
be concentrated away from the diagonal. Thus one could probably approximate the actual
potential by truncated potentials that decay also on the diagonal, i.e. for which the ex-
isting results about generalized eigenfunctions become applicable. But beware: The exit
statistics is a statement about trajectories, not a L? statement for which one could apply
“dense-in-L*” arguments. So one would have to be very careful about the appropriate
sense of convergence in which the truncated potentials approximate the actual one.

3.6 Asymptotic behavior of Bohmian trajectories:

Proofs

The goal of this section is the proof of Theorems [2] and [4] In subsection we present
the main body of the proof using the pointwise estimates on (V)1 given in Lemmas [5{ and
[0, respectively. In subsection we list the properties of the generalized eigenfunctions
we use in subsection to finally prove Lemmas [5] and [6]

3.6.1 Proof of Theorems 2 and 4

Since the standard Bohmian trajectories X¥ and the measured ones X7 are closely
related, we merge the proofs of Theorems [2|and 4] to avoid repetitions. Rather we split the
proof into that of Theorem [2[ (i) and |4 (i) (P¥-almost sure global existence and uniqueness
of X resp. X*) and that of Theorem [2| (ii), (iii) and Theorem {4| (ii) (asymptotically
classical behavior of X¥ resp. X*).

Proof of Theorem 2| (i) and M| (i). Theorem[2](i), i.e. P¥-almost sure global existence
and uniqueness of X% (xg,t), is a direct consequence Proposition |1} Regarding Theorem
(i) note that ¢f (z,t) = ¢(=x,t) for t < TH(zg) implies X" (xo,t) = X¥(z0o,t) for
t < TH(xy). Moreover, since tonn (I = 1,2) are well defined random variables on the space
of initial configurations x (cf. subsection, sois TH(xy) = min{tgf’ (o), tor (xo)}-
Thus we already have that for P¥-almost all 2qg X (x,t) is well defined up to (the also
well defined) time T%(xy) and our task really is to extend this to times ¢ > T%(x).

Split the set of "good“ initial configurations for the standard Bohmian dynamics,

GY = {xy € R® | X¥(x0,t) exists and is unique for all ¢ € R}
C {xy € R | XR(mo, t) exists and is unique for all ¢ < T%(xg)},
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into the three disjoint subsets

Dit i ={mg € GV | T"(mo) = t517(wo) < t227(x0)},
D3 ={mo € GV | T" (o) = t1227(wo) < t517(x0)},
Diy i ={xo € G¥ | T"(wo) = tJ"(x0) = t52%(20)}

and denote by G the set of ”good* initial configurations for the measured dynamics, i.e.
G = {xy € R® | X*(x,1) exists and is unique for all t € R}.
We shall show
PY(DE) =0 (3.29)

and

PY(DENGR) =PY(DE),  PY(DENGH) =PY(DY). (3.30)
Then
PY(G") > PY(Df N G") + PY(DY N G") = P¥(DfY) + PY(DY) + P¥(Dfy) =P¥(G¥) =1,

i.e. we have P¥-almost sure global existence and uniqueness of the measured dynamics,
PY(GE) = 1.

First, suppose both particles arrive at the detectors at the same time, i.e. £y € D,
Since Xﬁ(a:o,tgfﬂ(mo)) = X;p(aco,tgfﬁ(a:o)) = R we have

DR c DE = {zy € G | XV (o, t) = R = X{ (20, ) for some t € R}.

ﬁg, however, clearly (is contained in a submanifold of R° that) has at least codimension

one, i.e. DI, and thus Df, has Lebesgue measure zero. Since P¥ is absolutely continuous
with respect to Lebesgue measure this gives (3.29): P¥(DE) = 0.

We remark that by Definition [0 2o € DE entails X (x, t) = X (a9, TR (x))) for all
t > TH(xy), that is we trivially have D c G and thus

PY(DE nGg" =P¥(DER). (3-29)

This, together with (3.30)), of course also gives P¥(G®) = 1 and one might wonder why
we use (3.29) instead of the trivial (3.29)l The reason is that in the case of more than
two scattered particles (N > 2) (3.29)) easily generalizes to

PY({xy € G¥Y C R | TH(x,) = tf,f’R(:co) for at least two different [ =1,2,...,N}) =0.

While this, together with the higher dimensional analogue of (3.30)), does still suffice to
get PY(GT) = 1, the analogue of ([3.29))

PY({ao € G¥ | TR (o) = tar™(wo) for all I =1,2,..., N} N GF)
=P({zy € G¥ | T (o) = toR (z0) for all 1 = 1,2, .. ., N},
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does not.

Now, suppose that xy € DE, i.e. the x;-particle arrives at the detectors before the x--
particld’?l By Definition [6] this entails X (o, t) = X (20, TR()) for all t > TF(x,),
i.e. we only need to ensure that X (=g, t) is well defined for ¢ > T%(x,). Then the
xy-particle’s dynamics for ¢ > T*(x) (as defined in Definition [f) is actually a standard
Bohmian one-particle dynamics: Write

Xy 1)
H’l/}(Xh Y T) HLQ(Rg)

Setting T = T%(x) and X, = X (axo, T) this yields (t > T')
Xz, t) = YVXuT (X (2o, T),t — T) (3.31)

¢X1,T(y>7—) = (eiiHQTwXLT) (y) ) le,T(y) :

where Y¥X1.7 is the solution of the one-particle Bohmian equation of motion

d
_wal,T(yO’ T) = ,vwxl,T(wal,T (Yo, 7),7),

dr
Vyx, r(y,7)

VX1 T y,7T) = Im( y 1, )

( ) thT(yJT)

Note however, that the guiding wave function ¥x, 1 = ¥ x 2y 17 (20)), 7R (2) a11d thus also

the Bohmian dynamics ([3.32) is random. So first of all we need to show that ¢ € G?) is
sufficiently regular such that xy € DF yields VX R (0, TR (w0)), TR (o) 10T Which the dynamics
(3.32) is reasonably well defined. In fact we shall show that

(3.32)

) . YUK (y,0) = y,.

