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Abstract

This work treats mathematical questions which arise in classical and quantum electrodynamics
when describing the phenomena of radiation reaction and pair creation. It consists of two major
parts:

In the first part classical dynamics are studied which allow for radiation reaction: For classical,
non-rotating, rigid charges we give explicit representation formulas of strong solutions to the
Maxwell equations, prove global existence and uniqueness of strong solutions to the Maxwell-
Lorentz equations in a general setting in which we also allow for a class of infinite energy
solutions, negative masses of the charges, and for both cases, Maxwell-Lorentz equations of
motion with self-interaction (ML+SI) and without (ML-SI). We prove that possible solutions to
the Wheeler-Feynman equations with bounded accelerations and momenta are also solutions to
the ML-SI equations. This gives rise to a unique characterization of Wheeler-Feynman solutions
by position, momenta and their Wheeler-Feynman fields at one instant of time. Moreover, we
give a reformulation of Wheeler-Feynman electrodynamics for rigid and non-rotating charges
in terms of an initial value problem for Newtonian Cauchy data. With it we prove existence
of Wheeler-Feynman solutions on finite time intervals corresponding to the Newtonian Cauchy
data. We discuss how this method could yield global existence of solution to the Wheeler-
Feynman equations.

In the second part quantum dynamics are studied for systems of an infinite number of Dirac
electrons which interact only with a prescribed external field that allows for pair creation: We
construct the time-evolution for the second quantized Dirac equation subject to a smooth and
compactly supported, time-dependent electrodynamic four-vector field. Earlier works on this
(Ruijsenaars) observed the Shale-Stinespring condition and showed that the one-particle time-
evolution can be lifted to Fock space if and only if the external field has zero magnetic compo-
nents. The basic obstacle in the construction is that there is neither a distinguished Dirac sea, i.e.
Fock space vacuum, nor a distinguished polarization. Therefore, the key idea (suggested already
by Fierz and Scharf) is to implement this time-evolution between time-varying Fock spaces. We
show that this implementation is unique up to a phase. All induced transition amplitudes are
unique and finite.

In a last part we give a brief outlook on our perspective of a divergence free, electrodynamical
theory for point-like charges which accounts for both phenomena, radiation reaction as well as
pair creation. It is based on the idea that the Dirac sea represents the absorber medium proposed
by Wheeler and Feynman. The presented mathematical results can be considered as first steps
towards it.

Keywords: Absorber Electrodynamics, Radiation Reaction, Pair Creation, Wheeler-Feynman
Solutions, Maxwell Solutions, Liénard-Wiechert Fields, Maxwell-Lorentz Solutions, Functional
Differential Equations, Infinite Wedge Spaces, Second-Quantized Dirac Time-Evolution, Quan-
tum Electrodynamics, Quantum Wheeler-Feynman Interaction



Zusammenfassung (Translation of the Abstract)

Diese Arbeit behandelt mathematische Fragen, die im Zusammenhang mit der Strahlungsrück-
wirkung und der Paarerzeugung in der klassischen Feldtheorie sowie in der Quantenfeldtheorie
stehen. Sie besteht aus zwei Hauptteilen:

Im ersten Teil werden klassische Dynamiken studiert, die es ermöglichen den Effekt der Strah-
lungsrückwirkung zu beschreiben: Für klassische, nicht-rotierende, starre Körper geben wir ex-
plizite Darstellungsformeln für starke Lösungen der Maxwell Gleichungen an und beweisen die
globale Existenz und Eindeutigkeit von starken Lösungen der Maxwell-Lorentz Gleichungen
in einem allgemeinen Rahmen. Dieser erlaubt es eine Klasse von Lösungen unendlicher Ener-
gien, negativen Massen der Ladungen, sowie beide Fälle, Maxwell-Lorentz Gleichungen mit
Selbstwechselwirkung (ML+SI) und ohne (ML-SI) zu behandeln. Wir beweisen weiter, dass
mögliche Wheeler-Feynman Lösungen mit beschränkten Beschleunigungen und Impulsen auch
Lösungen der ML-SI Gleichungen darstellen. Dies ermöglicht eine eindeutige Charakterisierung
der Wheeler-Feynman Lösungen anhand von Ort, Impuls, und ihrer Wheeler-Feynman Felder
zu einem bestimmten Zeitpunkt. Zudem geben wir eine Umformulierung der Wheeler-Feynman
Elektrodynamik für starre und nicht-rotierende Ladungen in ein Anfangswertproblem für New-
tonsche Cauchy Daten an und beweisen damit die Existenz von Wheeler-Feynman Lösungen
auf endlichen Zeitintervallen entsprechend Newtonscher Cauchy Daten. Wir diskutieren wie mit
Hilfe dieser Vorgehensweise die globale Existenz von Lösungen zu den Wheeler-Feynman Glei-
chungen gezeigt werden könnte.

Im zweiten Teil studieren wir Quantendynamiken für Systeme mit unendlich vielen Dirac Elek-
tronen, die nur mit einem vorgeschriebenen äußeren Feld wechselwirken, welches Paarerzeu-
gung ermöglicht: Wir konstruieren die Zeitentwicklung für die zweitquantisierte Dirac Glei-
chung in Abhängigkeit von einem glatten und kompakten, zeitabhängigen, elektrodynamischen
Viervektorfeld. In früheren Arbeiten auf diesem Gebiet (Ruijsenaars) wurde die Shale-
Stinespring Bedingung berücksichtigt, und es wurde gezeigt, dass die Einteilchenzeitentwick-
lung genau dann auf den Fock Raum gehoben werden kann, wenn die magnetischen Kompo-
nenten des äußeren Feldes null sind. Das wesentliche Hindernis bei dieser Konstruktion ist, dass
es weder einen ausgezeichneten Dirac See, d.h. Fock Raum Vakuum, noch eine ausgezeichnete
Polarisation gibt. Aus diesem Grund ist die Schlüsselidee (wie bereits von Fierz und Scharf vor-
geschlagen), diese Zeitentwicklung zwischen zeitlich variierenden Fock Räumen umzusetzen.
Wir zeigen, dass diese Umsetzung bis auf eine Phase eindeutig ist. Alle sich dadurch ergeben-
den Übergangsraten sind eindeutig und endlich.

In einem letzten Teil geben wir aus unserem Blickwinkel einen kurzen Ausblick auf eine diver-
genzfreie, elektrodynamische Theorie über Punktladungen, welche beide Phänomene, sowohl
Strahlungsrückwirkung als auch Paarerzeugung beschreibt. Sie basiert auf der Idee, dass der Di-
rac See das von Wheeler und Feynman eingeführte Absorbermedium darstellt. Die präsentierten
mathematischen Resultate könnten als erste Schritte in diese Richtung angesehen werden.
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Style of Writing

Although this doctoral thesis is written by only one author, the chosen form of writing employs
the use of first person plural throughout the work for two reasons: First, research is never done by
a single person alone. In this sense phrases like “we conclude” are used to recall all people who
contributed to a “conclusion” in one way or another. Second, for an interested reader phrases
like “we prove” are also meant in the sense that the author and the reader go through a “proof”
together to check if it is correct.
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Chapter 1

Preface

1.1 Interaction between Light and Matter

Although the interaction between light and matter determines most of our daily experience (the
other bigger part being due to gravitation), a detailed mathematical study of this natural phe-
nomena had to wait until James C. Maxwell published his Maxwell equations in the Royal
Society in 1864 and Hendrik A. Lorentz formulated his Lorentz force law 28 years later. In
their equations the electric field E and the magnetic field B are used to represent the physical
entity, which we call light, while the part of matter that may interact with light is modeled by the
charge source density ρ and the charge current density j. Maxwell’s equations are supposed to
describe the static as well as the time-dependent interaction of the electric and magnetic fields
with prescribed charge sources and charge currents while, in turn, the Lorentz force law rules
the classical motion of charges which are subject to prescribed electric and magnetic fields. One
of the great innovations of Maxwell’s equations was the description of radiation which was later
verified by Heinrich R. Hertz in 1888. With its help Nikola Tesla invented a radio device capa-
ble of wireless communication in 1894, and two years later Alexander S. Popov made the use
of radiation part of everyday life in form of the radio receiver at the All-Russia exhibition. The
interplay of mathematics and physics along the works of Lorentz, Hermann Minkowski, Albert
Einstein and many others in the late 19th and early 20th century led to the unification of the
electric and magnetic forces into one, the electromagnetic force. This development reduced the
initially more than 20 equations to two and gave a further insight into the symmetries and the
structure of space-time. The electric field E and the magnetic field B were no longer regarded as
separate entities but as one, namely the electromagnetic field F. Also in the early 20th century,
based on the work of Paul A. M. Dirac, Vladimir A. Fock, Werner K. Heisenberg and Wolfgang
E. Pauli, an embedding into quantum mechanics was accomplished which initiated the field of
quantum electrodynamics. Quantum electrodynamics was the prototype of modern field theory
that gave rise to the Standard Model which is supposed to describe the elementary properties of
matter and their interaction mediated by its gauge fields among which light, the photon field, is
one of them. Abdus Salam, Sheldon L. Glashow and Steven Weinberg succeeded in the further
unification of the weak and the electromagnetic interaction into the electroweak interaction. This
again initiated the dream of a grand unification of all elementary interactions (the electroweak,
the strong and the gravitational) into one theory.

Despite the undoubtedly enormous successes of classical and quantum field theory in the de-
scription of the interaction between light and matter, it turned out that there were two phenom-
ena whose mathematical description approved to be problematic and does not yet stand on solid
mathematical grounds: radiation reaction, the deceleration of radiating charges, and pair cre-
ation, the process of creation of a particle-antiparticle pair induced by an electromagnetic field:
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Radiation Reaction. Early on Max Abraham and Lorentz himself tried to include the effect
of radiation reaction into an electrodynamic theory by coupling the Maxwell equations to the
Lorentz force law. This way the Maxwell equations govern the time-evolution and the emission
and absorption of the electromagnetic field F by the charge source and current density (ρ, j)
generated by charged matter, while simultaneously, the Lorentz force law rules the motion of
the charged matter under the influence of the same field F. In these models whenever charged
matter is accelerated, an electromagnetic field (e.g. like the electrons in a radio antenna) will
be emitted. However, these just emitted field reacts back on its source to decelerate it such that
the emitting charge has to pay for the radiated energy by loss of its own kinetic energy; hence
the name radiation reaction or radiation damping. Unfortunately, these models work only for
extended charges and fail for point-like charges. At first sight the reason for this is only mathe-
matical. The field strength at position x of the electromagnetic field induced by a point charge
behaves roughly like one over the square of the distance between the position of the charge and
the point x, giving infinity (i.e. undefined) if x equals the position of the point charge. But right
there the Lorentz force needs to evaluate the field strength of F to compute the back reaction on
the charge. So for point charges the coupled Maxwell and Lorentz equations, however physi-
cally reasonable, make mathematically no sense. Nevertheless, from a physical point of view,
as for example discussed in [Fre25] and [Dir38], it would be very desirable to have an electro-
dynamic theory for point charges for the following reasons: First, the electrons which should be
described by such an electrodynamic theory are considered to be elementary particles having no
further structure. Even if in the future we might learn that electrons too have an inner structure,
at least on a classical scale, any electrodynamic theory should be robust enough to survive the
limit from extended charges to point charges (the classical electron radius lives on a length scale
of 10−15m!). Second, rigid extended charges, even if correctly Lorentz-boosted, are incompati-
ble with special relativity [Nod64]. And third, the shape of the charge distribution introduces an
unwanted arbitrariness into the theory of electrodynamics. Therefore, numerous attempts have
been made to reformulate the electrodynamic theory for point charges in order to obtain a math-
ematically well-defined theory. Examples are Dirac’s mass renormalization program [Dir38],
the Born-Infeld theory [BI34] and Wheeler-Feynman electrodynamics [WF45, WF49]. Dirac
suggested to keep the Maxwell equations but to replace the Lorentz force law by the so-called
Lorentz-Dirac equation which is motivated by a mass renormalization recipe. This approach is
plagued by the fact that the Lorentz-Dirac equation allows for unphysical (dynamically unstable,
so-called run-away) solutions which arise as an artefact from Dirac’s renormalization program
[Dir38, Roh94, Spo04] in which the masses of the charges acquire a negative sign [BD01].
Concerning the second approach, Born and Infeld proposed to keep the Lorentz force law but to
replace the Maxwell equations by a nonlinear variant. The role of the nonlinearity is to smoothen
out the aforementioned singularities of the electromagnetic fields on the trajectories of the point
charges. Though the regularity of the electrodynamic fields suffices to yield finite self-energies
and even to formulate a Hamilton-Jacobi theory, it is insufficient to render the Lorentz force law
well-defined [Kie04]. In contrast to these two attempts, which in some sense present ad hoc
cures of the ill-defined system of Maxwell-Lorentz equations and which are plagued by new
difficulties, Wheeler-Feynman electrodynamics (WFED) presents a conceptually new formula-
tion of electrodynamics. It is based on an old and well-known idea of the action-at-a-distance
(free of electromagnetic fields) which is by definition free of divergences and fully compatible
with special relativity. The action-at-a-distance idea actually goes back to Carl F. Gauß [Gau45],
Karl Schwarzschild [Sch03], Hugo M. Tetrode [Tet22] and Adriaan D. Fokker [Fok29]. In the
case of prescribed charge trajectories the equations of motion of another charge in WFED turns
into the Lorentz force law. Furthermore, one can show for large many particle systems that
their trajectories are also solutions to the aforementioned Lorentz-Dirac equation if they fulfill
a certain thermodynamical condition, the so-called absorber assumption. This is important as,
according to the present state of knowledge, some so-called physical solutions to the Lorentz-
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Dirac equation (the ones which do not exponentially fast approach speed of light) are believed
to correctly account for classical radiation reaction – although somehow surprisingly it has not
been thoroughly tested in experiments yet [Spo04]. It must be stressed that as in WFED the
Lorentz-Dirac equation is only fulfilled effectively whenever the absorber assumption holds, the
charge trajectories always obey the Wheeler-Feynman equations. This way unphysical solutions
are unexpected in WFED as no renormalization procedure is involved and in particular as the
masses of the charges stay untouched. The price for these advantages is a mathematically more
difficult equation of motion which includes state-dependent advanced and delayed arguments
and lacks a physically satisfactory existence and uniqueness theory.

Pair Creation. In the early 20th century it was soon realized that the Dirac equation which
governs the quantum mechanical motion of electrons gives rise to a major problem. It allows
for electrons with positive and negative kinetic energy, and, even worse, transitions from the
positive to the negative part of the energy spectrum and vice versa. This aggravates the interpre-
tation of its solutions as wave functions describing electrons problematic. So either the Dirac
equation was not completely correct or one had to find an explanation why we do not see elec-
trons with negative kinetic energy. Dirac himself proposed a solution in 1930 [Dir30] which
was later republished in [Dir34]. He assumed that all negative energy states for which the Dirac
equation allows are occupied by electrons which make up the Dirac sea. Then the Pauli exclu-
sion principle would prevent a positive energy state to make a transition to a negative one since
they are all filled. The Dirac sea, however, cannot be observed due to its homogeneity. Only a
departure from this homogeneity, for example, in form of a transition of a Dirac sea electron to
the positive kinetic energy under the influence of a nearby nuclei should be observable. Each
of such transitions would leave a hole in the Dirac sea, which then effectively behaves like an
electron but with opposite charge. The electron with positive kinetic energy together with the
hole are then called an electron-positron pair. The reunion of the hole and the electron is re-
ferred to as pair annihilation. Three years later Carl D. Anderson verified Dirac’s predictions
experimentally [And33]. However, though powerful, the description of pair creation with the
help of the Dirac sea comes at the cost of having to deal with an infinitely many particle system
in which quantities such as the charge current diverge and, apart from the scattering theory, the
time-evolution of the Dirac sea on a fixed Fock space was only constructed for external fields
with zero magnetic components [SS65, Rui77].

As it stands, though there exist physical recipes (renormalization programs of all kinds) that
yield predictions which are in great agreement with the according experiments, a mathematically
sound and physically satisfactory description of radiation reaction and pair creation has not been
established yet.

1.2 Scope of this Work

This brings us to the mathematical contributions of this work which are guided by the following
two objectives:

1. Existence and Uniqueness results for classical dynamics which are capable of describing
radiation reaction.

2. Existence and Uniqueness results for quantum dynamics which are capable of describing
pair creation.

The reason why we study the first objective classically is the following: In simple toy models
of quantum electrodynamics like the Nelson model it is not difficult to see that the ultraviolet
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divergences (the mentioned singularities of the electrodynamic field) are inherited from classi-
cal field theory [Dec04]. Therefore, we believe that it is necessary that one first understands
radiation reaction classically before considering its quantum analogue – especially as quantum
theory did not provide any mechanism that could possibly cure the problem, which has been
wishful thinking for a long time (in fact, quantum theory brought along an additional problem,
the so-called infrared divergence).

The first objective is content of Part Ip.7. After an introduction into the classical description of
radiation reaction in Chapter 2p.7, the following two chapters give an existence and uniqueness
result for global solutions to the Maxwell-Lorentz equations with and without self-interaction,
cf. Chapter 3p.15, means to speak about Wheeler-Feynman solutions in terms of initial values of
the Maxwell-Lorentz equations without self-interaction and an existence result for solutions to
the Wheeler-Feynman equations on finite time intervals, cf. Chapter 4p.43.