(a) ¥ € G¥ implies ¥x, r € C*(Hy) C L*(R3) for all X, € R}, T € R

which again by Proposition [1] gives P¥X1.7-almost sure global existence and uniqueness
of the Bohmian dynamics (3.32). But also the initial position y, = X5 (zo, T%(x)) is
random, that is we need to show even more, namely that (at least P¥-almost) all ¢, € DE
lead to y, = X (o, T"(x)) in the set of "good* initial positions (T = TF(x,), X, =
X (@, T))

GvxiT = {y, € R® | YYX1.7(y,, 7) exists and is unique for all 7 € R}
of the random dynamics (3.32)). Indeed, with the help of (a) we shall show
(b) Y ({150 c D{% | X?(wo,TR(wg)) c g¢x{%<m0,TR<zo)>,TR(zo>}> = Pw(D{%)_
By (3.31)) this then immediately implies
PY ({xy € Dff | X (2o, t) exists and is unique for all ¢ > T%(z)}) = P¥(Dy)
and thus
PY(DE NG = PY(DF).

Thus we are left with the proof of (a) and (b). We start with (a). Let ¢ € G*). Then,
for any T € R, also (-, T) € G®?, i.e. it suffices to show that

12Gince the reverse case, o € DI, is completely analogous we do not treat it separately.
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(LS g(2) implies le = wXI,O = 7/1(X17 ) € COO(Hz) for all X € R°.

This is most readily proved using the spectral theorem. More precisely, since G2 € H,(H)
= Hae(H1) ® Hac (Hz), we may use the explicit diagonalization of H,, on Hac (Hip)
resp. H on Hy(H) given by the generalized Fourier transform F, ,, resp. ]-"f) defined in

subsection (cf. Proposition 4| (iv) resp. equation (3.55))):

- %
Hy, Hae.(Hip) ~7:+11/2 5 Fiap
o1 2 o (3.33)
2 2

Then ¢ x, € C*°(H,) if and only if (%)n};g?ﬁxl € L*(R})), i.e.if and only if ¢, (X1, -) :=
Hivx, = Fib (%)”ﬂ,mxl € L2(R3,) for all n € N.

Let n € N. Since G» c C*®(H) and }"J(FZ) =Fi1F 2 (3-33) give

2 e LAY
HHl%anm(Rg) - ‘ 57+ 1f+2 2 wa‘ L2(R} <R3 )_ ‘ 2\ 2 1/}‘ L2(RY)
k2 nr 2) n+1
<[ (5) 70y =1l <
(3.34)

Since || i3y = [ (o) @)l[Fugeg @ this implies [[(Hya)(, @2)llss,)
R

< oo for almost every (with respect to Lebesgue measure) o € R and thus
¢n(-,x2) € D(Hy) = D(Hpy) = W*(R2)  fora.e. z € R®.

Thus we can apply an instance of Gagliardo-Nirenberg inequality [23, [B1] (seealso the
proof of Lemma 3] in subsection [2.4.3)), namely

3 1
lull @) < CID*ull o 1l £2 gy

with || D™ul| 2 (gs) = lIIIlaX | D¥ul| 12(rsy and C' < oo independent of u € W?(R?), to get
a|l=m

3 1
ngn<.,w2)HLoo(R3 < C||D2 pnl-, ch)HEQ(Rgl)”gpn(.,ch)Hég(Rgl) for a.e. @y € R?.

13We abuse notation and do not distinguish between, say, Hs defined on L?*(R3 ) and H, (1 ® Ha)
defined on L*(R%) (L*(R3 ) @ L*(R3))).
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Then, using Holder in the second to last step,

on(X1, e, = / fon( X1, < / PACES S

< C2/’|Daz1(}0n , L2 ”L2 R3 ngn<'7w2)”[§/2(R%1)d3$2

1
4

3.4 14 .
JALAORNI > e / lin-ro)l gy,
3

3 1
< C2HD290nHZ2(Rg)H<Pn“22(Rg)

for every X; € R’  Moreover, since analog to (3.34) |Hen|lr2ms)y < oo, ie.
¢on € D(H) = D(Hy) = W?(R®), the last term is finite, i.e. we have just shown that
indeed ¢, (X1,-) € L*(R3)) for arbitrary X, € R® and n € N.

Note that, like Sobolev inequalities Gagliardo-Nirenberg inequalities depend on the
dimension of the space the functions to be estimated are defined on, so one might worry
wether this makes our argument void for N > 2. However, since we apply Gagliardo-
Nirenberg to ¢, (-, 2) : R® — C only, this is not the case: Also the higher dimensional
analogue ¢, (-, s, ..., x,) is a function on R3.

We turn to the proof of (b). Let
G5 = {@o € GV | XY (@0, T(ap)) € G ¥Fmor e srien L

Since P(4) = 1 implied™] P(A N B) = P(B) for any measurable sets A, B and
X (xo, TR (x0)) = Xw(:co,TR(wo)) we get (b) if we can show that

PY(GE) =1. (3.35)
By the definition of conditional probabilityl"|

PY(GR) = / p¥ (G§ |(XY(,TR), TR) = (:nl,T)> B oy g (@217

R3x[0,00)

(3.36)
:/W (Xg(-,T) € Gvnir | (XYV(-,T),TF) = (ml,T)) PY

(XT(-,TRxTR)(d%ldT)

R3x [0,00)
where, for any random variable or vector Y and measurable set A,

P, (A) :=P(Y € A) .= P({w | Y(w) € A}).

HP(B) > P(AN B) is trivial and thus P(B) = 1 — P(B¢) < P(A) — P(AN B®) = P(AN B) implies
P(AN B) = P(B).
15We follow [9], where, however, the image measure Py is denoted P.
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Let @fto denote the flow map of ([1.2)), i.e. @fto (XY (xo,t0)) = X¥(x0,t) and in particular
@ZO(:BO) = X "%(xq,t) (cf. section . We shall show that (A C R® measurable)

PUALY = y) = PO (@4(4) [ Vo @)y = y) (3.37)

for all T € R and (A C R® measurable)

PV (X, € Al (X1,Y) = (m1,y)) =P¥1 (A | Y (21,-) = y) (3.38)
where the random vectors X, are given by X;(x) = X;(@1,x2) := a; and, as before,
Vg, (2) = ICAY. Y WS

@M g2 e,
P (X3(,7) € gPr |(XY(T).T7) = (21.7))

PUD (X, € Gt | (X1, TR0 ®)y) = (21,T))
prest (Ghor | (TR o @)y ) (@1,) =T) .

Since, however, P(A) = 1 implie| P(4 | Y = y) = 1 (for any random variable or vector

Y), with (a) this gives

PY(XY(,T) € GO | (XY (T).TR) = (21,T)) = 1.
Put into this yields ,

PY(GE) = PY Padl) =1,
2

(XY (-TR)TR)
R3 x[0,00)

and we are left to prove (3.37)) and ([3.38)).

The proof of (3.37)) is standard. Recall that by definition every measurable function
o(y) with [ o(y)Py(dy) = PY(A,Y € B) for every measurable B is a version of P¥(4 |
B

Y = %). Using equivariance, i.e. P¥ = P¥(:7) o @%0 (cf. equation (1.4))), and (@%0)_1 =

@E)pj we get
PY(B) = PY ({z | Y (z) € B}) = PYCTD) ({m Yy (cpng@)) c B}) IP;ﬁ(O;Z (B)

and hence (using equivariance once more in the last step)

JEn (@) | 00y = ) By
B

- / PO (@F0(4) |V 0 B = y) BT e (dy) =BT (@%0(4),Y 0 0y € B)
B
= PN (0%, (AN {w | V(@) € B})) =PY(A,Y € B).

16Since P(A) = 1, we have P(4,Y € B) =P(Y € B) fIP’ Je. P(A]Y =y)=1.
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We turn to the proof of (3.38). Note that (relative to Lesbegue measure) P¥ (P¥=1) has

got the density |¢(z)[* (|, (x2)]* = W) Then, by Fubini,

”L2(R22>
]P)prl,y)(B x C) = / W(@’Zd% = /d%l H@b(wl,-)H%z(R%)/d%z W:cl(ﬂh)’?
{z|z1€B,Y (x)eC} B {@2|Y (z1,22)€C}
Yz
= [ @1 @ M e (O
B
ie.
¢m1
Bl vy (@ mdy) = [, ) 3aeg P, (dy)de,

Thus (once more using Fubini)

/ PUn (A | Y (101,) = )Yy, y (@ rly)
D

= [ M, [ P @) = 0B )

R3 {z2|(z1,Y (21,22))ED}

= [ a1 @ e, PP (A Y (@1) € {y | (@1,9) € D)
R3

— [ @@ e [ doa i a)
R3 {w2€A|(@1,Y (x1,2))€D}

- / [(x)|*d°r =P¥ (X2 € A, (X1,Y) € D),

{z|x2€A,(21,Y (x))€D}

i.e. we get (3.38). O
Proof of Theorem |2 (ii), (iii) and Theorem [4] (ii). The proof is analogous to that
of Theorem 1 in [34] (the corresponding result for the unmeasured case with N = 1). By
comparison we see that Theorem [2| (ii), (iii) and Theorem 4] (ii) hold if we can show that
the following three conditions are satisfied:

(I) Pointwise estimates of ¢ and V.

Lemmas [B] and [6 hold.
(IT) L*-estimates of

(ITI) Regularity of {D\out:

Yout (k) is continuous and bounded for k & N . (3.40)
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For a better understanding we sketch the main steps of the proof and explain how
conditions (I) to (III) enter into it. Note that in the following xy, X%, k and v¥
might be both in R3*" for general N (whenever we prove assertions of Theorem ' and in
RS = R3N for N = 2 (whenever we prove assertions of Theorem [4] '

Condition (I) gives estimates for v¥(zx,t) and v¥=111(xy, ty) Tesp. v¥=22(xy,t;): For
01 >0and 0 < a < b < oo define

Bs,a = {k||ous(k)| > 61 and a < k, <b, [ =1,2,... ,N}.

Then there exist T' < oo, C' < co such that for all ¢,#,¢, > T and %, <‘”1 m2> € Bs,ab

x Vi(x,t) — iTY(x, 1)
v@t) - 3| = fim ( Oz 1) ) |
|V (m,t) — i20(w, t)| + L] (, t) — P(x,1)]
B [®(x, t)| = |U(x, 1) — (1)

Lemma [f] C’ 1+2 3N+1 1
< _3N ( ) 3N+1 < Ct_27 (341)
|¢out( )| -0t
Vlﬂmt,t m,t,t Lemma [6] _1
oests (s, 1) )_‘ (2 1%;,”)( 12))( <o
y U1y 02
Lemma [6] 1
’vwzg,tz (wlatl) _ % OtQ 2
1

R
The latter two are of interest since for ¢ > T (x) the measured velocity field 'vip/fo (x,1)

is either identically zero (if T%(xo) = eXmR(:I:O)) or equal to v"X 7 (@, ) (if TF(xp)
<t () and with T = TR(z), X, = X;ﬁl(mg,T)). Now let d; > 0 and define (Bs,
denotes the open ball with radius d,)

Bs,s,a0 : = {k € Bs,ap | Bs,(k) C Bsyab}

XY(x,T)
G?ﬁzab(T) {CBO ‘ T € B§152ab} )

G6152ab(T) L= Ggplégab(T) N{zo | TR(wO) >Th}.
Then, for T big enough, Gg’l span(T) TESD. Gf;%l s,ap(T) 1s a set of "good “ initial configurations
in the sense that @y € G?l(szab(T) resp. g € G5 .,(T) implies that

vl (x0) exists and |v¥ (X¥(zo,t),t) — v&(zo)| < Ct™2 for all t > T and some
C <oo
resp.
v¥ (x0) exists and xy € Vrre for some C' < oo, i.e.
T (xo) > T,
lv¥%0 (X (g, 1), 1) — v (wo)| < < & forall T <t < T"(wp) and

g

o
(X (o, 1), 1) — vl (@0)] <

for all t > T%(xg)
and I = 1,2 s.t. TR(mo) < to"(xo).

TR(:I:O
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Since the above implications are the crucial parts of the respective proofs we elab-
orate on them. First, let ¢y € Gg’l(szab(T ). Note that (3.41) (first equality) implies
that (M) is Cauchy as long as it stays in Bsq: For T' < t; < t3 such that

t>T

m € Bs,ap forall t; < s <ty

‘Xw(w();tl) Cc07t2
ty

/1
< [ -lv
S

t1

Xw($07 S)
S

(XY (o, 5),8) — ds (3.42)

(3.41)

1
C/S—Sds <2012 <207 =,

t1

Since X* (f 01 is continuous in ¢ this in particular implies that, whenever 7' is big enough,

|Xw(;f°’T) — Xw(tmo’t)| < Oy, i.e. M stays in Bg (M) C Bgs,qp for all t > T. Thus

(3.42)) holds in fact for all to > t; 2 T and v¥ (o) = thm %O) exists. Moreover, using

and (@12)

+ lim
S—*OO

'Xw zo,t) XY (x0,9) (3.43)

forallt > T.