The second objective is treated in Part IIp.105 where we construct a time-evolution for systems
with an infinite number of Dirac electrons subject to a classical external field and identify the
degree of freedom in the construction.

Besides the relevance of the presented mathematical results in contemporary classical and quan-
tum field theory we regard them also as first steps towards a different electrodynamic theory
which is content of Part IIIp.159 of this work. There we conclude with a brief outlook and dis-
cussion of an informal and yet not quite complete proposal for a divergence free electrodynamic
theory for point-like charges, the so-called electrodynamic absorber theory, in which the Dirac
sea represents the absorber medium proposed by Wheeler and Feynman so that radiation reaction
as well as pair creation emanate from one and the same physical origin.

The mathematics in the first two parts are self-contained and can be read independently while
the physical content will converge towards the end of this work. The third and last part contains
solely physics only on an informal but conceptual level. A summary of the used notation can be
found at the end.



Part I

Radiation Reaction





Chapter 2

Complete Absorption and Radiation
Reaction

The purpose of this chapter is to put the later presented mathematical results of this part in per-
spective to their application in classical electrodynamics. Classical electrodynamics is usually
seen [Jac98, Roh94] as a theory about the interaction between light and charged matter. Light
is represented in the theory as the electrodynamic field which is an antisymmetric second-rank
tensor F on 3 + 1 dimensional Minkowski space M := (R × R3, g) for which we use the metric
tensor g = diag(1,−1,−1,−1), while charged matter is represented by the four-vector current
density j onM. For prescribed j the time-evolution of the electrodynamic field F is ruled by the
Maxwell equations Maxwell

equations

∂νFµν(x) = −4π jµ(x) and ∂γFαβ(x) + ∂αFβγ(x) + ∂βFγα(x) = 0.

Throughout this exposition we use Einstein’s summation convention for Greek indices, i.e.
xµyµ =

�3
µ,ν=0 xµgµνyν, and physical units such that the speed of light is c = 1. As addressed

in the preface, Maxwell’s equations give rise to a description of electro- and magneto-statics as
well as radiation.

Moreover, given an electromagnetic field F the motion of N point-like charges, which are rep-
resented by R-parameterized world lines τ �→ zµi (τ) for labels 1 ≤ i ≤ N in Minkowski spaceM,
obey the Lorentz force law Lorentz force

law

miz̈
µ
i (τ) = eiFµν(zi(τ)) żi,ν(τ)

where mi � 0 denotes the mass and ei is a coupling constant (their charge). The overset dot
denotes a differentiation with respect to the parametrization τ of the world line. In other words,
the Lorentz force describes the motion of test charges in an external field.

While for great many physical applications it suffices to consider only either the Lorentz force
law for a given electrodynamical field or vice versa the Maxwell equations for a given four-vector
charge current density only, radiation reaction can only be described by a fully interacting system
of charges and fields. The first approach to include radiation reaction in the Maxwell-Lorentz
equations is usually done in the following way. One defines the four-vector current density jµi as
induced by the world line of the ith given by Four-vector

current density

induce by ith
charge trajectoryjµi (x) = ei

�

zi

dzµi δ
4(x − z) = ei

�

R
dτ żµi (τ)δ4(x − zi(τ)).

The integral over dzµi denotes the integral over the world line of the ith charge and δ4 denotes
the four-dimensional Dirac delta distribution. Due to the linearity of the Maxwell equations we
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may split up the electromagnetic F into a sum of fields Fi, each induced by the ith four-vector
current density, so that the coupled equations, usually called the Maxwell-Lorentz equations
with self-interaction (ML+SI equations), readML+SI

equations

∂νF
µν
i (x) = −4π jµi (x) and ∂γFαβi (x) + ∂αFβγi (x) + ∂βFγαi (x) = 0 (2.1)

together with

miz̈
µ
i (τ) = ei

N�

j=1

Fµνj (zi(τ)) żi,ν(τ) (2.2)

for indices 1 ≤ i ≤ N. At first sight it seems appealing that the j = i summand in the Lorentz
force law lets the ith field, which is induced by the ith charge, react back on it. When looking
informally at the constants of motion of this system of N charges and fields, it appears that
whenever a charge accelerates, the energy put into the radiation fields has to be paid for by loss
of kinetic energy of the charge. However, at second sight one realizes a serious problem. For its
discussion we need the explicit form of solutions to the Maxwell equations (2.1) for prescribed
four-vector current densities ji. It is convenient to write a field F as

Fµν = ∂µAν − ∂νAµ (2.3)

for some four-vector field A on Minkowski space. The existing freedom in the choice of A can be
restricted further to fulfill the gauge condition ∂µAµ = 0. Then the left-hand side of the Maxwell
equations can be written as

�Aµi = −4π jµi (2.4)

where � = ∂µ∂µ denotes the d’Alembert operator. Let us denote the advanced, respectively,
retarded Green’s function by �±(x) whereas “+” stands for advanced, respectively, “−” stands
for retarded. These Green’s functions are uniquely determined by the condition �±(x) = 0 for
±x0 > 0. With the help of these Green’s functions one finds two special solutions to the Maxwell
equationsLiénard-

Wiechert

potentials

Aµi,±(x) =
�

M
d4y �±(x − y) jµi (y) = ei

�

M
d4y �±(x − y)

�

zi

dzµi δ
4(y − zi), (2.5)

the so-called Liénard-Wiechert potentials. Written more explicitly they read

Aµi,±(x) = ei
żµi (τi,±(x))

(x − zi(τi,±(x)))ν żνi (τi,±(x))
(2.6)

for world line parameters τi,± which are implicitly defined through

z0
i (τi,+(x)) = x0 + �x − zi(τi,+(x))� and z0

i (τi,−(x)) = x0
− �x − zi(τi,−(x))�

where we use the notation x = (x0, x) for a space-time point in Minkowski space, x0 being the
time and x the space component with Euclidian norm � · �. By linearity of the wave equation
(2.4) any solution Ai is of the form

Aµi = Aµi,0 +
1
2

�
Aµi,+ + Aµi,−

�
(2.7)

where Ai,0 fulfills the free wave equation �Aµi,0 = 0. Hence, by the form of the equations (2.6)
the electromagnetic Ai which is induced by the ith charge trajectory is singular on this trajectory.
Translating the potentials Ai back into fields Fi by (2.3) while keeping the appropriate indices
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therefore yields that also Fi is singular on the ith charge trajectory. But exactly there the Lorentz
force law (2.2) needs to evaluate them in order to compute the back reaction on the charge. In
other words, the coupled set of equations, i.e. the Maxwell equations (2.1) together with the
Lorentz force law (2.2) are ill-defined and there is no way to make sense of of the Maxwell-
Lorentz equations for point-like charges.

This fact compels us to consider a different formulation of electrodynamics which is based on the
absorber idea of Wheeler and Feynman and wich we shall call electrodynamic absorber theory:

The electrodynamic absorber theory is a theory about the motion of N charges and their N
electrodynamic fields which obey the Maxwell equations (2.1p.8) ML-SI equations

∂νF
µν
i (x) = −4π jµi (x) and ∂γFαβi (x) + ∂αFβγi (x) + ∂βFγαi (x) = 0 (2.1)

together with a different Lorentz force law

miz̈
µ
i (τ) = ei

�

j�i

Fµνj (zi(τ)) żi,ν(τ). (2.8)

We shall refer to these equations as Maxwell-Lorentz equations without self-interaction which
we abbreviate with: ML-SI equations. Before we go on let us capture four important points:

1. As long as charge trajectories do not cross, there is no reason to expect ill-defined equa-
tions of motion as the self-interaction summand j = i is explicitly excluded in the Lorentz
force law.

2. The equations are relativistically invariant and the charges are mathematically treated as
point particles.

3. With prescribed fields the world lines of the charges obeying the ML-SI equations agree
with the ones of usual electrodynamics.

4. With prescribed charge current densities the fields obeying the ML-SI equations agree
with the one of usual electrodynamics.

Now Radiation

reaction

, since self-interaction was explicitly excluded the question is how this theory is capable
of describing radiation reaction? The answer is: By special initial conditions which we shall
describe now. Supposing the total number of charges N is very large and they are distributed in a
sufficiently homogeneous way, then it is conceivable that for a test charge at space-time point x in
some distance to all of the N particles the net force acting on it is only due to the free fields Fi,0,
cf. (2.7p.8). We shall refer to such a homogeneous sea of N charges as the absorber or absorber
medium and whenever we say outside of the absorber we mean in the space-time region that is
in a sufficient spatial distance to all the charges of the absorber medium. In mathematical terms
according to the Lorentz force (2.8), the condition of a test charge at x outside of the absorber
being subject to free fields only reads Absorber

assumption

N�

i=1

Fi(x) ≈
N�

i=1

Fi,0(x) (2.9)

which in analogy to Wheeler-Feynman electrodynamics we shall call the complete absorption
assumption or simply absorber assumption. Here, “≈” should remind us that equality holds
only in a thermodynamic limit N → ∞ and in sufficient distance to the absorber. However, in
the following we will for simplicity just replace the “≈” by an “=”. By (2.7p.8) this equation turns
into

N�

i=1

�
Fi,+ + Fi,−

�
= 0 i.e.

N�

i=1

�
Ai,+ + Ai,−

�
= 0
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which is an equation that has been studied by Wheeler and Feynman in [WF45, Equation (37)].
They argued that since

�N
i=1 Fi,+, respectively

�N
i=1 Fi,−, represents a converging, respectively

outgoing, wave at large distances to the absorber which cannot interfere destructively for all
times. Therefore, outside of the absorber it must hold that

�N
i=1 Ai,+ = 0 =

�N
i=1 Ai,− and, hence

also that

N�

i=1

�
Ai,− − Ai,+

�
= 0. (2.10)

This expression is a solution to the free wave equation as �(Ai,−−Ai,+) = 0 by (2.4p.8). Therefore,
we may finally conclude that (2.10) holds everywhere. Translating this result back in terms of
fields (2.9p.9) implies

N�

i=1

�
Fi,− − Fi,+

�
= 0 (2.11)

everywhere in Minkowski space. We can now use this condition together with the Lorentz force
(2.8p.9) to derive the effective Lorentz force on the ith charge in the absorberEffective Lorentz

force under

complete

absorption

miz̈
µ
i (τ) = ei

�

j�i

Fµνj (zi(τ))żi,ν(τ) = ei



�

j�i

F j,0 +
�

j�i

F j,− +
1
2
�
Fi,− − Fi,+

�



µν

(zi(τ)) żi,ν(τ).

(2.12)

Thus, according to the three terms on the right-hand side, the ith particle effectively feels a
Lorentz force due to the free fields of all other charges, the retarded fields of all other charges
and a third term which turns out to be the same that Dirac made responsible for radiation reaction
in [Dir38]. He computed its value to be

1
2

�
Fµνi,− − Fµνi,+

�
(zi(τ)) =

2
3

e2
i

�...z µi (τ)żνi (τ) −
...z νi (τ)żµi (τ)

�
(2.13)

which by involving the third derivative displays its dissipative behavior from which the name
radiation damping comes from. Another remarkable feature of the ML-SI equations is that in
contrast to any other theories describing radiation damping, the ML-SI equations still allow for
bound states (the Schild solutions [Sch63]). Let us capture the discussed features:

1. An accelerating charge effectively feels a damping due to the sum of the advanced fields
of the other absorber charges acting on it.

2. No renormalization program like in [Dir38] was used to derive the radiation damping term
so that model parameters like the mass stay unchanged.

3. The description of radiation damping with the ML-SI equations does not rule out bound
states.

Before we continue we need to make three remarks with regard to the effective Lorentz force
(2.12):

FirstNo “unphysical”

run-away

solutions

, if the complete absorption assumption (2.9p.9) holds, then any solution to the Lorentz force
equation (2.8p.9) is also a solution to the effective Lorentz force equation (2.12). However, since
by equation (2.13) the effective Lorentz force involves three derivatives with respect to the world
line parametrization τ it naturally allows for more solutions than the Lorentz force (2.8p.9) which
involves only two such derivatives. Therefore, not every solution to the effective Lorentz force
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equation can be considered as being physical, simply because they do not necessarily obey the
fundamental equation (2.8p.9) of the theory. It is expected that such unphysical solutions are, for
example, the so-called run-away solutions which were already studied by Dirac in [Dir38] as
they are due to the fact that the negative bare masses which are needed for the renormalization
procedure lead to dynamical instability as argued in [BD01].

Second, we observe that both terms
�

j�i F j,0 as well as 1
2
�
Fi,− − Fi,+

�
are free fields which raises

the question if they could (at least partially) cancel each other for all times so that radiation
damping cannot be observed. Though one might be able to find initial conditions to the ML-SI
equations such that this is the case (which is not trivial as a change of Fi,0 implies a change of all
world lines which in turn implies a change of 1

2
�
Fi,− − Fi,+

�
), for general initial conditions this

seems to be a rather improbable conspiracy. In case of doubt, the term
�

j�i F j,0 can be measured
in the vicinity of a world line of a charge by a precise measurement of the curvature of the world
line of the ith charge as one can create situations in which a charge with constant velocity feels
no force (e.g. in a Faraday cage or Millikan experiment) such that we may set

�

j�i

�
F j,0 + F j,−

�
≈ 0.

If the charge is then accelerated, for example by gravitation, one would have direct access to
measure the damping term 1

2
�
Fi,− − Fi,+

�
. There are of course more sophisticated ways to mea-

sure this term [Spo04, Chapter 9.3]. However, it has to be noted that until today no quantitative
measurement of the radiation damping term has been conducted. Only qualitative measurements
via the energy loss predicted by Lamor’s formula have been experimentally verified.

Third, the effective Lorentz force is still time-symmetric because from (2.11p.10) it also follows
that

miz̈
µ
i (τ) = ei

�

j�i

Fµνj (zi(τ))żi,ν(τ) = ei



�

j�i

Fµνj,0 +
�

j�i

Fµνj,+ +
1
2

�
Fµνi,+ − Fµνi,−

�

 (zi(τ))żi,ν(τ).

This is not surprising because both the ML-SI equations as well as the absorber assumption
are completely time-symmetric. The irreversible phenomena of radiation must therefore be at-
tributed to special initial conditions as it is always the case in statistical mechanics.

To continue the discussion we finally note that the Lorentz force (2.8p.9) can informally be derived
by variation principle for a given external field. The construction of the action principle is as
follows. Let Ai,0(x)|x0=0 be given at time x0 = 0. Then compute with this initial value the
corresponding unique solution to the free wave equation �Aµi,0(x) = 0. The world line of the N
charges then obey the principle of minimal action for the action integral Action principle

for ML-SI

S [z1, . . . , zN] = −
N�

i=1

mi

�

zi

�
dzµi dzi,µ −

1
2

N�

i=1

ei

�

zi

dzi,µ

N�

j�i

e j

�

z j

dzµj δ
�
(zi − z j)µ(zi − z j)µ

�
+

−

N�

i=1

ei

N�

j�i

�

zi

dzi,µA
µ
j,0(zi)

Minimization with respect to the world lines z1, . . . , zn yields

miz̈
µ
i (τ) = ei

�

j�i

�
Fµνj,0 +

1
2

�
Fµνj,+ + Fµνj,−

��
(zi(τ))żi,ν(τ) (2.14)

where we used (2.3p.8) and the Liéard-Wiechert potentials (2.6p.8). By construction, the world
lines z1, . . . , zN obeying this equation are a solution to the ML-SI equations, i.e. the Lorentz
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force (2.8p.9) and the Maxwell equations (2.1p.8), for any initial conditions such that the initial
fields are given by

Fi(x)
���
x0=0 =

�
Fi,0 +

1
2
�
Fi,+ + Fi,+

�
�

(x)
�����
x0=0

where we have used (2.3p.8) again.

This formulation suggests to look at an important special case of the solution to the ML-SI
equations: Consider initial conditions such that

Fi,0(x)|x0=0 = 0 for some time x0 = 0. (2.15)

Because Fi,0 is a free field it follows that it must be zero for all times. Hence, the Lorentz force
(2.14p.11) simplifies toWheeler-

Feynman

equations of

motion miz̈
µ
i (τ) = ei

1
2
�
Fi,+ + Fi,−

�µν (zi(τ)) żi,ν(τ) (2.16)

which is the well-known equation of motion of Wheeler-Feynman electrodynamics. Note that
since the fields Fi,± are functionals of the world line zi as defined in (2.6p.8), the fields are no
dynamical degrees of freedom anymore. In the special case of initial conditions (2.15) we wind
up with a theory only about world lines of charges. Hence, on the one hand, as we have al-
ready begun, the ML-SI equations can be regarded as the fundamental equations of a theory
about charges and fields which includes Wheeler-Feynman electrodynamics, a theory only about
charges, as a special case (provided that initial conditions (2.15) exist). On the other hand, one
could regard Wheeler-Feynman electrodynamics as the fundamental theory because it is only
about charges and therefore certainly more minimal and maybe more appealing. The reason
why we started with the ML-SI equations instead of the Wheeler-Feynman equations is that
the Wheeler-Feynman equations are more subtle than they look and it is not clear at all what a
corresponding existence and uniqueness theory of solutions would look like (furthermore, ac-
cording to the above reasoning everything we say for the ML-SI equations holds also for the
Wheeler-Feynman equations). Since the fields on the right-hand side (2.16) are functionals of
the charge trajectories as defined in (2.6p.8), the Wheeler-Feynman equations form a coupled set
of differential equations with state-dependent delayed and advanced arguments. This type of
equation cannot be treated with conventional mathematical tools from the theory of nonlinear
partial differential equations and has been sparsely studied in the literature. While some special
solutions to the Wheeler-Feynman equations of motions were found [Sch63], general existence
of solutions to these equations has only been settled in the case of restricted motion of two equal
charges on a straight line in R3 [Bau97]. An even greater, outstanding problem is the question
how the solutions can be uniquely characterized, and above all if it is possible to pose a well-
defined initial value problem for Wheeler-Feynman electrodynamics by specifying Newtonian
Cauchy data, i.e. position and momenta of the charges at time zero.