Now let @y € G§'5, ,(T) (with the same T as before). Then v¥ () exists and, since
for t < TR(wg) v¥%0 (X R(xo, 1), ) = v¥ (XY (@0, 1), 1), (3.43) already gives

v¥%o (X B (xq,t),1) — vg’o(mo)‘ <30t 3

for all T < t < TR(x). Without loss of generality assume that T#(zq) = tfxl’R(:co)
R
< ti”( 0). Then v;p“’o (X (x0,1),1) = vwxqf’(wO»TR(moWTR(”O)(Xf(a:o,t),t) for t > T%(xy)

and (second equality) implies that w e is Cauchy as long as
t>TH (xg
R( 0 TR(g s "
(Xl (T;(ZO)( ) , Xg(t‘”‘)’t)): (Xl (;%’(Tml;;w()))’ Xg(f“”) stays in By q: For T < t; <t such

XTI, TR (o)

R
that (g, XEE0) € By forall ty < s <1

‘Xg(wmtl) Xo(@ota)| oot < o0r- (3.44)
= 1 ~ . .

t1 to
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But then (by(342) and (34))

Kle(aco,TR(zco)) XZR(a:O,t)) B Xw(wo,T)‘

TR(xo) ¢ T
<’X¢(a:0,TR(zco)) _ X¥(xo,T) ) N ‘Xg'(a:o,t) B X?(wO,TR(a;O))‘
=1 TR(xy) T t T% ()
<20T 2 < 65,

v
i.e.also <X1 (;%’(Zzgmo)), X§(tm°’t)> stays in 352( (mo T)) C Bglgzab and - holds in fact

for all ty > t; > T"(xy)(> T). Thus by ([3.41), (3.42) and

vE
vy (X (@0, 1), 1) = vl (o)

X?(moat)’Jr‘X?(mo»t) Xg(moaTR(«’Bo))’

Yyw R R R
< X1 (@0, T (20)), T (wo) (X ). t) — —
"v ' (X3 (0, 1), 1) t t TH(xg)

1 X (w0, TH(x0)) X J (2, 5) B 1
— < 2
~|—Slg£10 T () . ‘ < 5C(T"(x))

for all t > T®(xy), i.e. Ty € Vrro.

So we get Theoreml ii Theorernl ii)), if we can adjust (51, 9o, a, band T (01, da, a,
b, T and R) such that the set of "good“ 1n1t1al configurations G5152ab( ) (G§5,0(T)) has
(nearly) full measure. Let £ > 0. By condition (II) and equivariance one easily sees that
for any 1" > 0 big enough

¥
PY (—X (@0, T) € A) pveT) (T € A) > p2CT) <; € A) —

T
-~ (3.45)
= / [Vout (B)[2d* Nk —
A
for any measurable A C R3. Moreover, condition (III) guarantees
/ (ot (k) 2d* Nk > 1 — & (3.46)
Bs,65ab

for &1, 02, a small and b big enough (cf. proof of Theorem 1 in [34])7] In particular,

(3.45) and (3.46) show that there are 6; > 0, 02 > 0,0 < a < b < oo and T < oo such

that o )
X Iy, T

B (G (1) = (X E0T)

i.e. Theorem 2] (ii) holds. Now note that global existence of Bohmian mechanics guarantees

that P¥-almost no trajectory reaches spatial infinity in finite time. Thus in particular there

€ 35152ab> >1-— 26,

I"Note that the choice of §1, 2, a, b does evidently not depend on T. This is important since above we
choose T such that Ggpl span(T) and G§ 5. (T) contained ” good “ initial configurations for given 41, b2, a, b.
This is a point we failed to observe in the proof of Theorem 1 in [34].
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is some Rt < oo such that

PY({xo | TH(x0) > T}) > PY ({mo | sup | XY (xo,t)] < R}) >1—¢

0<t<T
for all R > Ry. Since G5 ,(T) = G?léQab(T) N{xo | T(xy) > T} this gives
PG 3(T)) > 1 — 3
for all R > Rr, i.e. we get Theorem {4 (ii).
Finally, looking once more at (3.475), we see that also Theorem [2] (iii) holds:

t—oo

XY (x, t ~ ,
PY(v% € A) = lim P¥ <# € A) = / |[out (k) |2d*N k
A

Now to the proof of conditions (I) to (III). Condition (I), i.e. Lemmas [5] and [6] will
be proved in subsection Condition (II) is a standard result, which follows from (3.10))
(i.e.
tlim le"t#Hiep — emiHotyy || = 0) and

i [ = 0] =
for all 1,y € L2(R3Y) (see e.g. [14] or [32], Theorem IX.31). Finally, condition (III) is a

consequence of ¥ € GV, For a proof see the mapping Lemma |10 at the end of subsection
3.0.3 L]

3.6.2 Properties of generalized eigenfunctions

As explained in section |3.3| we shall use the method of expansion in generalized eigen-
functions to prove Lemmas |5| and |§|, i.e. to get the pointwise estimates on (V)i needed
to control the standard resp. the measured Bohmian velocity field v¥ resp. v¥%0. In this
Subsection we have collected the relevant properties of the generalized eigenfunctions.
We first recall some standard [27] and some new [18, 37] results concerning generalized
eigenfunctions in the single particle case. We then extend those results to the case of N
particles.

Let N = 1. One looks for generalized eigenfunctions ¢, that diagonalize (the single
particle) Hamiltonian H (and thus the time evolution e~*#*) on H, . (H):

2

(3 A+ V(@) ps(w k) = s (e b (3.47)

Inverting (—%A — 1“2—2) one obtains the Lippmann-Schwinger equation. We recall the main
parts of a result on this due to Ikebe [27]. In the present form it can be found in [37].
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Proposition 4. Let V € (V). Then for any k € R3\{0} there are unique solutions
o+(- k) : R* — C of the Lippmann-Schwinger equations

1 e:Fik:\cc—sc’ \

o (x, k) = e*® V(xps(x' k)d*a', (3.48)

on) |x—a

that satisfy the boundary conditions lim |p+(x, k) — e*®| = 0. They are also classical

solutions of the stationary Schrodinger equation (3.47|) and such that:
(i) For any f € L*(R3) the generalized Fourier transforms
Fef)k) = 2m) F i, [ e k) (@)%
exist in L*(R3).

(ii) Ran(Fy) = L*(R®). Moreover, Fy : Ha.(H) — L*(R®) are unitary and the in-
verses of these unitaries are given by

(F2 ) (@) = (21~ F Lim. / o (m, k) (k).

(iii) For any f € L*(R®) the relations Q. f = F{'Ff holds, where F is the ordinary
Fourier transform in 3 dimensions.

(iv) For any f € Moo (H) ND(H)
@) = (75 Af ) @
and therefore for any f € Ha.c.(H)
e (@) = (Fle L) (@),

In the next proposition we have collected results on the regularity of the generalized
eigenfunctions (cf., e.g., Proposition 2 in [18§]).

Proposition 5. Let V € (V),, for some n > 3. Then:

(i) p+(z,-) € C"2(R®\ {0}) for all x € R? and the partial derivatives D¢+ (x, k),
la] <n—2, are continuous with respect to x and k.

If, in addition, zero is neither an eigenvalue nor a resonance of H, then

(i) sup |px(x, k)| < oo,
xzcR3,kcR3

for any |a| < n — 2 there is a ¢, < 00 such that (k := %)
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(1) ) %1;{){0} |kl Do (@, k)| < coa)le
€

and for any l € {1,...,n — 2} there is a ¢, < oo such that

(iv)  sup ‘%¢i(w,k)’<cl(x)l,
keR3\ {0}

where 2 is the radial partial derivative in k-space.

ok
For a proof of (i), (ii) and (iv) see [37], for (iii) see [18].

Now let N > 2. For every | € {1,2,...,N} let V; € (V)5 and let ¢1; denote the
generalized eigenfunctions of H; and F, ; the generalized Fourier transform defined via
¢ . Define the 3N-dimensional generalized (partial) Fourier transform(s) by

Fog=][Fea. Ic{1,2,...,N}, (3.49)
lel
and
N
f:(tN) = f:ﬁ:,{l,Q,...,N} = Hfi’l . (350)
=1

This is well defined, since the F. ; obviously commute. By Proposition 4] . ; (and thus
FMY got the followi ies:
1) got the following properties:

(i) For any f € L*(R3Y)

(Faif) (xre, kr) = (27T>7¥ l.im. / () (xr, k) f () d

(F95) @ = o Frim [ () @ b sys).

(3.51)

where

prr(@rkr) =[] eri(@, ki) (@i HSOil x;, ki ) (3.52)

lel

are generalized eigenfunctions of H; = Y H; (H = Z H,) belonging to the eigen-
Iel

2
%) and (Q’J[c,k])l = {

x; 1fl€IC,
k, iflel.

M=

ki kP (k2
Value 5 = Z o (7 =
lel

~

1

(ii) Ran(Fy ;) = L*(R3N). Moreover, Fy 1 : Hy(Hr) — L?*(R3*M) are unitary and the
inverses of these unitaries are given by

3]

(f;llf)( )=(2m)" 2z Lim. /(pi[ xr, k) f(xre, kp)d® gy (3.53)

Ha.c.(Hl) if [ € ]7

Here H. (I HP (Hy) with HS (H;) ==
ere Hy(Hy) = @ (Hy) wi (Hi) : L2(R?) iflerI°.
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(iii) For any f € L*(R3Y)
-1
oMy = (7)) Fy, (3.54)
where F®) is the ordinary Fourier transform in 3N dimensions.

(iv) For any f € Hy(H;) ND(H;)

2
Hif(e) = (723 Fuaf ) (@ (3.55)
and therefore for any f € H(H/)
[T e f(a) = [ﬂ}(H ei%)a,ff] (2). (3.56)
lel lel

3.6.3 Proof of Lemmas [5 and

Lemmas [5] and [0] are special cases of

Lemma 7. Let V; € (V)4 and let zero be neither a resonance nor an eigenvalue of H,
(1=1,2,...,N). Let ¢y € G™N). Then for all0 < a < b < oo there exist constants T < oo
and C' < 0o such that for all subsets I C {1,2,..., N} and for allr € I

(z;t) — By (a;t)] < C (H tl) (min{t; | j € I}) " (3.57)

=1

and

V,(x;t) — i?@l(m;t)’ <C (H tl> (min{t; | j € ]})_% (3.58)

=1

forallx e R*N t e RN witht; > T and a < 2 <b for all j € {1,2,... ,N}. Here

vl@it) = (H Hw) (@)

and
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We first prove and (3.58)) under conditions on ﬁout and then give a mapping lemma
(Lemma D that allows us to transfer those conditions to corresponding ones on .

To more concisely state the conditions on z/Jout, which consist of requirements regarding
differentiability and decay, we introduce the following operators

For i € {1,2,...,56} and j € {1,2,...,N} define R M acting on suitable functions
f:R¥»N — C by

¢

(k) ifi=1,
32 f(k) ifi=2,
= if 1 =3,
(P2F) ) = { 95 7/ .
’ Z Dy, f(k) ifi=4,
lal=1
k; >, Dif(k) ifi=5.
\ |or|=2
Here o = (ay, ag, az) € N3, “oand () = (14 ()2 )% In the case N = 1, where

= Ty @
pw

k =k, € R3, we write P, 1nstead of P
With that notation we define the set (J\

/\Hr—-

of “good” iout.

Definition 7. Let d = (dy,dy,...,ds) € Z°. A function f: RN \ N — C is in ,C’z(iN), if
there is a constant C' < oo such that for all iy,is, ... iy € {1,2,...,5}

(IT723) ] < T

Jj=1

In particular, define
N A(N)
G : g(6 5,3,3,2)

Remark 7. To prove (3.13)) and - we require @/D\Om € G In fact We could do with a

slightly more general class (the decay could be a little weaker, zliout € g However,

(5 5 3,1 2))
G™) is the most general class of wave functions for which not only (3.13)) and (3 - can be
established but which is also invariant under multiplication by e i% . The latter means
that it is invariant under the free time evolution in the sense that "Zout = FN) (hour) € G)
implies also FWV )(e_iHotwout) € G™). This corresponds to the invariance under full time

evolution of GV) (cf. Definition |5)) and will be needed in the proof of the mapping Lemma
1al

For Jout € G we shall prove (3.13) and (3.14]) using the corresponding one-particle
result (derived in [I8] [37]) and induction: By (3.56])

vt = (T )t = [ (T 5) )
jeI Jel

- [(H]:+;eilftj>-7:+,lw] (")

Jjel
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resp.
P 2 c
Vo(ast) = [V, Fke 3 (T Frle ) Fuw (mith).
jenr)

For N = 1 this reduces to (F,¢ = FQ ' = @/ZJ\Om by Proposition (iii))

U t) = (FLe 5 F0) (@) = (Fle 5 ) (@)

resp.