We summarize the last facts:

1. In the electrodynamic absorber theory, radiation reaction is a statistical mechanical, multi-
particle phenomena.

2. When the complete absorption assumption holds the radiation reaction on ith charge due
to the (N − 1) other charges is completely determined by the motion of the ith charge.

3. ML-SI can be formulated via a variational problem and includes Wheeler-Feynman elec-
trodynamics as a special case.
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The Overview of the

mathematical

results

physical reasoning so far gave rise to two promising ways to account for radiation reaction,
via the ML-SI equations or via the Wheeler-Feynman equations. Here starts our mathemat-
ical work: In Chapter 3p.15 we discuss the issue of existence and uniqueness of solutions to
the Maxwell-Lorentz equations. This will also provide a characterization of possible Wheeler-
Feynman solutions and a way to reformulate the question of the existence of Wheeler-Feynman
solutions for Newtonian Cauchy data. Both topics are content of Chapter 4p.43 where we also
show existence of solutions to the Wheeler-Feynman solutions on finite time intervals for New-
tonian Cauchy data. However, in order to circumvent the issue of crossing trajectories we treat
only the Maxwell-Lorentz and Wheeler-Feynman equations for classical, rigid, non-rotating
charge densities instead of point-like charges, even though this clashes with our reasoning that
a physical theory should be about point-like charges argued in the preface. The limit to point-
like charges remains open but note that in contrast to the Maxwell-Lorentz equations with self-
interaction, the ML-SI as well as the Wheeler-Feynman equations bare no mathematical obsta-
cles for such a limit; e.g. two charges of equal sign surely do not lead to a crossing of trajecto-
ries – even with charges of opposite sign a crossing of the trajectories is prohibited for almost
all initial conditions by angular momentum conservation. In other words, the limit to point-like
sources in the case of ML-SI and Wheeler-Feynman equations is then only mathematical work
but does not require any further physical input like Dirac’s renormalization program. In partic-
ular, we expect that besides a change of the used norms the presented proofs will conceptually
not change much for point-like sources.
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Chapter 3

Maxwell-Lorentz equations of Motion

3.1 Chapter Overview and Results

This chapter treats the initial value problem of the so-called Maxwell-Lorentz equations for
rigid charges. These equations are essentially the equations (2.1p.8) and (2.2p.8) discussed in
the preceding chapter with the difference that the charges are smeared out by some smooth
and compactly supported functions on R3. These equations then describe a system of N ∈ N
classical, non-rotating, rigid charges interacting with their electromagnetic fields. Using non-
relativistic notation in a special reference frame (cf. Section 5.1p.95) they are formed by coupling
the Lorentz force law: Lorentz force

law

∂tqi,t = v(pi,t) :=
σipi,t�
m2

i + p
2
i,t

∂tpi,t =

N�

j=1

ei j

�
d3x �i(x − qi,t)

�
E j,t(x) + vi,t ∧ B j,t(x)

�
,

(3.1)

to the Maxwell equations: Maxwell

equations

including the

constraints

∂tEi,t = ∇ ∧ Bi,t − 4πv(pi,t)�i(· − qi,t)
∂tBi,t = −∇ ∧ Ei,t

∇ · Ei,t = 4π�i(· − qt,i)
∇ · Bi,t = 0.

(3.2)

The equations on the right-hand side are commonly called the Maxwell constraints. We denote
the partial derivative with respect to time t by ∂t, the divergence by ∇· and the curl by ∇∧.
Vectors in R3 are written as bold letters, e.g. x ∈ R3. At time t the ith charge for 1 ≤ i ≤ N
is situated at position qi,t in space R3 and has momentum pi,t ∈ R

3. It carries the classical mass
mi ∈ R \ {0}. The geometry of the rigid charge is given in terms of a charge distribution (i.e.
form factor) �i which is assumed to be an infinitely often differentiable function R3 → R with
compact support. The factors σi := sign(mi) are introduced to allow also for negative masses,
while the matrix coefficients ei j ∈ R for 1 ≤ i, j ≤ N allow to adjust the action of the jth field
on the ith particle. Each charge is coupled to an own electric and magnetic field Ei,t and Bi,t,
which are R3 valued functions on R3. Whereas in the classical literature only one electric and
magnetic field is considered, we have given every charge its own field which will later permit us
to explicitly exclude self-interaction.

While the existence and uniqueness theory build in this chapter will not depend on a particular
choice of the coupling matrix (ei j)1≤i, j≤N we still want to point out relevant choices for classical
electrodynamics: The first is

ei j = 1 for 1 ≤ i, j ≤ N. (ML+SI)
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Note that for this choice the ith field generated by the ith charge is allowed to act back on the
charge. We refer to this case as the Maxwell-Lorentz equations with self-interaction: ML+SI
equations. By linearity of the Maxwell equations this case is equivalent to having only one elec-
tric Et =

�N
i=1 Ei,t and one magnetic field Bt =

�N
i=1 Bi,t. Several well-known difficulties such

as dynamical instability and unavoidable divergences in the point particle limit are connected to
this approach. Recovering the mass renormalized Lorentz-Dirac equation [Dir38] by an appro-
priate point particle limit as well as recovering the Maxwell-Vlasov equations in an appropriate
hydrodynamic scaling limit are considered outstanding problems. The second and with respect
to our argument in the preceding chapter more important choice is

ei j = 1 − δi j =

�
1 for i � j
0 otherwise for 1 ≤ i, j ≤ N. (ML-SI)

Here the self-interaction is explicitly excluded. This choice we shall refer to as Maxwell-Lorentz
equations without self-interaction: ML-SI equations.

LetSketch of the

mathematical

results in this

chapter

us sketch the mathematical results in this chapter. For the discussion it is convenient to write
equations (3.1p.15) and (3.2p.15) in a more compact form:

ϕt = Aϕt + J(ϕt) (3.3)

where we use the notation ϕt := (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N , a linear operator A given by the expres-
sion

Aϕt := (0, 0,∇ ∧ Bi,t,−∇ ∧ Ei,t)1≤i≤N

and a nonlinear operator J given by the expression

J(ϕt) :=


v(pi,t),

N�

j=1

ei j

�
d3x �i(x − qi,t)

�
E j,t(x) + vi,t ∧ B j,t(x)

�
,−4πv(pi,t)�i(· − qi,t, 0




1≤i≤N

.

At first we regard (3.3) as an abstract nonlinear partial-differential equation for solutions t �→ ϕt
taking values in an abstract Banach space and work out conditions on A and J which suffice for a
global existence and uniqueness theorem of solutions for this Banach space. We use the standard
methods of nonlinear functional analysis. First, we demand the linear operator A to generate a
group (Wt)t∈R on its domain so that we are able to rewrite (3.3) in its integral form as

ϕt = Wtϕ +

� t

0
ds Wt−sJ(ϕs) (3.4)

for any initial value ϕt|t=0 = ϕ. Furthermore, we demand that the nonlinear operator J is Lips-
chitz continuous in its argument. For small enough times t this leads to the fact that the integral
equations (3.4) read as a fixed point map on an appropriate Banach space is a contraction map
which provides local existence of solutions by Banach’s fixed point theorem. Under the as-
sumption of an a priori bound on solutions to (3.4) local existence can be extended to global
existence for all times. Uniqueness is simply implied by the uniqueness assertion of Banach’s
fixed point theorem. The precise existence and uniqueness assertion together with its proof is
given in Section 3.3p.21.

Having this abstract result the next question is in which Banach space solutions t �→ ϕt of the
Maxwell-Lorentz equations take their values. Usually one would allow solutions to the ML+SI
equations to have electric and magnetic fields in L2(R3,R3), the space of square integrable R3

valued functions on R3, which would imply that the energy of the system is finite at all times.
However, as we have discussed in the introductory Chapter 2p.7 Wheeler-Feynman solutions are
also solutions to the ML-SI equations and in order to exploit this feature we need to choose the
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Banach space of solutions big enough to allow for all physically expected Wheeler-Feynman
solutions – in other words we need to allow for electric and magnetic fields which are of the
Liénard-Wiechert form of the charge trajectories. By the form of the Liénard-Wiechert fields
(2.6p.8), which are in our case also smeared out by the charge densities �i, one can compute that
it is sufficient for Liénard-Wiechert fields to be in L2 if the corresponding charge trajectories
have accelerations that decay for times t → ±∞ as well as bounded velocities with a bound
smaller than one. At the present state of knowledge not much is known about Wheeler-Feynman
solutions except the analytic Schild solutions [Sch63] and Bauer’s existence theorem on the
straight line [Bau97]. Bauer’s result states that the Wheeler-Feynman solutions on a straight
line are exactly of that form but, unfortunately, the Schild solution which describes two charges
of opposite sign moving in circular orbits around each other implies that the modulus of the
acceleration of the charges does not decay for times t → ±∞. Hence, the corresponding Liénard-
Wiechert fields are not necessarily in L2. As we want to allow at least for solutions which behave
as badly as the Schild solution we consider the space L2

w for the fields which comprises all
functions F such that

√
wF is in L2 for some smooth weight function w. This way we deliver the

missing decay of the accelerations of the charges. The properties of these weighted spaces and
their corresponding Sobolev spaces are the content of Section 3.4p.25. Note that weighted function
spaces appear naturally in the Fourier characterization of Sobolev spaces with weight functions
w that increase at spatial infinity in order to make the functions more regular. However, we use
them for weight functions w that decay at spatial infinity in order to allow for more irregular
functions.

With this consideration in mind we specify the Banach space in which the possible solutions
t �→ ϕt take their values to be

Hw :=
N�

i=1

R3
⊕ R3

⊕ L2
w(R3,R3) ⊕ L2

w(R3,R3)

for any smooth and non-zero weight function decaying slower than exponentially at spatial in-
finity. Last but not least it is left to show that the abstract existence of uniqueness theorem for
(3.3p.16) holds also on Hw. First, we need to check if A generates a group (Wt)t∈R on its natural
domain in Hw. Because of the weight the measure in L2

w is not translational invariant anymore
and we cannot expect A to be self-adjoint. Therefore, we make use of the Hille-Yosida theorem
to show the existence of the group (Wt)t∈R which relies on the resolvent properties of A. Sec-
ond, the Lipschitz continuity of the nonlinear operator J must be checked which is a long but
straight-forward computation. And finally, we need an a priori estimate for solutions to (3.4p.16)
which is the most sensitive part of the proof as we do not have any constants of motion (for the
ML-SI equations there are no known constants of motion on equal time hypersurfaces whereas
for the ML+SI equations the energy is not well-defined for general fields in L2

w). Fortunately,
it turns out that the norm of J(ϕt) can be bounded by a constant that only depends on the po-
sition of the charges at time t times the norm of ϕt. As the speed of light is smaller than one,
we infer from this together with Gronwall’s Lemma that the norm of any solution to (3.4p.16) is
bounded uniformly on each compact time interval which is the needed a priori estimate. This
yields global existence and uniqueness of solutions to (3.3p.16) for initial conditions in the domain
of the operator A.

Furthermore, by the form of the Maxwell-Lorentz equations one sees that the Maxwell con-
straints are respected for all times by the time-evolution. This fact allows us to show that the
regularity of solutions depends on the regularity of the initial conditions and we show that the
Maxwell-Lorentz equations admit strong global solutions. This is the main content of Section
3.5p.30.

The Main resultsmain result of this chapter is:
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• Existence, uniqueness and regularity of solutions to the Maxwell-Lorentz equations for
N rigid charges, possibly negative masses and infinite energy initial conditions and both
cases with and without self-interaction, given in Theorem 3.5p.20 and Theorem 3.6p.20.

InLiterature review order to compare our results with the contemporary work in this field, we would like to call
attention to the following literature on the topic of Maxwell-Lorentz equations: In the case of
σi = 1, ei j = 1 and spherical symmetric charge densities �i for 1 ≤ i, j ≤ N, these equations are
usually referred to as the Abraham Model; see [Spo04] which provides an excellent and compre-
hensive overview of the topic of charge distributions interacting with their own electromagnetic
fields. The question of existence and uniqueness of solutions to these equations for one particle
interacting with its own fields, i.e. N = 1, σ1 = 1, e11 = 1, �i ∈ C

∞
c (R3,R) and square integrable

initial fields E1,t|t=0,B1,t|t=0, has been settled by two different techniques: While in [KS00] one
exploits the energy conservation to gain an a priori bound needed for global existence, a Gron-
wall argument was used in [BD01] which made it possible to allow also for negative masses
m1 < 0. Recent works also provided results on the long-time behavior of solutions in [KS00]
as well as in [IKS02] for soliton-like solutions, on the dynamical instability for negative masses
in [BD01] and on conservation laws in [Kie99]. Furthermore, a generalization to a spinning
extended charge was treated in [AK01] which also contains an exhaustive list of references on
the subject.

3.2 Solutions to the Maxwell-Lorentz equations of Motion

In this section we formalize and state the global existence and uniqueness theorem for so-
lutions to the Maxwell-Lorentz equations (4.34p.60) with the following choice of parameter:
�i ∈ C

∞
c (R3,R), ei j ∈ R and mi ∈ R \ {0} for 1 ≤ i, j ≤ N. As motivated in the introduc-

tion we aim at an initial-value problem for given positions and momenta p
0
i , q

0
i ∈ R

3 as well
as electric and magnetic fields E

0
i ,B

0
i : R3 → R3 at time t0 ∈ R general enough to allow

for Liénard-Wiechert fields produced by any strictly time-like charge trajectory, see Definition
4.5p.60, with bounded acceleration, i.e. there exists an amax < ∞ such that supt∈R �∂tv(pt)� ≤ amax,
as Cauchy data. Theorem 4.18p.66 states that such electric and magnetic Liénard-Wiechert fields
are in C∞(R3,R3), and Corollary 4.22p.69 gives us their decay behavior O([1 + �x − q0�]−1) for
�x� → ∞. Hence, in general these fields are not in L2(R3,R3) which forces us to regard the
initial value problem for the following, bigger class of fields:

Definition 3.1.Class of fields
and weight

functions

Let

W :=
�
w ∈ C∞(R3,R+ \ {0})

��� ∃ Cw ∈ R
+, Pw ∈ N : w(x + y) ≤ (1 +Cw�x�)Pww(y)

�
(3.5)

be the class of weight functions. For any w ∈ W and Ω ⊆ R3 we define the space of weighted
square integrable functions Ω→ R3 by

L2
w(Ω,R) :=

�
F : Ω→ R3

�����

�
d3x w(x)�F(x)�2 < ∞

�
.

For global regularity arguments we need more conditions on the weight functions which for
k ∈ N gives rise to the definitions:

W
k :=
�
w ∈ W

��� ∃ Cα ∈ R+ : |Dα
√

w| ≤ Cα
√

w, |α| ≤ k
�

(3.6)

and

W
∞ := {w ∈ W | w ∈ Wk for any k ∈ N}.
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The choice ofW is quite natural (compare [H0̈5]) as it provides a tool to treat the new measure
w(x)d3x almost as if it were translational invariant which it is not unless w equals a constant.
Applying its definition twice we obtain for all w ∈ W the estimate

(1 +Cw�y�)−Pww(x) ≤ w(x + y) ≤ (1 +Cw�y�)Pww(x) (3.7)

which also states that w ∈ W ⇒ w−1 ∈ W. In particular, the weight w(x) = (1 + �x�2)−1 is in
W because

w−1(x + y) := 1 + �x + y�
2
≤ 1 + (�x� + �y�)2

≤ (1 + �x�2)(1 + �y�)2, (3.8)

and therefore the desired Liénard-Wiechert fields, which are, as mentioned, of order O([1+ �x−
q0�]−1) for �x� → ∞, are in L2

w(R3,R3) for w(x) := (1 + �x�2)−1.

The space of initial values is then given by:

Definition 3.2. Phase Space for
the
Maxwell-Lorentz
equations of
Motion

We define the Newtonian phase space P := R6N, the field space

Fw := L2
w(R3,R3) ⊕ L2

w(R3,R3)

and the phase space for the Maxwell-Lorentz equation of motion

Hw := P ⊕ Fw.

Any element ϕ ∈ Hw consists of the components ϕ = (qi, pi,Ei,Bi)1≤i≤N, i.e. positions qi,
momenta pi and electric and magnetic fields Ei,Bi for each of the 1 ≤ i ≤ N charges.

Wherever not explicitly noted otherwise, any spatial derivative will for the rest of this section be
understood in the distribution sense, and the Latin indices shall run over the charge labels 1 . . .N.
We shall also need the weighted Sobolev spaces Hcurl

w (R3,R3) := {F ∈ L2
w(R3,R3) | ∇ ∧ F ∈

L2
w(R3,R3)} and Hk

w(R3,R3) := {F ∈ L2
w(R3,R3) | DαF ∈ L2

w(R3,R3) ∀ |α| ≤ k} for any k ∈ N.
Furthermore, we define the following operators:

Definition 3.3. Operator ALet A and A be given by the expressions

Aϕ =
�
0, 0, A(Ei,Bi)

�
1≤i≤N

:=
�
0, 0,−∇ ∧ Ei,∇ ∧ Bi)

�
1≤i≤N

.

for a ϕ = (qi, pi,Ei,Bi)1≤i≤N. The natural domain is given by

Dw(A) :=
N�

i=1

R3
⊕ R3

⊕ Hcurl
w (R3,R3) ⊕ Hcurl

w (R3,R3) ⊂ Hw.