Vip(x,t) = <V./’::16_i§t1jb\out> (x).

2
k2
Lt

So the one-particle result will give us the action of each factor ‘7-:3-6 3% resp.

ki . .5 . ~ ~
Vﬂ-‘;ﬁe‘z%“ on functions in GV and our first task will be to show that ¢,y € G
guarantees that (I; U Iy = 1)

[( H f;7be_i]?tj>f+71¢} (:I:Ilc, kr; tlc)
J€l2

viewed as a function of k; with j € I; is in Q\(l), i.e. that — when doing induction on the
length of I — we stay in the regime where the one-particle result is applicable. Since,
however,

(]—“+,1¢> (zre, kr; t")
-7 (10 e”Hj”M (@) = [Fea(TL720e59) o] vk

jele jele
[( H Frie -7 )«7:+ Fy I”/J] xre, k) = [( H File tj)&m} (e, kr)
jele jele
and thus
[( H]—:ée_i]?t">f+,ﬂ/)] (mlf, kr;t' [( H ~7‘—+2 -7 2 ’)7/)0114 (33110, kh) ;
jel jers

this can again be done using the one-particle result and induction (this time on the length

of I).

The one-particle result is collected in the following

Lemma 8. Let V € (V)4 and let zero be neither a resonance nor an eigenvalue of H. Let
X € Q((51)53 1.2)- Then for all 0 < a < oo there exists some T < oo such that

(Hle—iétx> (x) = [(t—% Po(t) +17? Pf(t)> x] () (3.59)
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and

(Vf;le—i%x) (@) = [(t_%i%PH(t) +12P(1)) A () (3.60)

Jorallt >T, a < 7. Here

and

Pe(oN @) = Y [ Btk )P(k) 35

for any quintuple of (possibly vector-valued) functions F = (Fy,..., F5) : RONTL —
(CO), ..., C®). Further, f := g+ [%(1"‘%)]_% = (g1, 95) +[2(1+2)] 7" (h1, h2,0,0,0)
and f = ikg+ [F(1+ %)]’lﬁ =ik(g1,...,95)+[2(1+ %)]’1@1,}22, 0,0,0) are independent
of x and satisfy

sup |g;(k, @, t)] < C(k)™% G=1,...5)
teR,xzcR3
sup |hi(k,x,t)] < Ck)2,  sup |h(k,x,t)| < C(k)?, (j=1,2)
t>T,xcR3 t>T,x>aT
(3.61)

for some C' < oo and d= (—=2,1,0,2,1). Moreover, g does not depend on the potential
V.

For the proof of Lemma[§|see Lemma 4 (resp. equations (17) and (18)) in [I8] and equations
(15) and (16) in [37): The proofs in [I8, B37] use the splitting™|

vl t) = (Fle 5 ) (@) = ) [ (@) o (h)

=) [eeRelmdh  2n) [ ek k)a
— afe.t) + A1)

with ny (x, k) := ¢, (x, k) —e®®. Then a resp. Va corresponds to the free time evolution
and gives the leading order term t=3P., (t)zz;out resp. t_%i%PH(t)@Zout and the error term
t_QPg(t)zzout resp. t_QPikg(t)zzout (18], Lemma 4) while 3 resp. V3 gives the error term
t2 Py (1) on resp.t2P; (1) thon, ([37], equation (15) resp. (16)). Both parts of the proof
rely on stationary phase methods, where one uses partial integration with respect to k

at most twice. This is why one needs bounds on ¢y up to its second order derivatives,
i.e. Yous € GW. However, in [I8, B37] the explicit form of Pf(t)thus = (P,(t) + Pu(t))Vout

18Cf. Proposition (i): Since the ¢ (x, k) are bounded by Proposition(ii) and Yo € GV C LH(R?)
one can omit the 1.i.m..
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resp. Pr(t )z/Jout = (Piy(t) + Pﬁ(t))zzout was not needed and thus not stated, so one has to
go through the corresponding proofs to verify that the error terms are indeed of the form
given in Lemma [§ Note also that the results in [I8] [37] were formulated in the regime
t > Ty, x > Ry for some appropriate T < 0o, Ry < co. Since for T' big enough ¢ > T and
a < % imply x > at > aT > Ry, this of course includes our regime.

We return to general N and extend Lemma [§] to

Lemma 9. Let V; € (V)4 and let zero be neither a resonance nor an eigenvalue of H,
(1=1,2,...,N). Let x € Q((é’vg’&m). Then for all 0 < a < oo there exist T' < co, C' < o0
such that for all subsets I C {1,2,...,N} and allr € I

Fo (T %)t ki) = [T (6290 + 2P 60 )] @roker) (362

jeI jeI
and
v E (T - ) v| @ ki)
Jel (3.63)
= [(t 5  PO2 )+ 12 B) )TL (5 PP ) + 6P 0]
Je{r}

foralle e R* t € RN with t; > T and a < 3 fOT’]G] Here

22
N £
|:P<(—>,]) (t])(p] (w{j}vy{j}c) =1 26 7@( <t>{j} 7y{j}c) )

ot

&k,

N N

[Ppg,j)(tj)v} (@451 Ygpe) = Z/Fi(kj’wj’mpi(’j el Y 2
i=1 g !

and, for j € I, fU) —i—[t]( J)] ,f])—zkg+[ (1+ )]_%j with g as in
Lemma@ and h) (h( ) hg ),0,0,0), h@) = ( 2 ),0,0 0) mdependent of x and such
that (3.61)) holds.