Furthermore, for any n ∈ N ∪ {∞} we define

Dw(An) :=
�
ϕ ∈ Dw(A)

��� Akϕ ∈ Dw(A) for k = 0, . . . , n − 1
�
.

Definition 3.4. Operator JLet mi � 0, σi := sign(mi) and ei j ∈ R, 1 ≤ i, j ≤ N. Together with v(pi) :=
σipi√
p

2
i +m2

we define J : Hw → Dw(A∞) by the expression

J(ϕ) =


v(pi),

N�

j=1

ei j

�
d3x �i(x − qi)

�
E j(x) + v(pi) ∧ B j(x)

�
,−4πv(pi)�i(· − qi), 0




1≤i≤N

for a ϕ = (qi, pi,Ei,Bi)1≤i≤N ∈ Hw.
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Note that J is well-defined because �i ∈ C
∞
c (R3,R). With these definitions the Lorentz force law

(3.1p.15), the Maxwell equations (3.2p.15), neglecting the Maxwell constraints, can be collected in
the form

ϕ̇t = Aϕt + J(ϕt).

The two main theorems of this section are:

Theorem 3.5.Global existence
and uniqueness

for the
Maxwell-Lorentz

equations

Let the spaceHw and the operators A : Dw(A)→ Hw, J : Hw → Dw(A∞) be the
ones introduced in Definitions 3.2, 3.3 and 3.4. Let the weight function w ∈ W1 and let n ∈ N
and ϕ0 = (q0

i , p
0
i ,E

0
i ,B

0
i )1≤i≤N ∈ Dw(An) be given. Then the following holds:

(i) (global existence) There exists an n times continuously differentiable mapping

ϕ(·) : R→ Hw, t �→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N

such that d j

dt jϕt ∈ Dw(An− j) for all t ∈ R and 0 ≤ j ≤ n, which solves

ϕ̇t = Aϕt + J(ϕt) (3.9)

for initial value ϕt|t=0 = ϕ0.

(ii) (uniqueness) The solution ϕ is unique in the sense that if for any interval Λ ⊂ R there is
any once continuously differentiable function �ϕ : Λ → Dw(A) which solves the Equation
(3.9) on Λ and there is some t∗ ∈ Λ such that �ϕt∗ = ϕt∗ then ϕt = �ϕt holds for all t ∈ Λ. In
particular, for any T ≥ 0 such that [−T,T ] ⊆ Λ there exist C1,C2 ∈ Bounds such that

sup
t∈[−T,T ]

�ϕt�Hw ≤ C1

�
T, ��i�L2

w
, �w−1/2�i�L2 , 1 ≤ i ≤ N

�
�ϕ0
�Hw . (3.10)

and

sup
t∈[−T,T ]

�ϕt − �ϕt�Hw ≤ C2(T, �ϕt0�Hw , ��ϕt0�Hw)�ϕt0 − �ϕt0�Hw . (3.11)

(iii) (constraints) If the solution t �→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N obeys the Maxwell constraints

∇ · Ei,t = 4π�(· − qi,t), ∇ · Bi,t = 0 (3.12)

for one t = t∗ ∈ R, then they are obeyed for all times t ∈ R.

Theorem 3.6.Regularity of the
Maxwell-Lorentz

solutions

Assume the same conditions as in Theorem 3.5 hold. In addition, let w ∈ W2.
Let t �→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N be the solution to the Maxwell equations 3.9 for initial
value ϕt|t=0 = ϕ0 ∈ Dw(An). Now let n = 2m for some m ∈ N, then for all 1 ≤ i ≤ N:

(i) It holds for any t ∈ R that Ei,t,Bi,t ∈ H
�m

w .

(ii) The electromagnetic fields viewed as maps Ei : (t, x) �→ Ei,t(x) and Bi : (t, x) �→ Bi,t(x)
are in L2

loc(R4,R3) and have a representative in Cn−2(R4,R3) in their equivalence class,
respectively.

(iii) For w ∈ Wk for k ≥ 2 and every t ∈ R we have also Ei,t,Bi,t ∈ Hn
w and C < ∞ such that:

sup
x∈R3

�

|α|≤k

�DαEi,t(x)� ≤ C�Ei,t�Hk
w

and sup
x∈R3

�

|α|≤k

�DαBi,t(x)� ≤ C�Bi,t�Hk
w
. (3.13)

For their proofs we will need tools for the study of the L2
w(R3,R3) and corresponding weighted

Sobolev spaces, which we discuss in subsection 3.4p.25. But first we establish suitable conditions
in which we expect a well-defined initial value problem for (3.14p.21) on Banach spaces in sub-
section 3.3p.21. The proofs of the above theorems then follow by straightforward computations
which we show in 3.5p.30.
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3.3 A Global Existence and Uniqueness Result on Banach Spaces

For this subsection we assumeB to be only a Banach space, denote its norm by �·�B, and assume
the existence of operators A and J with the following properties:

Definition 3.7. Abstract
operator A

Let A : D(A) ⊆ B → B be a linear operator with the properties:

(i) A is closed and densely defined.

(ii) There exists a γ ≥ 0 such that (−∞,−γ) ∪ (γ,∞) ⊆ ρ(A), the resolvent set of A.

(iii) The resolvent Rλ(A) = 1
λ−A of A with respect to λ ∈ ρ(A) is bounded by 1

|λ|−γ , i.e. for all
φ ∈ B, |λ| > γ we have �Rλ(A)φ�B ≤ 1

|λ|−γ�φ�B.

For n ∈ N ∪ {∞} we define D(An) := {ϕ ∈ D(A) | Akϕ ∈ D(A) for k = 0, . . . , n − 1}.

Definition 3.8. Abstract
operator J

For an nJ ∈ N let J : D(A)→ D(AnJ ) be a mapping with the properties:

(i) For all 0 ≤ n ≤ nJ and ϕ,�ϕ ∈ D(A) there exist C3
(n),C4

(n) ∈ Bounds such that

�AnJ(ϕ)�B ≤ C3
(n)(�ϕ�B) �An(J(ϕ) − J(�ϕ))�B ≤ C4

(n)(�ϕ�B, ��ϕ�B) �ϕ − �ϕ�B.

(ii) For all 0 ≤ n ≤ nJ and T > 0, t ∈ (−T,T ) and any ϕ(·) ∈ C
n((−T,T ),D(An)) such that

dk

dtkϕt ∈ D(An−k) for k ≤ n, the operator J fulfills for j + l ≤ n − 1:

(a) d j

dt j AlJ(ϕt) ∈ D(An−1− j−l) and

(b) t �→ d j

dt j AlJ(ϕt) is continuous on (−T,T ).

With these operators we shall prove:

Theorem 3.9. Abstract global
existence and
uniqueness

Let A and J be the operators introduced in Definitions (3.7) and (3.8) then:

(i) (local existence) For each ϕ0 ∈ D(An) with n ≤ nJ, there exists a T > 0 and a mapping
ϕ(·) ∈ C

n((−T,T ),D(An)) which solves the equation

ϕ̇t = Aϕt + J(ϕt) (3.14)

for initial value ϕt|t=0 = ϕ0. Furthermore, dk

dtkϕt ∈ D(An−k) for k ≤ n and t ∈ (−T,T ).

(ii) (uniqueness) If �ϕ(·) ∈ C
1((−�T , �T ),D(A)) for some �T > 0 is also a solution to (3.14) and

�ϕt|t=0 = ϕt|t=0, then ϕt = �ϕt for all t ∈ (−T,T ) ∩ (−�T , �T ).

(iii) (global existence) Assume in addition that for any solution ϕ(·) of Equation (3.14) with
ϕt|t=0 ∈ D(An) and a T < ∞ there exists a constant C5 = C5(T ) < ∞ such that

sup
t∈[−T,T ]

�ϕt�B ≤ C5(T ) (3.15)

then (i) and (ii) holds for any T ∈ R.
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The proof uses the idea of the one in [BD01]. However, here we consider general operators A
and J on an abstract Banach space. This generality will later allow us to prove existence and
uniqueness of solutions to the Maxwell-Lorentz equations for any N particle system even in the
case of infinite energy initial conditions which generalizes the result in [BD01], where only one
particle with finite energy initial conditions has been considered. The strategy is to use the Hille-
Yosida theorem to show that A generates a contraction group (Wt)t∈R. Definition 3.7 collects all
properties needed for A to be a generator. Then, with the help of (Wt)t∈R we shall show the
existence and uniqueness of local solutions to the integral equation

ϕt = Wtϕ
0 +

� t

0
Wt−sJ(ϕs) ds

via Banach’s fixed point theorem. All these solutions, as we shall show, are readily also solutions
to the Equation (3.14p.21). Global existence is then achieved with the help of the assumed a priori
bound.

Lemma 3.10.Abstract
contraction

group

A introduced in Definition 3.7p.21 generates a γ-contractive group (Wt)t∈R on B,
i.e. a family of linear operators (Wt)t∈R on B with the properties that for all ϕ ∈ D(A),φ ∈ B and
s, t ∈ R:

(i) limt→0 Wt φ = φ

(ii) Wt+sφ = WtWsφ

(iii) Wtϕ ∈ D(A)

(iv) AWtϕ = WtAϕ

(v) W(·)ϕ ∈ C1(R,D(A))

(vi) d
dt Wtϕ = AWtϕ

(vii) �Wtφ�B ≤ eγ|t|�φ�B.

Proof. A simple application of the Hille-Yosida Theorem [HP74]. �

Next we prove local existence and uniqueness of solutions:

Proof of Theorem 3.9p.21.Proof of

Theorem 3.9p.21

(i) Since we want to apply Banach’s fixed point theorem, we define a
Banach space on which we later define our self-mapping. For T > 0 let

XT,n :=
�
ϕ(·) : [−T,T ]→ D(An)

���� t �→ A jϕt ∈ C
0((−T,T ),D(An)) for j ≤ n

and �ϕ�XT,n := sup
T∈[−T,T ]

n�

j=0

�A jϕt�B < ∞
�
.

(XT,n, � · �XT,n) is a Banach space because it is normed and linear by definition, and complete
because A on D(A) is closed (see Computation in Appendix 5.1p.97). Note that the mapping
t �→ Wtϕ0 is an element of XT,n because for all t ∈ R and j ≤ n) we have t → A jWtϕ0 = WtA jϕ0

which is continuous and �WtA jϕ0�B ≤ eγ|t|�A jϕ0�B by Lemma 3.10 and because ϕ0 ∈ D(An).
Let

MT,n,ϕ0 :=
�
ϕ(·) ∈ XT,n

���� ϕt|t=0 = ϕ
0, �ϕ(·) −W(·)ϕ

0
�XT,n ≤ 1

�
,

which clearly is a closed subset of XT,n. Next we show that

S ϕ0 : MT,n,ϕ0 → MT,n,ϕ0 ϕ(·) �→ S ϕ0 [ϕ(·)] := Wtϕ
0 +

� t

0
Wt−sJ(ϕs) ds (3.16)

is a well-defined, contracting self-mapping provided T is chosen sufficiently small. The fol-
lowing estimates are based on the fact that for all ϕ(·) ∈ MT,n,ϕ0 we have the estimate �ϕt�B ≤
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1 + �Wtϕ0�B ≤ 1 + eγ|t|�ϕ0�B ≤ 1 + eγT �ϕ0�B for each t ∈ [−T,T ]. Let also �ϕ(·) ∈ MT,n,ϕ0 , then
the properties of J, see Definition 3.8p.21, yield the helpful estimates for all t ∈ [−T,T ]:

�A jJ(ϕt)� ≤ C6(T ) and �A j(J(ϕt) − J(�ϕt))� ≤ C7(T )�ϕt − �ϕt�B. (3.17)

for

C6(T ) := C3
( j)(�ϕt�B) ≤ C3

( j)(1 + eγ|t|�ϕ0
�B) and

C7(T ) := C4
( j)(1 + eγ|t|�ϕ0

�B, 1 + eγ|t|�ϕ0
�B).

(3.18)

Hence, C6(T ),C7(T ) depend continuously and non-decreasingly on T .

We show now that S ϕ0 is a self-mapping. Since t �→ Wtϕ0 is in MT,n,ϕ0 , it suffices to show that
the mapping t �→ A j

� t
0 Wt−sJ(ϕs) ds is D(An− j) valued, continuous and that its � · �XT,n norm is

finite for j ≤ n. Consider ϕ(·) ∈ MT,n,ϕ0 , so for some h > 0 we get

�A jWt−(s+h)J(ϕs+h) − A jWt−sJ(ϕs)�B
≤ eγ|t−(s+h)|

�A j(J(ϕs+h) − J(ϕs))�B + eγ|t−s|
�(1 −Wh)A jJ(ϕs)�B

≤ eγ|t−(s+h)|C7�ϕs+h − ϕs�B + eγ|t−s|
�(1 −Wh)A jJ(ϕs)�B −−−→

h→0
0

by continuity of t → ϕt, estimate (3.17) and properties of (Wt)t∈R. We may thus define

σ( j)(t) :=
� t

0
A jWt−sJ(ϕs) ds

as B valued Riemann integrals. Let σ( j)
N (t) := t

N
�N

k=1 A jWt− t
N kJ(ϕ t

N k) be the corresponding
Riemann sums. Clearly σ j

N(t) ∈ D(An− j) since J : D(A)→ D(An
J) and limN→∞ A jσN(t) = σ( j)(t)

for all t ∈ R and j ≤ n. But A is closed which implies σ0(t) ∈ D(An) and σ j(t) = A jσ0(t). Next
we show continuity. With estimate (3.17) we get for t ∈ (−T,T ):

�A jσ(t + h) − A jσ(t)�B = �σ j(t + h) − σ j(t)�B

≤

� t+h

t

���Wt+h−sA jJ(ϕs)
���
B

ds +
� t

0

���Wt−s(Wh − 1)A jJ(ϕs)
���
B

ds

≤ eγ|h|
� t+h

t

���A jJ(ϕs)
���
B
+ eγT

� t

0

���(Wh − 1)A jJ(ϕs)
���
B

ds

For h → 0 the right-hand side goes to zero as the integrand of the second summand �(Wh −

1)A jJ(ϕs)�B does, which by (3.17) is also bounded by (1+ eγT )C6(T ) so that dominated conver-
gence can be used. The self-mapping property is ensured by (3.17):

�S ϕ0 [ϕ(·)] −W(·)ϕ
0
�XT,n = sup

t∈[−T,T ]

n�

j=0

������A
j
� t

0
Wt−sJ(ϕs) ds

������
B

≤ eγT sup
t∈[−T,T ]

n�

j=0

� t

0
�A jJ(ϕs)�B ds ≤ TeγTC6(T )(n + 1).

On the other hand for some �ϕ(·) ∈ MT,n,ϕ0 we find

�S ϕ0 [ϕ(·)] − S ϕ0 [�ϕ(·)]�XT,n = sup
t∈[−T,T ]

n�

j=0

�A j
� t

0
Wt−s[J(ϕs) − J(�ϕs)] ds�B

≤ eγT sup
t∈[−T,T ]

n�

j=0

� t

0
�A j[J(ϕs) − J(�ϕs)]�B ds ≤ TeγTC7(T )�ϕ(·) − �ϕ(·)�XT,n .
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Since T �→ C6(T ) and T �→ C7(T ) are continuous and non-decreasing, there exists a T > 0 such
that

TeγT [C6(T )(n + 1) +C7(T )] < 1. (3.19)

Thus, for this choice of T , S ϕ0 is a contracting self-mapping on the closed set MT,n,ϕ0 so that due
to Banach’s fixed point theorem S ϕ0 has a unique fixed point ϕ(·) ∈ MT,ϕ0 .

Next we study the differentiability of this fixed point, in particular of t → A jϕt on (−T,T ) for
j ≤ (n − 1). As ϕ(·) = S ϕ0 [ϕ(·)], Definition (3.16p.22), and ϕ0 ∈ D(An) we have

A jϕt+h − A jϕt

h
=

Wt+h −Wt

h
A jϕ0 +

σ j(t + h) − σ j(t)
h

=: 1 + 2 .

By the properties of (Wt)t∈R we know limh→0 1 = A j+1ϕ0. Furthermore,

2 =
1
h

� t+h

t
Wt+h−sA jJ(ϕs) ds +

� t

0
Wt−s

Wh − 1
h

A jJ(ϕs) ds

For h→ 0 the first term on the right-hand side converges to A jJ(ϕt) because of

1
h

������

� t+h

t
Wt+h−sA jJ(ϕs) ds − A jJ(ϕt)

������
B

= sup
s∈(t,t+h)

���Wt+h−sA jJ(ϕs) − A jJ(ϕt)
���
B

and the continuity of Wt+h−sA jJ(ϕs) in h and s. For h → 0 the second term converges to� t
0 Wt−sA j+1J(ϕs) ds by dominated convergence as the integrand converges to Wt−sA j+1J(ϕs),

and the following gives a convenient bound of it:
�����Wt−s

Wh − 1
h

A jJ(ϕs)
�����
B

=

������
1
h

� h

0
Wt−sWh�A j+1J(ϕs) dh�

������
B

≤ eγ(T+1)
�A j+1J(ϕs)�B.

Collecting all terms, we have shown that

d
dt

A jϕt = A jWtϕ
0 + A jJ(ϕt) + A j+1

� t

0
Wt−sJ(ϕs) ds = A j+1ϕt + A jJ(ϕt).

Note that the right-hand side is continuous because j ≤ (n − 1), ϕ(·) ∈ MT,n,ϕ0 and (3.17p.23).
Hence A jϕ(·) ∈ C

1((−T,T ),D(An− j)) and d
dt A

jϕt ∈ D(An− j−1) for all t ∈ (−T,T ). Next we prove
for t ∈ (−T,T ) and k ≤ n that ϕ(·) ∈ C

n((−T,T ),D(An)), dk

dtkϕt ∈ D(An−k) by induction. We claim
that

dk

dtkϕt = Akϕt +

k−1�

l=0

dk−1−l

dtk−1−l AlJ(ϕt)

holds, is continuous in t on (−T,T ) and in D(An−k). We have shown before that this holds for
k = 0. Assume it is true for some (k − 1) ≤ n − 1. We compute

d
dt

dk−1

dtk−1ϕt = Akϕt + Ak−1J(ϕt) +
k−2�

l=0

dk−1−l

dtk−1−l AlJ(ϕt) = Akϕt +

k−1�

l=0

dk−1−l

dtk−1−l AlJ(ϕt).

The first term on the right-hand side is continuous in t on (−T,T ) and in D(An−k) as shown
before. Now Definition (3.8p.21)(iip.21), where we have defined the operator J, was chosen to
guarantee that these properties hold also for the second term.

(ii) Clearly, ϕ(·) and �ϕ(·) are both in XT1,1 for any 0 < T1 ≤ min(T, �T ) because they are at least
once continuously differentiable. Since ϕt|t=0 = �ϕt|t=0 holds, we can choose T1 > 0 sufficiently
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small such that ϕ(·) and �ϕ(·) are also in MT1,1,ϕ0 and in addition that S ϕ0 is a contracting self-
mapping on MT1,1,ϕ0 . As in (i) we infer that there exists a unique fixed point ϕ1

(·) ∈ MT1,1,ϕ0 of
S ϕ0 which solves (3.14p.21). Since ϕ(·) and �ϕ(·) also solve (3.14p.21), it must hold that ϕt = ϕ1

t = �ϕt

on [−T1,T1]. Let T be the supremum of all those T1 and let us assume that T < min(T, �T ).
We can repeat the above argument with e.g. initial values ϕt|t=T1 = �ϕt|t=T1 at time t = T1.
Again we find a T2 > 0 and a fixed point ϕ2

(·) ∈ MT2,1,ϕT
of S ϕT

so that ϕt = ϕ2
t−T
= �ϕt on

[T − T2,T − T2]. The same can be done for initial values ϕt|t=−T1 = �ϕt|t=−T1 at time t = −T1.
This yields ϕt = �ϕt for t ∈ [T − T2,T + T2] and contradicts the maximality of T . Hence, ϕ(·)
equals �ϕ(·) on [−T,T ] ∩ [−�T , �T ].

(iii) Fix any �T > 0. The a priori bound (3.15p.21) tells us that if any solution ϕ : (−�T , �T )→ D(An)
with ϕt|t=0 = ϕ0 ∈ D(An) exists, then supt∈[−�T ,�T ] �ϕt�B ≤ C5(�T ) < ∞. By looking at equations
(3.19p.24) and (3.18p.23) we infer that there exists a Tmin > 0 such that for each t ∈ [−�T , �T ] the time
span T for which S ϕt on MT,n,ϕt fulfills Tmin ≤ T . Let ϕ(·) be the fixed point of S ϕ0 on MT1,n,ϕ0

for T1 > 0, and let T be the supremum of such T1. Assume T < �T . By taking an initial value
ϕ
±(T−�) for 0 < � < Tmin near to the boundary, (i) and (ii) extends the solution beyond (−T ,T )

and contradicts the maximality of T . �

REMARK 3.11. Definition 3.8p.21(iip.21) is only needed if one aims at two or more times differ-
entiable solutions.

3.4 The Spaces of Weighted Square Integrable Functions

In this subsections we collect all needed properties of the introduced weighted spaces. The
following assertions, except Theorem 3.21p.29, are independent of the space dimension. That is
why we often use the abbreviation L2

w = L2
w(R3,R3) and C∞c = C∞c (R3,R3). With w ∈ W the L2

w
analogues of almost all results of the L2 theory which do not involve the Fourier transform can
be proven with only minor modifications. For open Ω ⊆ R3, L2

w(Ω,R3) is clearly a linear space
and has an inner product:

�f, g�L2
w

:=
�

Ω

d3x w(x)f(x)g(x), f, g ∈ L2
w(Ω,R3). (3.20)

Theorem 3.12. Properties of L2
wFor any w ∈ W, open Ω ⊆ R3, L2

w(Ω,R3) with (3.20) is a Hilbert space and
C∞c (Ω,R3) lies dense.

Proof. (see Proof in Appendix 5.2p.97) This is a standard result as
√

wd3x is an absolute contin-
uous measure with respect to the Lebesgue measure d3x on R3. �

Note as in any Hilbert space the Schwarz inequality holds, i.e. for all f, g ∈ L2
w we have

| �f, g�L2
w
| =
����
�√

wf,
√

wg

�
L2

���� ≤ �
√

wf�L2�
√

wg�L2 = �f�L2
w
�g�L2

w
. We shall also need:

Definition 3.13. Weighted
Sobolev spaces

For all w ∈ W, Ω ⊆ R3 and k ≥ 0 we define

Hk
w(Ω,R3) :=

�
f ∈ L2

w(Ω,R3)
���� Dαf ∈ L2

w(Ω,R3), |α| ≤ k
�
,

H�
k

w (Ω,R3) :=
�
f ∈ L2

w(Ω,R3)
���� � j

f ∈ L2
w(Ω,R3) for 0 ≤ j ≤ k

�
,

Hcurl
w (Ω,R3) :=

�
f ∈ L2

w(Ω,R3)
���� ∇ ∧ f ∈ L2

w(Ω,R3)
�
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which are equipped with the inner products

�f, g�Hk
w

:=
�

|α|≤k

�
Dαf,Dαg

�
L2

w(Ω) , �f, g�H�w(Ω) :=
k�

j=0

�
�

j
f,� j

g

�
L2

w(Ω)

�f, g�Hcurl
w (Ω) := �f, g�L2

w(Ω) + �∇ ∧ f,∇ ∧ g�L2
w(Ω) ,

respectively. In the following we use a superscript #, e.g. H#
w, as a placeholder for k, �k, and

curl for any k ∈ N, respectively. We shall also need the local versions, i.e. H#
loc := {f ∈ L2

loc | f ∈

H#(K), for every open K ⊂⊂ R3}, where ⊂⊂ is short for compactly contained. Usually we
abbreviate Hk

w = Hk
w(R3,R3), write L2

w = H0
w and drop the subscript w if w = 1.

Theorem 3.14.H#
w are Hilbert

spaces
For any w ∈ W, H#

w are all Hilbert spaces.

Proof. The proof is the same for all three cases. We only show it for the case of Hk
w, k ∈ N:

R-Linearity, the inner product and the norm are inherited from L2
w and the definition of the weak

derivative. Let
�
f
0
n

�
n∈N

be a Cauchy sequence in Hk
w, then

�
Dαf0

n

�
n∈N

are Cauchy sequences in
L2

w for every α ≤ k. By completeness of L2
w there exist f

α
∈ L2

w such that �fα − f
α
n�L2

w
→ 0 for

n→ ∞. Now for all ϕ ∈ C∞c (R3,R) we have

Dαf0[ϕ] : = (−1)|α|
�

d3x f
0(x)Dαϕ(x) = (−1)|α| lim

n→∞

�
d3x f

0
n(x)Dαϕ(x)

= lim
n→∞

�
d3x Dαf0

n(x)ϕ(x) =
�

Dαfαn (x)ϕ(x) =: f
α[ϕ]

as the L2
w convergence implies the convergence in distribution sense. Hence, f

α
n = Dαf0

n almost
everywhere on R3. �

Lemma 3.15.Relation
between H#

w and
H#

loc

Let w ∈ W, then: (i) For an open O ⊂⊂ R3, i.e. a compactly contained subset
of R3, one has H#

w(O) = H#(O) in the sense of normed spaces. (ii) A function f is in H#
w(K) for

every open K ⊂⊂ R3 if and only if f ∈ H#
loc.

Proof. (i) Given w ∈ W Equation (3.7p.19) ensures that there are two finite and non-zero con-
stants 0 < C8 := infx∈O w(x), C9 := sup

x∈O w(x) < ∞. Thus, we get C8�f�H#(O) ≤ �f�H#
w(O) ≤

C9�f�H#(O). This yields also (ii). �

Lemma 3.16.Properties of
weights inWk

Let w ∈ Wk, then for every multi-index |α| ≤ k there also exists constants
0 ≤ Cα < ∞ such that |Dαw| ≤ Cαw on R3.

Proof. We compute

Dαw = Dα
√

w
√

w = ∂α1
1 ∂
α2
2 ∂
α3
3 (
√

w
√

w) = ∂α1
1 ∂
α2
2

α3�

l3=0

�
α3
l3

�
(∂α3−l3

3
√

w)(∂l3
3
√

w)

=

α1,α2,α3�

l1,l2,l3=0

�
α1
l1

� �
α2
l2

� �
α3
l3

�
(D(α1−l1,α2−l2,α3−l3) √w)(D(l1,l2,l3) √w).

Using |Dα
√

w| ≤
√

w we find |Dα| ≤ Cαw for

Cα :=
α1,α2,α3�

l1,l2,l3=0

�
α1
l1

� �
α2
l2

� �
α3
l3

�
Cα|α=(α1−l1,α2−l2,α3−l3)Cα|α=(l1,l2,l3).

�
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Lemma 3.17. Set equivalence
√

wH#
w = H#

Let k ∈ N and w ∈ Wk, then in the sense of sets
√

wH#
w = H#.

Proof. The proof is the same for all three spaces. We only show it for the case of Hk
w: Recall

(3.7p.19) from which we deduce w ≤ w(0) and therefore f ∈ Hk ⇒
f
√

w ∈ Hk
w ⇒ f ∈

√
Hk

w. On
the other hand, let f ∈ Hk

w then

�
√

wf�
2
Hn :=

�

|α|≤n

�Dα(
√

wf)�2L2 =
�

|α|≤k

�∂α1
1 ∂
α2
2 ∂
α3
3 (
√

wf)�2L2

=
�

|α|≤k

�∂α1
1 ∂
α2
2

α3�

l3=0

�
α3
l3

�
(∂α3−l3

3
√

w)(∂l3
3 f)�2L2

≤

�

|α|≤n

2|α|
α1,α2,α3�

l1,l2,l3=0

�
α1
l1

�2 �
α2
l2

�2 �
α3
l3

�2 ����
����∂α1−l1

1 ∂α2−l2
2 ∂α3−l3

3
√

w
���� ∂l1

1 ∂
l2
2 ∂

l3
3 f

����
2

L2
.

But as w ∈ Wk, there is some finite constant C10 such that
����∂α1−l1

1 ∂α2−l2
2 ∂α3−l3

3
√

w
���� ≤ C10w and,

hence,

. . . ≤
�

|α|≤k

2|α|
α1,α2,α3�

l1,l2,l3=0

�
α1
l1

�2 �
α2
l2

�2 �
α3
l3

�2
C10

����∂l1
1 ∂

l2
2 ∂

l3
3 g

����
2

L2
w

≤ C11 �f�
2
Hn

w
< ∞

for

C11 :=
�

|α|≤k

2|α|
α1,α2,α3�

l1,l2,l3=0

�
α1
l1

�2 �
α2
l2

�2 �
α3
l3

�2
C10.

This implies
√

wHk
w �
√

wf ∈ Hk. �

Theorem 3.18. C∞c dense in H#
wLet k ∈ N and w ∈ Wk, then C∞c is a dense subset of H#

w.

Proof. For all three cases the proof is essentially the same. Only the case of H�w is a bit more
involved as one needs to estimate the derivatives ∂i∂ j, 1 ≤ i, j ≤ 3, in terms of the Laplacian.
Therefore, we only prove the latter case. Let f ∈ H�w, then we need to show that for every � > 0
there is a g ∈ C∞c such that �f − g�H�w < �. Take a ϕ ∈ C∞c (R3, [0, 1]) such that ϕ(x) = 1 for
�x� ≤ 1. Define ϕn(x) := ϕ

�
x

n

�
. We get

�f − fϕn�
2
L2

w
≤

�

R3\Bn(0)
d3x w(x)� f (x)�2 −−−−→

n→∞
0 (3.21)

and

��f − �(f ϕn)�2L2
w
≤ ��f − ϕn �f�L2

w
+

1
n2 ��ϕn f�L2

w
+

1
n

�������

3�

i=1

∂iϕn ∂if

�������
L2

w

. (3.22)

With C12 := supn∈N,x∈R3
�
|α|≤3

����Dαϕ
�

x

n

�����, which is finite, we have ��ϕn f�L2
w
≤ C12�f�L2

w
and the

first two terms on the right-hand side go to zero for n→ ∞. On the other hand, on compact sets
K ⊂ R3 we have H�w(K,R3) = H�(K,R3) by Lemma 3.17 and therefore f ∈ H�loc. Thus, we can
apply partial integration and, using the abbreviation ω = w

�3
i=1(∂iϕn)2, yield

�������

3�

i=1

∂iϕn ∂if

�������

2

L2
w

≤

3�

i=1

�
d3x ω(x)

�
∂if(x)

�2
≤

�������

3�

i=1

�
d3x
�
∂iω ∂if f + ω ∂2

i f f

�
(x)

�������
.
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In the first terms on the right-hand side we apply the chain rule f ∂if =
1
2∂if

2 and integrate by
parts again so that

. . . =

�������

3�

i=1

�
d3x
�
1
2
∂2

i ω f
2 + ω ∂2

i f f

�
(x)

�������
≤

1
2

3�

i=1

�����
�
|∂2

i ω| f

�����
2

L2
+
����
� �
|ω| �f,

�
|ω| f
�

L2

����

By definition of Wk and Lemma 3.16p.26 we have |Dαw| ≤ Cαw on R3. Let C13 :=
�
|α|≤2 Cα,

then |∂2
i ω| ≤ 27C12

2C13w and |ω| ≤ 3C12
2w uniformly in n on R3. We get

. . . ≤
81
2

C12
2C13�f�

2
L2

w
+ 3C12

�����f, f�L2
w

���

and finally using Schwarz’s inequality

�������

3�

i=1

∂iϕn ∂if

�������

2

L2
w

≤ C12
2
�
81
2

C13 + 3
�
�f�

2
H�w

uniformly in n. Going back to Equation (3.22p.27) we then find that also the last term on the right-
hand side goes to zero as n→ ∞. Combining equations (3.21p.27) and (3.22p.27) we conclude that
there is an h ∈ H�w with compact support and �f − h�H�w ≤

�
2 . Now let ψ ∈ C∞c (R3,R) and define

ψn(x) := n3ψ(nx). It is a standard analysis argument that �h − h ∗ ψn�H2 → 0 for n→ ∞ so that
for n large enough �h − h ∗ ψn�H�w <

�
2 . Since h and ψn have compact support g := h ∗ ψn ∈ C

∞
c .

With that �f − g�H�w ≤ �f − h�H�w + �h − h ∗ ψn�H�w < � which concludes the proof. �

REMARK 3.19. By the standard approximation argument this theorem allows us to make use
of partial integration in the spaces H#

w with respect to the appropriate differential operators.

Theorem 3.20.Hilbert space
equivalence

H�
k

w = H2k
w

Let w ∈ W2, then for any k ∈ N in the sense of Hilbert spaces H�k

w = H2k
w .

Proof. First we prove H�w = H2
w. Now f ∈ H2

w implies �f�H�w ≤ �f�H2
w

and therefore f ∈ H�w. Next
let g ∈ C∞c . By definition

�g�
2
H�w
= �f�2L2

w
+

3�

i=1

�∂ig�
2
L2

w
+

3�

i, j=1

�∂i∂ jg�
2
L2

w
. (3.23)

Using partial integration in the second term on the right-hand side we obtain

3�

i=1

�∂ig�
2
L2

w
=

3�

i=1

�
d3x
�
w (∂ig)2

�
(x) = −

3�

i=1

�
d3x
�
∂iw ∂ig g + w ∂2

i g g

�
.

The chain rule ∂ig g = 1
2∂i(g)2 and another partial integration in the first term on the right-hand

side yields

. . . =
3�

i=1

�
d3x
�
1
2
∂2

i w (g)2
− w ∂2

i g g

�
≤ C13

�
3
2
�g�

2
L2

w
+
�����g, g�L2

w

���
�

for the finite constant C13 defined in the proof of Theorem 3.18p.27. By Schwarz’s inequality

3�

i=1

�∂ig�
2
L2

w
≤

5C13

2
�g�H�w . (3.24)
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Next we estimate the last term in Equation (3.23). By partial integration we get

3�

i, j=1

�∂i∂ jg�
2
L2

w
=

3�

i, j=1

�
d3x
�
w (∂i∂ jg)2

�
(x)

= −

3�

i, j=1

�
d3x
�
∂ jw ∂i∂ jg ∂ig + w ∂i∂

2
jg ∂ig

�
(x)

=

3�

i, j=1

�
d3x
�
∂i∂ jw ∂ jg ∂ig + ∂iw ∂2

jg ∂ig + ∂ jw ∂ jg ∂
2
i g + w ∂2

jg ∂
2
i g

�
(x)

≤ C13




3�

i, j=1

����
�
∂ jg, ∂ig

�
L2

w

���� +
3�

i=1

�����g, ∂ig�L2
w

��� +
3�

j=1

����
�
∂ jg,�g

�
L2

w

���� + ��g�
2
L2

w


 .