Further, for d = (5,5,3,1,2) and all L UL, =1, r € I, and i; € {1,2,...,5} (j € I°)

H(l;lpz )(Htl 2P(N) )( H thP]Ef:;)m tm))X] (z1,kre)

mels

3 (3.64)
<o(T14) (I &) (T10*)
and
[CTT22) (T 2P w) (2250, 60) ( TT 6280 ) ] o )
jele len TEIQ\{T} (3'65)
c(ITn) (L) (L)

forallx e R*N t € RN witht; > T and a < 2 fOT’]G]
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Proof of Lemma @ We first prove (3.64) and (3.65). By the definition of Pﬁ? and

P}g)) we have

H( H P’(J]’\;)> <Ht 2P(N) ) ( H t;l2Pf(m) m tm))X] (m17k10>

jelIe lel mels
5

s / d3:2|k”[(Htﬁlfff)(wmvkmvtmﬂ)

— Iz
(etz) B! e

(L1 H)ICIL ) CIT P2 (i )

lel Jjele mels

= (1) (I )

lel mels

] (3.66)

5

> [ ST bt (T,

I c
(i;?e[l) R3IT2 mels JeIf

where k7, := [],,.c;, k2, and exchange of differentiation and integration (i.e.that we put

all the differential operators P( )

inside the innermost integral) will be justified below.
Remember that the £ fulfill (3.61) (with d = (—2,1,0,2,1),) resp. that € QéN) with

d=(5,5,3,1,2). Then we have

(TT1 @k, )]

mels

<C H |:<km>*£zim 4 (km)* (81 +5im2)i| <C H [(k;mfgim n (kp)2(85,.1 + 05,,2)

mel, (L4 52) s a(1+a)
resp. (cf. Definition
(TN ()
and thus |
(I 1 o) (TP,
< T [t + S0 0] () or
<e(I1e-) (1)

for some constant C' < co (depending on a and T'). In particular, (3.67)) is integrable with

3|Is]
respect to d ]:2 2. Thus exchange of differentiation and integration in (3.66|) is justified
Iz
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and putting (3.67)) into it gives (3.64). The proof of (3.65) is completely analogous, we

just need to replace t QPJE?:)) by to QP}({X) for some r € I5. Then the bound in (3.67)) will

be proportional to (k, >*2(Hm6[2\{r}<k )3 > instead of (Hm612< m) 3) which, however,
I
still suffices to get integrability with respect to kl? and thus

2

With (3.64)) established, the proof of (3.62)) and (3.63)) is a straightforward induction on
the length of the subsets I. First, let I = {j}. Since x € Q(évg?) 1.9y implies X (-j3, kjpe) €

g(5 53.1,2) for all kgje € R3(WN— and - follow immediately from Lemma
Now let I c{1,2,...N} with 1 § |I| § N — 1. Then by the induction hypothesis

[ +IU{T}<H€ i"’ J) ] wlu{rkaC\{r})

jeTU{r}
“,
- (e (I =
Jel
k2 _3
= [(Foe ) TL (s P20 ) + 652 P00 ) @iy Ko c)

Jjel

and

[V f—:IU{r} (Heﬂ%t])X} (@ 10y, krevry)
jeTU{r} (3 69)
_1 ik, —3 p(N) -2 p(N) '
= [vr <F+7T€ 2 ) H (tj f)(_)7 ( ) -+ t Pf(J) ( ))X] (CB[U{T}, kj]c\{r})

jeI

for any r € I¢. Since
[TT (57 P20t + 7P, )] (@r. )
= ) [(H(t 2pN ><Htl2P<l)ltl> }(wl,kp),

IL1Ul,=1 jeh lels

(3.64) in particular implies

-3 (N N =01
[H (tj 2P<(—>,j)(t )+ ZP]Em) (t >>X} (@1, kre\(r}, (r)) € g((5,)5,3,1,2)

jel

for all kje\gy € R3UI-D) and all € R3M, t € RN with t; > T and a < % for y € I.

Thus (3.68), (3.69) and Lemma [§] already give (3.62) and (3.63). O

With Lemma@we can now prove (3.57)) and ({3.58]) for zzout € é((é\g,s,l,Z)' Let 0 <a<b
<ooand T < oo, C' < 0o as in Lemma [9] Further let 7 C {1,2,...,N} and = € R*",
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t € RY such that ¢; > T and a < f—] < bforall j €{1,2,...,N}. First, note that
J

(-7:+,1¢) (wre, kp; ")

= -J-"+,I< II e_iHjtj)l/’} (2re, kl)! [}—* IJ:J:F( 11 B_i?tj>]:+’”¢} (@re. ki)
- jele Jere
= -.7-:711(;( H Gilﬁtj)f+,lf+,lﬂ/’} (@re, ker)
) jeIe
_ f;p ( l—I[ i ) } (e, ks ) (3.70)
7

( H 6_2 3 >¢out] xe, k)

jele

=
B2 [ <t—%p(N>( )+ 2me (1t ))%m} (e, k1)

Z ( l_I[ % ) <Htl f<l>l )wout} (CBIC, ki[) )

Ulx=I¢ lelr

so in particular we have by (3.64))
(-7'—+7I¢> (e, krst") € g(g1|5 3,1,2)
Thus by (B56) and (B62) resp. (:63)

viast) = [F3 (T 5)f+ﬂ/1}( ")

jel (3.71)
[H(t FPOO) + 7P (1)) o] (2 )
el
resp.
Vi(x; t)
- [(trgz’f—:PﬁY’( )+t P) (t )> (3.72)
IT (1 P20 + 2P0 (1)) F o] ().
jen(r)
Since

L\)
NNJ

®ya;t) = [ TT (Git) 2™ Zow ] (3) pac ) = [ TT (1,2 P o] (w7

jel jel
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extracting the leading order term in (3.71)) gives
[p(x;t) — Pr(a; b))

< S (TG e (T et o) e |

LHUlx=1 jenl el
I>#0)
£ S (¢ Iz
= X [CID (5P r2e) (Tt piiie) o] i)
ILUIx=1I jel1Ul3 lelUly
I>#£0
IsUly=1I¢
_3 N s 3
< C0) ( 11 tj2>< II t;2>§C<Htj2><mm{t |]€I}> ’
IL1Ulx,=1 jenUI3 leloUly 7=1
I>#0
IsUly=I¢

i.e. (3.57). In the same way extracting the leading order term in (3.71)) gives (3.58)):

V(s t) i?qn(w-m

g;r Z H(H (t 2P(N) )(Htl—sz(flv)l >¢out]<w;t10)’

”11;}27& jelUl3 lelUly
IQUIZ:IC

(N —2 p(N) 42 (N n L
+ 32 J[CTT (5P (TT 6P ) PR o) a2
LUlL=I\{r} j€hUI3 lelaUly
IsUly=1I¢