Now Schwarz’s inequality and the estimate (3.24p.28) gives the estimate

3�

i, j=1

�∂i∂ jg�
2
L2

w
≤ 14C13�g�

2
H�w
.

and therewith

�g�H2
w
≤
�

14C13�g�H�w . (3.25)

Let now f ∈ H�w. According to Theorem 3.18p.27, there is a sequence (fn)n∈N in C∞c such that
�f − fn�H�w → 0 as n→ ∞. Estimate (3.25) implies that (fn)n∈N is also a Cauchy sequence in H2

w.
Thus, subject to Theorem 3.14p.26, there is a h ∈ H2

w such that for |α| ≤ 2, �Dαfn − Dαh�L2
w
→ 0

as n→ ∞. For ϕ ∈ C∞(R3,R) we find

f[ϕ] :=
�

d3x ϕ(x)f(x) = lim
n→∞

�
d3x ϕ(x)fn(x) =

�
d3x ϕ(x)h(x) =: h[ϕ]

and we conclude that f = h almost everywhere and H�w = H2
w in the sense of sets. Furthermore,

the estimate (3.25) for g = fn states in the limit n → ∞ the equivalence of the norms in H�w and
H2

w, i.e. �f�H�w ≤ �f�H2
w
≤
√

14C13�f�H2
w
. Hence, H�w = H2

w in the sense of normed spaces.

The equivalence of H�k

w = H2k
w for any k > 1 is still left to prove. We prove this by induction.

Let us assume the claim is true for some k ∈ N. Let f ∈ H�k+1

w which implies that for j ≤ k + 1,
� j

f ∈ L2
w, i.e. for j ≤ k we have � j

f ∈ H�w = H2
w. Hence, for j ≤ k and |β| ≤ 2 it is true that

Dβ� j
f ∈ L2

w, i.e. Dβf ∈ H�k

w . According to the induction hypothesis, Dβf ∈ H2k
w for |β| ≤ 2 which

implies f ∈ H2k+2
w and concludes the proof. �

Theorem 3.21. Sobolev’s
Lemma and
Morrey’s
Inequality for
weighted spaces

Let O ⊂⊂ R3 be open, w ∈ W and k ≥ 2, then:

(i) f ∈ Hk
w(O,R3) implies that there is a g ∈ Cl(O,R3), 0 ≤ l ≤ k − 2, such that almost

everywhere f = g on O.

(ii) f ∈ Hk
w(O,R3) for all O ⊂⊂ R3 implies that there is a g ∈ Cl(R3,R3), 0 ≤ l ≤ k − 2, such

that almost everywhere f = g on R3.

(iii) Let O = R3 and w ∈ Wk. Then for each k there is a C < ∞ such that

sup
x∈R3

�

|α|≤k

�Dαf(x)� ≤ C�f�Hk
w
. (3.26)
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Proof. (i) For any compactly contained open set O ⊂⊂ R3, f ∈ Hk
w(O,R3) implies f ∈ Hk(O,R3)

subject to Lemma 3.15p.26. Sobolev’s Lemma [SR75, IX.24] states that there is then a g ∈

Cl(O,R3) for 0 ≤ l < n − 3
2 with f = g almost everywhere on O. (ii) Applying (i) we get for

every open O ⊂⊂ R3 a gO ∈ C
l(O,R3) such that almost everywhere f = gO. Let O1,O2 ⊂⊂ R3 be

two such sets with the corresponding functions gO1 and gO2 , respectively. Assume O1 ∩O2 � ∅.
By (i) we know that except on a set, let us say M ⊂ O1 ∩ O2, of measure zero, it holds that
gO1
= f = gO2

on O1 ∩ O2. Due to the continuity for all x ∈ O1 ∩ O2 and � > 0 there is a δ > 0
such that �x− y�R3 < δ implies �gOi

(x)−gOi
(y)�R3 < �2 , for i = 1, 2. Let x ∈ M and choose � > 0,

then there is an y ∈ (O1 ∩ O2) \ M such that gO1 (y) = f(y) = gO2 (y) and, hence,

�gO1
(x) − gO2

(x)�R3 ≤ �gO1
(x) − gO1

(y)�R3 + �gO1
(y) − gO2

(y)�R3 + �gO2
(y) − gO2

(x)�R3

= �gO1
(x) − gO1

(y)�R3 + �gO2
(y) − gO2

(x)�R3 < �

and therefore gO1 = gO2 on O1 ∩ O2. This permits us to define a function g ∈ Cl(R3,R3) by
setting g = gO for every open O ⊂⊂ R3. (iii) For w ∈ Wk we know subject to Lemma 3.17p.27

that f ∈ Hk(R3,R3). Applying Sobolev’s lemma as in (i) we yield the same result for O = R3

which provides the conditions for Morrey’s inequality (3.26p.29) to hold, see [Lie01, Chapter 8,
Theorem 8.8(iii), p.213]. �

REMARK 3.22. Note that this is the only result that depends on the dimension of R3.

3.5 Proof of Main Theorem and Regularity

Proof of Theorem 3.5p.20.Proof of

Theorem 3.5p.20

Assertion (i) and (ii). We intend to use the general local existence and
uniqueness Theorem 3.9p.21 for B = Hw. In order to do so we need to show that the operators A
and J from Definitions 3.3p.19 and 3.4p.19 have the properties given in Definitions 3.7p.21 and 3.4p.19,
respectively. This will be done in Lemma 3.23 and Lemma 3.26p.32. Furthermore, we need to
establish an a priori bound for the local solutions such that Theorem 3.9p.21(iii) can be applied.

Lemma 3.23.A fulfills the
abstract

requirements

The operator A introduced in Definition 3.3p.19 on Dw(A) with weight w ∈ W1

fulfills all properties of Definition 3.7p.21 with B = Hw and γ = C∇ for a constant C∇, fulfilling
�∇w� ≤ C∇w on R3, e.g. C∇ :=

��
|α|=1(Cα)2.

Proof. By Definition 3.3p.19 the operator A was given for all (qi, pi,Ei,Bi)1≤i≤n ∈ Dw(A) :=�N
i=1 R

3 ⊕ R3 ⊕ Hcurl ⊕ Hcurl
w by the expression A(qi, pi,Ei,Bi)1≤i≤n = (0, 0, A(Ei,Bi)1≤i≤n. Let

us first regard the operator A on D := Hcurl
w ⊕ Hcurl

w . We abbreviate the Hilbert space direct sum
L := L2

w ⊕ L2
w and write vectors f ∈ L in components as f = ( f1, f2).

First, we prove that A is closed and densely defined: According to Theorem 3.14p.26, Hcurl
w is a

Hilbert space so thatD is a Banach space with respect to the norm �ϕ�D := �ϕ�L + �Aϕ�L. This
means any sequence (un)n∈N in D such that (un)n∈N and (Aun)n∈N converges in L to u and v,
respectively, (un)n∈N converges also with respect to � · �D. This implies u ∈ D and v = Au, i.e. A
is closed. According to Theorem 3.18p.27, we know also that C∞c lies dense in Hcurl

w , so it follows
that C∞c × C∞c ⊂ D lies dense in L. Thus, the operator A is densely defined.

Next we prove that there exists a γ ≥ 0 such that (−∞,−γ)∪ (γ,∞) ⊂ ρ(A) which means that for
all |λ| > γ

(λ − A) : D → L (3.27)

is a bijection: Let S = S(R3,R3) denote the Schwartz space of infinitely often differentiable R3

valued functions on R3 with faster than polynomial decay, and let S∗ denote the dual of S. On
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S∗ × S∗ we regard in matrix notation

(λ − A)
�
T1
T2

�
=

�
λ −∇∧

∇∧ λ

� �
T1
T2

�
= 0

for T1,T2 ∈ S
∗ and λ ∈ R. With the use of the Fourier transformation�· and its inverse�· on S∗

we get
�
λ −∇∧

∇∧ λ

� �
T1
T2

�
[u] =

�
λT1[u] − ∇ ∧ T2[u]
λT2[u] + ∇ ∧ T1[u]

�
=

��T1[λ�u] −�T2[k �→ ik ∧�u(k)]
�T2[λ�u] +�T1[k �→ ik ∧�u(k)]

�
= 0

for all u ∈ S(R3,R3). By plugging the second equation into the first for λ � 0, one finds

0 =�T1
�
k �→ (λ2 + |k|2)�u(k) − k(k ·�u(k))

�
=: R1[�u]

for all u ∈ S. However, for all v ∈ S(R3,R3) we find a u ∈ S(R3,R3) according to

�u(k) =
λ2�v(k) + k(k ·�v(k))
λ2(λ2 + |k|2)

such that T1[v] =�T1[�v] = R1[�u] = 0, which means that T1 = 0 and hence also T2 = 0 on S∗. We
have thus shown that for Ker(λ − A) = {0} since Hcurl

w × Hcurl
w ⊂ S∗ × S∗, and therefore that the

map (3.27p.30) is injective for λ � 0.

We shall now see that there exists a γ > 0 such that for all |λ| > γ this map is also surjective.
Therefore, we intend to show that for such λ, Ran(λ − A) = L. Let us assume v ∈ Ran(λ − A)⊥.
Since C∞c is dense in Hcurl

w , we can use partial integration so that for all u ∈ D we obtain

0 = �(λ − A)u, v�L =
�

d3x w(x)u(x) ·
((λ + A)w(x)v(x))

w(x)
=:
�
u, (λ − A)∗v

�
L

On the other hand, we have shown that Ker(λ − A) = {0} for all λ � 0, hence wv must be zero
which implies that v = 0 since w ∈ W1. Thus, we have shown that Ran(λ − A) is dense, so that
L = Ran(λ − A).

As (λ − A) : D → Ran(λ − A) is bijective, we can define Rλ(A) as the inverse of this map. In
the following it suggests that we at first show the boundedness of Rλ(A) and use this property to
show the closedness of Ran(λ−A). Let f ∈ Ran(λ−A), then there is a unique u ∈ Dwhich solves
(λ − A)u = f . The inner product with u gives �u, (λ − A)u�L = �u, f �L and with the Schwarz
inequality and the symmetry of the inner product it implies

|λ| �u�2
L
−

1
2

����u, Au�L + �u, Au�L
��� ≤ � f �L�u�L. (3.28)

As said before, C∞c × C∞c lies dense in D ⊂ L so that we may apply partial integration which
yields

����u, Au�L + �u, Au�L
��� =
������

�
d3x
�

0 −∇w(x)∧
∇w(x)∧ 0

�
u(x) · u(x)

������

≤

�
d3x |(∇w(x) ∧ u2(x)) · u1(x)) − (∇w(x) ∧ u1(x)) · u2(x))|

≤ 2C∇
�

d3x w(x) |u1(x)) · u2(x))| ≤ 2C∇�u�2L.

using the notation u = (u1, u2) and Schwarz’s inequality in the last step. Let us define γ := C∇.
Then for |λ| > γ the estimate (3.28) gives

�Rλ(A) f �L = �u�L ≤
1

|λ| − γ
� f �L. (3.29)
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As Ran(λ − A) is dense, there is a unique extension of Rλ(A) that we denote by the same symbol
Rλ(A) : L → D which obeys the same bound (3.29) on whole L.

In order to finally show that Ran(λ− A) is closed, regard a sequence ( fn)n∈N in Ran(λ− A) which
converges in L for |λ| > γ. Define un := Rλ(A) fn for all n ∈ N. By (3.29) we immediately infer
convergence of the sequence (un)n∈N to some u in L. Thus, (un, (λ− A)un) = (un, fn) converge to
(u, f ) in L ⊕ L, and because A is closed, u ∈ D and (λ − A)u = f . Hence, f ∈ Ran(λ − A) and
Ran(λ−A) is closed. Since we have shown that Ran(λ−A) is closed, we have also Ran(λ−A) = L.
Hence, for all |λ| > γ the map (3.27p.30) is a bijection.

Finally, we show that A inherits these properties from A: Since A is closed onD = Hcurl
w ⊕Hcurl

w ,
A is closed on Dw(A) :=

�N
i=1 R

3 ⊕ R3 ⊕ D, and
�N

i=1 R
3 ⊕ R3 ⊕ C∞c ⊕ C

∞
c ⊂ Dw(A) lies

dense in Hw. This implies property (i) of Definition 3.7p.21. Furthermore, as for |λ| > γ ≥ 0 and
(qi, pi,Ei,Bi)1≤i≤n ∈ Dw(A)

(λ − A)(qi, pi,Ei,Bi)1≤i≤n = (λqi, λpi, (λ − A)(Ei,Bi))1≤i≤n.

As λ � 0, (λ−A) : Dw(A)→ Hw is a bijection and for (qi, pi,Ei,Bi)1≤i≤n ∈ Hw its inverse Rλ(A)
is given by

Rλ(A)(qi, pi,Ei,Bi)1≤i≤n =

�
1
λ

qi,
1
λ

pi,Rλ(A)(Ei,Bi)
�

1≤i≤n
.

Therefore, (−∞,−γ) ∪ (γ,∞) is a subset of the resolvent set ρ(A) of A. This implies property
(ii) of Definition 3.7p.21. Finally, by (3.29p.31) for any ϕ = (qi, pi,Ei,Bi)1≤i≤n ∈ Hw we have the
estimate

�Rλ(A)ϕ�Hw =

��� N�

i=1

�
1
λ2 �qi�

2 +
1
λ2 �pi�

2 + �Rλ(A)(Ei,Bi)�2L

�
≤

1
|λ| − γ

�ϕ�Hw

which implies property (iii) of Definition 3.7p.21 and concludes the proof. �

This lemma together with Lemma 3.10p.22 states that A on Dw(A) generates a γ-contractive group
(Wt)t∈R which gives rise to the next definition:

Definition 3.24.Free Maxwell
Time-Evolution

We denote by (Wt)t∈R the γ-contractive group onHw generated by A.

REMARK 3.25. The γ-contractive group (Wt)t∈R comes with a standard bound �Wt�L(L2
w) ≤ eγ|t|,

see Lemma 3.10p.22, which we shall use often. For the case that w is a constant, one finds γ = 0
and the whole proof collapses into an argument about self-adjointness on L2. In this case,
(Wt)t∈R is simply the unitary group generated by the self-adjoint operator A. For non-constant
w, (Wt)t∈R does not preserve the norm. Imagine, for example, a weight w that decreases with
the distance to the origin. Then, any wave packet moving towards the origin while retaining
its shape (like e.g. solutions to the free Maxwell equations) has necessarily an L2

w norm that
increases in time.

Lemma 3.26.J fulfills the
abstract

requirements

The operator J introduced in Definition 3.4p.19 with a weight w ∈ W fulfills all
properties of Definition 3.8p.21 with B = Hw. Furthermore, there exists a constant CJ ∈ Bounds

such that

�J(ϕ)�Hw ≤ CJ
�
��i�L2

w
, �w−1/2�i�L2 , 1 ≤ i ≤ N

� N�

i=1

(1 +Cw�qi�)
Pw
2 �ϕ�Hw (3.30)

for any ϕ = (qi,Pi,Ei,Bi)1≤i≤N ∈ Hw where Cw and PwPw are only dependent on the weight w,
according to (3.5p.18).
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Proof. As already remarked below Definition 3.4p.19, J is a mapping from Hw to Dw(A∞). In
order to verify the properties given in Definition 3.8p.21(i) we show for all ϕ,�ϕ ∈ Dw(A) that there
exist C3

(n),C4
(n) ∈ Bounds such that

�AnJ(ϕ)�Hw ≤ C3
(n)(�ϕ�Hw) �ϕ�Hw ,

�An(J(ϕ) − J(�ϕ))�Hw ≤ C4
(n)(�ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw . (3.31)

Choose ϕ = (qi, pi,Ei,Bi)1≤i≤N and �ϕ = (�qi,�pi,�Ei,�Bi)1≤i≤N in Hw. According to Definition
3.4p.19, for any n ∈ N we have

J(ϕ) :=


v(pi),

N�

j=1

ei j

�
d3x �i(x − qi)

�
E j(x) + v(pi) ∧ B j(x)

�
,−4πv(pi)�i(· − qi), 0




1≤i≤N
(3.32)

and

A2n+1J(ϕ) :=
�
0, 0, 0, (−1)n4π(∇∧)2n+1 �

v(pi)�i(· − qi)
��

1≤i≤N
,

A2n+2J(ϕ) :=
�
0, 0, (−1)n4π(∇∧)2n+2 �

v(pi)�i(· − qi)
�
, 0
�
1≤i≤N

.
(3.33)

Since J(0) = 0, inequality 3.31 for �ϕ = 0 gives C3
(n)(�ϕ�Hw) := C4

(n)(�ϕ�Hw , 0). Therefore, it
suffices to only prove 3.31. The only case involved therein is n = 0 as one needs to control the
Lorentz force on each rigid charge, which for n > 0 is mapped to zero by any power of A. So
for n = 0 we obtain:

�J(ϕ) − J(�ϕ)�Hw ≤

N�

i=1

���v(pi) − v(�pi)
���
R3 +

+

N�

i=1

�����
N�

j=1

ei j

�
d3x
�
�i(x − qi)E j(x) − �i(x −�qi)�E j(x)+

+ �i(x − qi)v(pi) ∧ B j(x) − �i(x −�qi)v(�pi) ∧ �B j(x)
������
R3
+

+ 4π
N�

i=1

���v(�pi)�i(· −�qi) − v(pi)�i(· − qi)
���

L2
w
=: 3 + 4 + 5 . (3.34)

The following notation is now convenient: For any function ( fi)1≤i≤m = f : Rn → Rm and
(x j)1≤ j≤n = x ∈ Rn we denote by D f the Jacobi matrix of f with entries D f (x)|i, j = ∂x j fi(x) for
1 ≤ i ≤ m, 1 ≤ j ≤ n wherever the derivative makes sense. Furthermore, for any vector space V
with norm � · �V and operator T on V we write �T�V := sup�v�V≤1 �T (v)�V .

Recall also the coefficients m � 0, |σi| = 1 and ei j ∈ R for 1 ≤ i, j ≤ N from Definition 3.4p.19

and define e := sup1≤i, j≤N |ei j|. Without loss of generality, we may assume that �i > 0 and the
possible signs being absorbed in the ei j for 1 ≤ i ≤ N.

By the mean value theorem for each index i there exists a λi ∈ (0, 1) such that for ki := pi +

λi(�pi − pi) we obtain

3 =
N�

i=1

���Dkiv(ki) · (pi −�pi)
���
R3 ≤

N�

i=1

�Dkiv(ki)�R3�pi −�pi�R3 .

Now with ki = (ki)1≤ j≤3 we have Dkiv(ki)
���
j,l =

σi�
m2

i +k
2
i

�
δ jl −

(ki) j(ki)l

m2
i +k

2
i

�
. Thus, it follows the

estimate �Dkiv(ki)�R3 ≤ Kvel for Kvel :=
�N

i=1
2
|mi |

so that

3 ≤ Kvel �ϕ − �ϕ�Hw . (3.35)
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Next we must get a bound on the Lorentz force. Let BR(z) := {x ∈ R3 | �x − z� < R} be a ball
of radius R > 0 around z ∈ R3. Choose R > 0 such that for 1 ≤ i ≤ N it holds supp �i ⊆ BR(0).
Define Ii := BR(qi) ∪ BR(�qi), then

4 ≤ e
N�

i, j=1

������

�

Ii

d3x
�
�i(x − qi)E j(x) − �i(x −�qi)�E j(x)

�������
R3
+

+ e
N�

i, j=1

������

�

Ii

d3x
�
�i(x − qi)v(pi) ∧ B j(x) − �i(x −�qi)v(�pi) ∧ �B j(x)

�������
R3
=: 6 + 7 .

Let zi(κ) = qi + κ(�qi − qi) for each 1 ≤ i ≤ N and κ ∈ R, then

�i(x −�qi) = �i(x − qi) +
� 1

0
dκ (�qi − qi) · ∇�i(x − zi(κ)).

Now
����
� 1

0 dκ (qi −�qi) · ∇�i(x − zi(κ))
���� ≤ K��qi −�qi�R3 for K� :=

√
3
�N

i=1,|α|≤n+1 �D
α�i�L∞ so that

6 ≤ e
N�

i, j=1

�

Ii

d3x
�
�i(x − qi)�E j(x) − �E j(x))�R3 + K��qi −�qi�R3��E j(x)�R3

�
.

We will use the following type of estimates in several places and therefore regard them for once
separately. For any set M, M be its characteristic function and F ∈ L2

w(R3,R3), then
�

Ii

d3x �F(x)�R3 ≤
�
(1 +Cw�qi�)

Pw + (1 +Cw��qi�)
Pw
� 1

2

������
BR(0)
√

w

������
L2
�F�L2

w
, (3.36)

�
d3x �i(x − qi)�F(x)�R3 ≤ (1 +Cw�qi�)

Pw
2

������
�i
√

w

������
L2
�F�L2

w(R3). (3.37)

where we used (3.7p.19) which states that w−1 ∈ L1
loc since w−1(x) ≤ (1 + Cw�x�)Pww−1(0). The

former inequality can be seen by
�

Ii

d3x �F(x)�R3 =

�

Ii

d3x
√

w(x)
√

w(x)
�F(x)�R3 ≤

��

Ii

d3x w−1(x)
� 1

2

�F�L2
w

≤

��

BR(0)
d3x (w−1(x − qi) + w−1(x −�qi))

� 1
2

�F�L2
w

where we have used the Schwarz inequality. Using the weight estimate (3.7p.19) yields (3.36).
Similarly the latter inequality can be seen by

�
d3x �i(x − qi)�F(x)�R3 =

�
d3x

�i(x − qi)�
w(x − qi)

�
w(x − qi)�F(x)�R3

≤

������
�i
√

w

������
L2

��
d3x w(x − qi)�F�R3

� 1
2

and again using the weight estimate (3.7p.19). We abbreviate

f (x, y) :=
�
(1 +Cwx)Pw + (1 +Cwy)Pw

� 1
2

������
BR(0)
√

w

������
L2
, g(x) := (1 +Cwx)

Pw
2

N�

i=1

������
�i
√

w

������
L2

so that (3.36) and (3.37) give
�

Ii

d3x �F(x)�R3 ≤ f
�
�ϕ�Hw , ��ϕ�Hw

�
�F�L2

w
, (3.38)

�
d3x �i(x − qi)�F(x)�R3 ≤ g

�
�ϕ�Hw

�
�F�L2

w(R3). (3.39)
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We apply these estimates to the term

6 ≤ e
N�

i, j=1

g
�
�ϕ�Hw

�
�E j − �E j�L2

w
+ e

N�

i, j=1

K��qi −�qi�R3g
�
�ϕ�Hw

�
��E j�L2

w

≤ eNg
�
�ϕ�Hw

�
�ϕ − �ϕ�Hw + eK��ϕ − �ϕ�Hw f

�
�ϕ�Hw , ��ϕ�Hw

�
��ϕ�Hw .

Therefore, we yield the estimate

6 ≤ C14(�ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw

for

C14(�ϕ�Hw , ��ϕ�Hw) := e
�
Ng
�
�ϕ�Hw

�
+ K� f

�
�ϕ�Hw , ��ϕ�Hw

�
��ϕ�Hw

�
.

The same way we shall estimate:

7 = e
N�

i, j=1

������

�

Ii

d3x
�
�i(x − qi)v(pi) ∧ B j(x) − �i(x −�qi)v(�pi) ∧ �B j(x)

�������
R3
.

First we apply the mean value theorem to the velocities as we did before such that

. . . ≤ e
N�

i, j=1

�

Ii

d3x
����v(pi) ∧

�
�i(x − qi)B j(x) − �i(x −�qi)�B j(x)

�����
R3

+ e
N�

i, j=1

�

Ii

d3x Kvel�pi −�pi�R3�i(x −�qi)��B j(x)�R3 .

Then we again rewrite the densities by the fundamental theorem of calculus and use this and
�v(pi)�R3 ≤ 1 in order to obtain

. . . ≤ e
N�

i, j=1

�

Ii

d3x �i(x − qi)�B j(x) − �B j(x)�R3 + e
N�

i, j=1

K��qi −�qi�R3

�

Ii

d3x ��B j(x)�R3+

+ e
N�

i, j=1

Kvel�pi −�pi�R3

�

Ii

d3x �i(x −�qi)��B j(x)�R3 .

Finally we apply the two estimates (3.38p.34) and (3.38p.34) to arrive at

. . . ≤ e
N�

i, j=1

g
�
�ϕ�Hw

�
�B j − �B j�L2

w
+ e

N�

i, j=1

K��qi −�qi�R3 f
�
�ϕ�Hw , ��ϕ�Hw

�
��B j(x)�L2

w
+

+ e
N�

i, j=1

Kvel�pi −�pi�R3g
�
�ϕ�Hw

�
��B j(x)�L2

w
.

and thus we obtain the estimate

7 ≤ C15(�ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw

for

C15(�ϕ�Hw , ��ϕ�Hw) := e
�
Ng
�
�ϕ�Hw

�
+ K� f

�
�ϕ�Hw , ��ϕ�Hw

�
�ϕ�Hw + Kvelg

�
�ϕ�Hw

�
�ϕ�Hw

�
.
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It remains to estimate term 5 . However, we shall do this already for the general case of any
fixed n ∈ N0. For the sake of readability we will not explicitly write out the n dependence in
each term. Recall from Equation (3.33p.33) that

5 n := 4π
N�

i=1

�(∇∧)n
v(pi)�i(· − qi) − (∇∧)n

v(�pi)�i(· −�qi)�L2
w
.

We begin with

5 n ≤ 4π
N�

i=1

���(∇∧)n
v(pi)

�
�i(· − qi) − �i(· −�qi)

� ���
L2

w
+

+ 4π
N�

i=1

���(∇∧)n(v(pi) − v(�pi))�i(· −�qi)
���

L2
w
=: 8 n + 9 n

but before we continue we shall rewrite these terms in a more convenient form by using the
following formulas: Let �−1 = 0, then for all v ∈ R3, h ∈ C∞(R3,R) and all m ∈ N0 the
following identities hold:

(∇∧)2m(vh) = (−1)m−1
�
∇
�
v · ∇�

m−1h
�
− v�

mh
�

(∇∧)2m+1(vh) = (−1)m[∇�mh] ∧ v

This can be seen by induction. The formulas obviously hold for m = 0. Assuming them to be
correct for some m ∈ N0, we find

(∇∧)2m+2(vg) = ∇ ∧ (∇∧)2m+1(vg) = ∇ ∧ ((−1)m[∇�mh] ∧ v)

= (−1)m
∇ ∧ (∇ ∧ v�

mh) = (−1)m
�
∇(v · ∇�mh) − v�

m+1h
�
,

(∇∧)2m+3(vg) = ∇ ∧ (∇∧)2m+2(vg) = ∇ ∧ (−1)m
�
∇(v · ∇�mh) − v�

m+1h
�

= (−1)m+1[∇�m+1h] ∧ v.

Let us begin with term 8 n for odd n. As before we write zi(κ) = qi+κ(�qi−qi) for each 1 ≤ i ≤ N
and κ ∈ R so that for

KI
�
�ϕ�Hw , ��ϕ�Hw

�
:=

N�

i=1

� Ii�L2
w
= N� BR(0)�L2

w

�
(1 +Cw�ϕ�Hw)Pw + (1 +Cw��ϕ�Hw)Pw

� 1
2

(3.40)

we get

8 n=2m+1 = 4π
N�

i=1

����∇�m ��i(· − qi) − �i(· −�qi)
�
∧ v(σi,mi, pi)

����
L2

w

≤ 4π
N�

i=1

����
� 1

0
dκ D[∇�m�i(x − zi(κ))] · (qi −�qi)

����
L2

w
≤ 4πK�

N�

i=1

� Ii�L2
w
�qi −�qi�R3

≤ 4πK�KI
�
�ϕ�Hw , ��ϕ�Hw

�
�ϕ − �ϕ�Hw =: C16(2m + 1, �ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw . (3.41)
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Similarly the term 8 n for even n gives:

8 n=2m = 4π
N�

i=1

����∇
�
v(pi) · ∇�

m−1 ��i(· − qi) − �i(· −�pi
��
+

− v(�pi)�
m ��i(· − qi) − �i(· −�pi

� ����
L2

w

≤ 4π
N�

i=1

����� Ii

� 1

0
dκ D

�
D
�
∇�

m−1�i(x − zi(κ))
�
· (qi −�qi)

�
· v(pi)

����
L2

w
+

+
���� Iiv(pi)

� 1

0
dκ D�m�i(x − zi(κ)) · (qi −�qi)

����
L2

w

�

Again we estimate the coefficients of the Jacobi matrices by K�, this time obtaining another
factor

√
3 in the first summand such that

8 n=2m ≤ 4πKI
�
�ϕ�Hw , ��ϕ�Hw

�
K�(
√

3 + 1)�ϕ − �ϕ�Hw

=: C16(2m, �ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw . (3.42)

The last term to be estimated for odd n is:

9 n=2m = 4π
N�

i=1

����∇�m�i(· −�qi) ∧
�
v(pi) − v(�pi)

� ����
L2

w

≤ 4π
N�

i=1

���∇�m�i(· −�qi)
���

L2
w

Kvel�ϕ − �ϕ�Hw

≤ 4π(1 +Cw��ϕ�Hw)
Pw
2

N�

i=1

���∇�m�i
���

L2
w

Kvel�ϕ − �ϕ�Hw

=: C17(2m + 1, �ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw , (3.43)

and for even n:

9 n=2m = 4π
N�

i=1

����∇
��

v(pi) − v(�pi)
�
· ∇�

m−1�i(· −�qi)
�
−
�
v(pi) − v(�pi)

�
�

m�i(· −�qi)
����

L2
w

≤ 4π
N�

i=1

� ��
d3x w(x)�D∇�m−1�i(x −�qi)�R3

� 1
2

+ ��m�i(· −�qi)�L2
w

�
Kvel�ϕ − �ϕ�Hw

≤ 4πN(1 +Cw��ϕ�Hw)
Pw
2

� ��
d3x w(x)�D∇�m−1�i(x)�R3

� 1
2

+ ��m�i�L2
w

�
Kvel�ϕ − �ϕ�Hw

=: C17(2m, �ϕ�Hw , ��ϕ�Hw)�ϕ − �ϕ�Hw , (3.44)

Collecting all these estimates, we finally arrive at the inequality 3.31p.33 for

C4
(n)(�ϕ�Hw , ��ϕ�Hw)�ϕ − �ϕ�Hw := Kvel +C14(�ϕ�Hw , ��ϕ�Hw)+
+C15(�ϕ�Hw , ��ϕ�Hw) +C16(2m + 1, �ϕ�Hw , ��ϕ�Hw) +C17(2m + 1, �ϕ�Hw , ��ϕ�Hw)

which for fixed n is a continuous and non-decreasing function in the arguments �ϕ�Hw and ��ϕ�Hw ,
and, hence C4

(n) ∈ Bounds.

Next we need to verify property (ii) of Definition 3.8p.21. Therefore, for T > 0 let t �→ ϕt be a map
in Cn((−T,T ),Dw(An)) such that for all k ≤ n and t ∈ (−T,T ) it holds that dk

dtkϕt ∈ Dw(An−k). We
have to show that for all j+ l ≤ n− 1, t �→ d j

dt j AlJ(ϕt) is continuous on (−T,T ) and take values in
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Dw(An−1− j−l). By formulas (3.32p.33) and (3.33p.33) both properties are an immediate consequence
of the fact that �i ∈ C

∞
c . In fact, one finds that t �→ d j

dt j AlJ(ϕt) takes values in Dw(A∞) on (−T,T ).

Finally, we prove inequality (3.30p.32). In principle we could use (3.34p.33) and the estimates
(3.35p.33, 3.40p.36, 3.41p.36, 3.42, 3.43, and 3.44) for �ϕ = 0 so that we only had to treat the Lorentz
force. However, for this estimate we also want to work out the dependence on of J on ρ. There-
fore, we regard

�J(ϕ)� ≤
�

1≤i≤N

�
�v(pi)�R3 +

��������

�

j�i

ei j

�
d3� i(x − qi)

�
E j(x) + v(pi) ∧ B j(x)

�
��������
R3

+

+ �4πv(pi)�i(· − qi)�L2
w

�
=: 10 + 11 + 12

The first term can be treated as before, cf. (3.35p.33),

10 ≤ NKvel �ϕ�Hw

The second term

11 =
N�

i=1

��������

N�

j=1

ei j

�
d3x �i(x − qi)

�
E j(x) + v(pi) ∧ B j(x)

�
��������
R3

.

can be estimated by

e
N�

i, j=1

�
d3x �i(x − qi)

�
�E j(x)�R3 + �B j(x)�R3

�
.

Using estimate (3.37p.34) we find

. . . ≤ e
N�

i=1

(1 +Cw�qi�)
Pw
2

������
�i
√

w

������
L2

�

j=1

�
�E j(x)�L2

w
+ �B j(x)�L2

w

�

≤ 2Ne
N�

i=1

������
�i
√

w

������
L2

N�

i=1

(1 +Cw�qi�)
Pw
2 �ϕ�Hw .

Finally, for the last term we obtain

12 ≤ 4πKvel

N�

i=1

��i(· − qi)�L2
w
�ϕ�Hw ≤ 4πKvel

N�

i=1

��i�L2
w

N�

i=1

(1 +Cw�qi�)
Pw �ϕ�Hw .

Hence, there is a CJ ∈ Bounds for

CJ
�
��i�L2

w
, �w−1/2�i�L2 , 1 ≤ i ≤ N

�
:= NKvel + 2Ne

������
�i
√

w

������
L2
+ 4πKvel

N�

i=1

��i�L2
w
.

This concludes the proof. �

Next we need to show the a priori bound as in (3.15p.21).