1
2

e C(f[tjg) [b<min{tjlj el {r}})
< C(ﬂt;g> (min{tj‘j € I})_é :

+t,ﬂ

Thus, to finish the proof of Lemma |7] it suffices to show that ﬁout e G ¢ g((;v 5) 312)
if 1» € GNV). That is the content of the following mapping

Lemma 10. Let V; € (V)4 and let zero be neither a resonance nor an eigenvalue of H,
(l=1,...,N). Then
w € g(N) = ¢out € g(N)

Remark 8. ¢y € V) contains the requirement 9 € C>°(H). This is necessary to get
almost sure global existence of Bohmian mechanics and the main Theorems [3[ and |b| For

3N
the mapping Lemma H Y e C3N(H) := (| D(H") would be sufficient.
n=1

Proof of Lemma [10} The proof is adapted from that of Lemma 1 in [I7] (an analogous
mapping lemma for N = 1).
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Let v € G Then there is a X € géN) and a t € R such that
1/} — e—thX )

Using (3.54) and (3.56) (or alternatively the intertwining property Q;'H = HyQ3') we
get

~ . -1 g2
Vout = fiN)w _ fiN)eszt (f_(’_N)) f—(f—N)X _ eil%ti\out'

~ 1.2
Since GM) is invariant under multiplication by emit (this is easy to check), it suffices to
~ . . 3(N)
show that You is in Gy .

Since
(z) 2 Py € L2RY), Be{N+1,....2N}, n€{0,1,...,4N — 8},
(z)72 Ny € L2RPY), ne {2N,...,3N},
we have

()PH "y € L*R¥*™)NLAR¥Y), Be€{N+1,...,2N}, n€{0,1,...,4N — 3},
(x)NH"y € LYR*M) N L2(R*Y), n € {2N,...,3N}.
(3.73)

Let d := (6,5,3,3,2) and B := (0,1,2,1,2). For ¢ = (iy,is,...,iy) € {1,2,...,5}N
defind™]

N d
di = (diudiw""dm)’ di :Z’Vj—‘ 7

j=1

N
ﬁi = (6@’17ﬁi27"'7ﬁ2j\7>7 51 ::Zﬁija
=
N J
Pe= 1P

Jj=1

N
and note that, with the usual multi-index notation, (k)% = [] (k;)%. We shall show
j=1
that there is some C' < oo such that

‘(k)diPi)?out(k)‘SC’ max H(x)’gian||L1(R3N) (3.74)

n=0,1,...,d;
for all 4 € {1,2,...,5}" and k € R*N \ N and that (3.73)) in fact implies
(x)%H™ e LYR*N),  ne{0,1,...,d;}. (3.75)

Then B
| PiXout (k)| < C(k)~%

1977 denotes the ceiling function.
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i.e. >/<\0ut € Q\(N)
Let i € {1,2,...,5}. Then

(k)% PyXous (k)| < ’(1 + k)= piyout(k)‘
(3.76)

(%2)"&2%(1@)\ -

d;
<1+ B % PXon(k)| < CY
n=0

Since the PZ(J]\;)S are differential operators of at most order two, the commutator

[(%)n, Pi} can be easily calculated and we find

k2\n J2\ n'
‘ <?> P’iXout(k)‘ S Cn n’znol,zli,}.c..,n Pi’ <E> Xout(k)‘
i'eM;

with M == {i' € {1,2,...,5}" | € {1,4;} if i; = 1,2, 4 and &, € {1,i;,5;—1} if i; = 3, 5.

2

Since (%) Nout = (%) .7-“J(FN)X = fiN)H”/X by ([3.55]), this gives

‘(k_2>npi§<\0ut(k>‘ <(C, max |Py <-7:J(FN)Hn/X) (kz)‘ ' (3.77)

2 n'=0,1,....n
ilEMi

We claim that there is some C' < oo such that
Pafout(k:)] < C |l @)% £ o aomy (3.78)

for all ' € {1,2,..., 5}, k € R\ N and f € L*(R3) with (z)f% f € L}(R3). Then
(3-77) yields

E2\n
Yy P'll/\ou k ‘ < Cn
‘( 2) X t( ) - n’:n()l,?,}.(..,n
’iIEMi

(o) 1|

Ll(RSN)

which together with ([3.76]) gives

‘<k>zp,,5<\out(k)‘ < anror,lf,),(,,di ||<w>ﬁi/HnXHL1(R3N) .
i'€M;

Since ﬁi; < B, and thus gy < f3; for all i’ € M;, we obtain
,Bi/ ,32
e @ H |y gavy < max (| (@) HX| )
ileMi

and thus (3.74]).
To prove (3.78) note that by Proposition

P () (k)| = < [Tt < oty

j=1

N
Py H o4 (@5, k)
j=1
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for all k € R¥ \ V. Thus

0 (010) (k) (@) e < €0 ]| s g,y < 00

R3N

which justifies the omission of the 1.i. m. and the exchange of integration and differentia-
tion in

(k)| 22 [Py 2m) % Lim, / (¢)" (@ b f()i*e]
R3N
_3N * _3N ,
—Jem [ P (b)) (@] < (27 E O e
R3N
and gives us (3.78]).
Finally, to prove (3.75)) note that
N N
/81: = Zﬁz] == Z (6ij2 + 26ij3 + 5ij4 + 25ij5) S {O, 1, ceey 2N} s
j=1 j=1
N ot N
d; = — 36;,1 + 30,2 + 20,3 + 26,4 + 0, e {N,N+1,...,3N},
; [ 5 —‘ ;( i 32 33 4 5) { }
N
Bitdi =Y (38,1 +40;,2 + 46,5+ 35;,4 + 30;,5) € {3N,3N +1,...,4N}.
j=1

Thus
d; € {max{N,3N — 3;},max{N,3N — 3;} + 1,...,min{3N,4N — §;}}
and hence follows if
()% H "y € LNR*),  ne{0,1,...,mn{3N,4N — 3;}} .

For 3; € {N +1,N +2,...,2N} this is exactly the first part of (3.73), while for 3;
€ {0,1,...,N} implies

()™ 5]
()™ 5|

< |[(@) 5|
< |[(@) 12|

<oo, f=2N,ne{0,1,...,4N—(3=2N},
<00, ne{2N,2N+1,...,3N}.

€L1(R3N) €L1(R3N)

€L1(R3N) €L1(R3N)
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