Lemma 3.27.A priori Bound
on the ML±SI

Solutions

Let the map t �→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N be a solution to

ϕt = Wtϕ
0 +

� t

0
Wt J(ϕs).

with ϕ0 = ϕt|t=0 ∈ Dw(A). Then there is a C18 ∈ Bounds such that

sup
t∈[−T,T ]

�ϕt�Hw ≤ eγT (1 +C18TeC18T )�ϕ0
�Hw < ∞. (3.45)

for C18 := C18

�
��i�L2

w
, �w−1/2�i�L2 , 1 ≤ i ≤ N

�
.
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Proof. By Lemma 3.23p.30 we know that

�ϕt�Hw = �Wtϕ
0 +

� t

0
ds Wt−sJ(ϕs)�Hw ≤ eγT �ϕ0

�Hw + sign(t)eγT
� t

0
ds �J(ϕs)�Hw

Lemma 3.26p.32 provides the bound to estimate the integrand

�J(ϕs)�Hw ≤ CJ

N�

i=1

(1 +Cw�qi,s�R3 )
Pw
2 �ϕs�Hw

for every time s. Moreover, as the velocities are bounded by the speed of light we get in addition

�qi,s� =

�����q
0
i +

� s

0
dr v(pir )

����� ≤ �q
0
i � + sign(s)

� s

0
dr

���������

σipi,r�
m2

i + p
2
i,r

���������
≤ �ϕ0

�Hw + |s|.

Hence, for some finite T > 0 and |t| ≤ T we infer the following integral inequality

�ϕt�Hw ≤ eγT �ϕ0
�Hw + sign(t)C19(T )

� t

0
ds �ϕs�Hw

for C19(T ) := eγTCJN(1 +Cw(�ϕ0�Hw + |T |))
Pw
2 , according to which by Gronwall’s lemma

sup
t∈[−T,T ]

�ϕt�Hw ≤ eγT (1 +C19TeC19T )�ϕ0
�Hw < ∞. (3.46)

�

This proves claim (3.10p.20) for

C1 := eγT (1 +C19TeC19T )

with the parameter dependence as stated in the above lemma and yields the needed bound
(3.15p.21) for C5(T ) := eγT (1 +C19TeC19T ). This bound together with Lemma 3.23p.30 and Lemma
3.26p.32 fulfill all the conditions for Theorem 3.9p.21. Hence, we have shown existence and unique-
ness of global solutions to (3.9p.20). To conclude the proof for part (i) and (ii) we still need to
verify (3.11p.20). Let T ≥ 0 and ϕ,�ϕ : [−T,T ] → Dw(A) be solutions to (3.9p.20), then for
t0, t ∈ [−T,T ] we have

�ϕt − �ϕt�Hw =

������Wt−t0 (ϕt0 − �ϕt0 ) +
� t

t0
ds Wt−s(J(ϕs) − J(�ϕs))

������
Hw

≤ eγT �ϕt0 − �ϕt0�Hw + sign(t − t0)eγT
� t

t0
ds C4

(1)(�ϕs�Hw , ��ϕs�Hw) �ϕs − �ϕs�Hw

by (3.31p.33). Now we use (3.45p.38) and find

C20(T, �ϕt0�Hw , ��ϕt0�Hw) := sup
s∈[−T,T ]

C4
(1)(�ϕs�Hw , ��ϕs�Hw) < ∞.

Hence, we can apply Gronwall’s lemma once again and find that (3.11p.20) holds for

C2(T, �ϕt0�Hw , ��ϕt0�Hw) := eγT (1 +C20(T, �ϕt0�Hw , ��ϕt0�Hw)TeC20(T,�ϕt0 �Hw ,��ϕt0 �Hw )T ).

For The Maxwell

constraints

proving part (iii) we need to study whether solutions t �→ ϕt respect the constraints (3.12p.20).
This, however, can be seen to be true by a short computation. Without loss of generality we may
assume t∗ = 0. Say we are given an initial value (q0

i , p
0
i ,E

0
i ,B

0
i )1≤i≤N =: ϕ0 ∈ Dw(A), then by
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part (i) and (ii) there exists a unique solution t �→ ϕt in C1(R,Dw(A)) of Equation (3.14p.21). As
before we use the notation ϕt =: (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N for t ∈ R. Furthermore, let ϕ0 be chosen
in such a way that ∇ · E0

i = 4π�i(· − q
0
i ) and ∇ · B0

i = 0 hold in the distribution sense. We may
write the divergence of the magnetic field of the i-th particle for each t ∈ R in the distribution
sense as

∇ · Bi,t = ∇ ·

�
B

0
i +

� t

0
Ḃi,s ds

�
= −∇ ·

� t

0
ds ∇ ∧ Ei,s

where we have used the equation of motion (3.14p.21) and the assumption ∇ · B0
i = 0. Since

ϕt ∈ Dw(A), ∇∧Ei,s is in L2
w. Therefore, for any φ ∈ C∞c (R3,R) we find by Fubini’s theorem that

�
d3x ∇φ(x) ·

� t

0
ds ∇ ∧ Ei,s(x) =

� t

0
ds
�

d3x ∇φ(x) · (∇ ∧ Ei,s(x)) = 0 (3.47)

as for any fixed t the absolute value of the integrand is integrable as
� t

0
ds
�

d3x |∇φ(x) · (∇ ∧ Ei,s(x))| ≤ �∇φ�L2
w
t sup

s∈[0,t]
�∇ ∧ Ei,s�L2

w
≤ ∞.

The supremum exists because of continuity. Analogously, we find for the electric fields

∇ · Ei,t = ∇ ·

�
E

0
i +

� t

0
ds Ėi,s

�

= 4π�i(· − q
0
i ) + ∇ ·

� t

0
ds ∇ ∧ Bi,s − 4π∇ ·

� t

0
ds v(pi,s)�i(· − qi,s).

By the same argument as in (3.47) the second term is zero. We commute the divergence with the
integration since qi,t, pi,t are continuous functions of t and �i ∈ C

∞
c (R3,R) and find

. . . = 4π�i(· − q
0
i ) − 4π

� t

0
ds v(pi,s) · ∇�i(· − qi,s)

= 4π�i(· − q
0
i ) + 4π

� t

0

d
ds
�i(· − qi,s) ds = 4π�i(· − qi,t)

which concludes part (iii) and the proof. �

Proof of Theorem 3.6p.20.Proof of

Theorem 3.6p.20

As a last step we shall examine the regularity of the Maxwell so-
lutions. Assume the initial value ϕ0 ∈ Dw(A2m) for some m ∈ N. According to Theorem
3.5p.20, we know that there exists a unique solution t �→ ϕt = (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N which is in
C2m(R,Dw(A2m)) with ϕt|t=0 = ϕ0. The first aim is to see whether the fields Ei,t,Bi,t are more
smooth than a typical function in Hcurl

w . In order to achieve this we have in mind to apply our
version of Sobolev’s lemma for weighted function spaces, i.e. Lemma 3.21p.29. We know that
(∇∧)2l

Ei,t, (∇∧)2l
Bi,t ∈ Hcurl

w for any 0 ≤ l ≤ m, but then

(∇∧)2l
Ei,t = (∇∧)2l−2(∇∧)2

Ei,t = (∇∇ · −�)l−1 (∇∧)2
Ei,t

=

l−1�

k=0

�
l − 1

k

�
(∇∇·)k(−�)l−1−k(∇∧)2

Ei,t = (−�)l−1(∇(∇ · Ei,t) − �Ei,t)

in the distribution sense, where ∇∇· denotes the gradient of the divergence. The same computa-
tion holds for Bi,t. By inserting the constraints (3.12p.20) we find:

(∇∧)2l
Ei,t = 4π(−1)l−1

�
m−1
∇�i(· − qi,t) + (−�)l

Ei,t and (∇∧)2l
Bi,t = (−�)l

Bi,t.
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As �i ∈ C
∞
c we may conclude that for any fixed t ∈ R we have �l

Ei,t,�l
Bi,t ∈ L2

w for 0 ≤ l ≤ m
and therefore Ei,t,Bi,t ∈ H�m

w which proves claim (i). In particular, for every open O ⊂⊂ R3,
Ei,t,Bi,t are in H�m

w (O) which by Theorem 3.20p.28 for w = 1 equals H2m(O). Lemma 3.15p.26

then states Ei,t,Bi,t ∈ H2m
loc which provides the conditions to be able to apply Theorem 3.21p.29(ii)

that states: In the equivalence class of Ei,t and Bi,t there is a representative in Cl(R3,R3) for
0 ≤ l ≤ 2m − 2 = n − 2, respectively. We denote the representatives also by Ei,t and Bi,t,
respectively.

Moreover, we know that for any 0 ≤ k ≤ n the map t �→ dk

dtkϕt and hence the maps t �→ dk

dtk Ei,t

and t �→ dk

dtk Ei,t are continuous. Hence, for any Λ ⊂⊂ R4 and for k ≤ n the integrals

�

Λ

ds d3x w(x)
������

dk

dtk Ei,s

������

2

R3
and

�

Λ

ds d3x w(x)
����∂k

x j
Ei,s

����
2

R3
for j = 1, 2, 3

are finite. Applying Sobolev’s lemma in the form presented in [Rud73, Theorem 7.25] we
yield that within the equivalence classes Ei and Bi there is a representative in Cn−2(R4,R3),
respectively, which proves claim (ii).

Assume w ∈ Wk for k ≥ 2. Then Theorem 3.20p.28 yields that also Ei,t,Bi,t ∈ H2m=n
w (R3), and

by Theorem 3.21p.29(iii) there is a constant C such that (3.13p.20) holds for every 1 ≤ i ≤ N which
proves claim (iii) and concludes the proof. �

The existence and uniqueness result from Theorem 3.5p.20 permits us to define a time-evolution
operator induced by the Maxwell-Lorentz equations:

Definition 3.28. Maxwell-Lorentz
Time-Evolution

We define

ML : R2
× Dw(A)→ Dw(A), (t, t0, ϕ0)→ ML(t, t0)[ϕ0] = ϕt = Wt−t0ϕ

0 +

� t

t0
Wt−sJ(ϕs)

which encodes the time-evolution of the charges as well as their electromagnetic fields from time
t0 to time t.

REMARK 3.29. (i) By uniqueness we get for times t0, t1, t ∈ R that

ML(t, t0)[ϕ0] = ML(t, t1)
�
ML(t1, t0)[ϕ0]

�
.

(ii) For the case of (ML+SIp.15), i.e. ei j = 1 for all 1 ≤ i, j ≤ N, and initial values ϕ0 ∈ Dw(A) for
weights w ∈ W such that for w(x) = O�x�→∞(1) one finds by straightforward computation that
the total energy defined by

H(t) :=
N�

i=1

�
σi

�
m2

i + p
2
i,t +

1
8π

�
d3x
�
E

2
i,t + B

2
i,t

��

is a constant of motion, where we used the notation (qi,t, pi,t,Ei,t,Ei,t)1≤i≤N = ML(t, t0)[ϕ0] from
Section 3.5p.30. However, for weights w ∈ W such that w(x) → 0 for �x� → ∞, the integrals in
the expression of H(t) diverge and the total energy is infinite.

(iii) In the case of (ML-SIp.16), i.e. ei j = 1 − δi j, the total energy is generically not conserved
which can be understood as follows: In this case the time derivative of the electric field Ei,t in
(3.2p.15) depends on the position qi,t and velocity v(pi,t) of the i-th charge which means that the
charge can transfer energy by means of radiation to the field degrees of freedom. On the other
hand the Lorentz force law acting on the i-th charge (3.1p.15) does not depend on the i-th field
since eii = 0. Therefore, the i-th charge cannot be in turn decelerated whenever it radiates. This
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way the charges can “pump” energy into their field degrees of freedom without “paying” by loss
of kinetic energy. However, for the special initial conditions (2.15p.12) as discussed in Chapter 2p.7

the ML-SI equations inherit constants of motion from the Wheeler-Feynman equations. Unlike
for ML+SI equations, it is expected that not only scattering states but also bound states like the
Schild solution [Sch63] exist.

3.6 Conclusion and Outlook

Limit to Point-Like Charges. As we have discussed in the preface and in Chapter 2p.7, from a
physical point of view it would be desirable to take the limit to the point particles �i → δ3. While
in the case of (ML+SIp.15) the equations of motions are ill-defined in the point particle limit, this
is not the case for (ML-SIp.16) as long as the charges stay away from each other. At least for two
charges of equal sign we can expect existence and uniqueness for almost all initial conditions. In
such a case it is expected that the analogue of the existence and uniqueness proof for point-like
charges stays essentially the same except for modifications of the norms. In a sequel we shall
discuss the point particle limit of the (ML-SIp.16) case.

Thermal States. Furthermore, as pointed out in [Spo04] for thermal states at non-zero tem-
perature, one expects the electric and magnetic fields to fluctuate without decay. So it seems
natural to check if the presented treatment of the Maxwell-Lorentz equations for fields in L2

w
suffices to treat also such thermal states; recall that the weight function w has to be chosen to
decay slower than exponentially.



Chapter 4

Wheeler-Feynman Equations of
Motion

4.1 Chapter Overview and Results

This chapter purports the so-called Wheeler-Feynman equations for rigid charges. Recall the
Wheeler-Feynman equations for point-like charges we discussed in Chapter 2p.7. They were
given by the equations (2.16p.12) which are essentially the Lorentz force equations for the
Wheeler-Feynman fields given by one half of the sum of the advanced and retarded Liénard-
Wiechert fields for potentials (2.5p.8). As in the chapter before, we use non-relativistic notation
in a special reference frame (cf. Section 5.1p.95) and in order to circumvent the trajectory crossing
problem we smear out again the point-like charges by some smooth and compactly supported
functions on R3. These equations then describe a system of N ∈ N classical, non-rotating, rigid
charges interacting directly via the relativistic action-at-distance principle and can be written in
the form of the Lorentz force law (3.1p.15): Wheeler-

Feynman

eqautions for

rigid charges∂tqi,t = v(pi,t) :=
σipi,t�
m2

i + p
2
i,t

∂tpi,t =
�

j�i

�
d3x �i(x − qi,t)

�
E

WF
j,t (x) + v(qi,t) ∧ B

WF
j,t (x)

� (4.1)

for 1 ≤ i ≤ N with a special choice of fields, the Wheeler-Feynman fields, given by

�
E

WF
i,t

B
WF
i,t

�
=

1
2

�

±

4π
�

ds
�

d3y K±t−s(x − y)


−∇�i(y − qi,s) − ∂s

�
v(pi,s)�i(y − qi,s)

�

∇ ∧
�
v(pi,s)�i(y − qi,s)

�

 . (4.2)

Here, K±t (x) := �±(t, x) = δ(�x�±t)
4π�x� are the advanced and retarded Green’s functions of the

d’Alembert operator. We shall use the same notation and terminology as for the Maxwell-
Lorentz equations in Chapter 3p.15, i.e. at time t the ith charge for 1 ≤ i ≤ N is situated at
position qi,t in space R3, momentum pi,t ∈ R

3 and carries the classical mass mi ∈ R \ {0} while
σi := sign(mi) allows for negative masses. The geometry of the rigid charge is given by the
charge distribution �i ∈ C

∞
c (R3,R) for 1 ≤ i ≤ N. In the following we shall refer to the Wheeler-

Feynman equations (4.1) and (4.2) as WF equations.

The Guiding

questions

WF equations are more subtle than they look because E
WF
i,t and B

WF
i,t are functionals of the

ith charge trajectory t �→ (qi,t, pi,t). In contrast to the Maxwell-Lorentz equations, these fields
appear here only as mathematical entities, and the only dynamical degrees of freedom are the
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charge trajectories. In fact, the change of the state of motion of the ith charge, i.e. the left-hand
side of (4.1), is given in terms of the future and the past of all j � i charge trajectories with
respect to time t. Equations of this type are commonly called functional differential equations.
Such equations have in general very different mathematical properties compared to ordinary or
partial differential equations regarding existence, uniqueness and regularity. In contrast to the
intuition in usual classical mechanics, it is completely unclear whether the WF equations allow
for a well-defined initial value problem for Newtonian Cauchy data, i.e. position and momentum
at time zero. This also means that it is unclear how to speak about possible solutions yet and,
therefore, our leading questions of this chapter are:

1. How can we speak about solutions and by means of which data can we tell solutions apart?

2. Do Wheeler-Feynman solutions exist for given Newtonian Cauchy data?

We will answer both questions partly: With regard to question 1 we shall show that for possible
Wheeler-Feynman solutions with bounded accelerations and momenta it is sufficient to specify
positions, momenta and Wheeler-Feynman fields at any time t0 in order to tell them apart; the
question what part of this data is also necessary remains open. Concerning question 2 we shall
show further that for given Newtonian Cauchy data there exist Wheeler-Feynman solutions on fi-
nite time (though arbitrarily large) intervals; the question if there are Wheeler-Feynman solution
for all times remains open.

WeMathematical

results in this

chapter

begin our survey with Section 4.2p.52 where we familiarize with functional differential equa-
tions and their curiosities, amongst others: non-uniqueness for Cauchy data, non-smoothing
and non-existence, by means of simple examples. In order to get a feeling for the WF equa-
tions we continue the discussion with a toy model for Wheeler-Feynman electrodynamics for
two repelling charges interacting only by advanced and delayed Coulomb fields in Subsection
4.2.1p.53. The remarkable feature of this toy model is that for given strips of charge trajectories
solutions can be explicitly constructed in a piecewise manner. In particular, it can be seen that
without demanding any regularity properties, solutions, albeit not unique, for any given Newto-
nian Cauchy data exist; whether more regularity could yield uniqueness remains an interesting
open question. This toy model makes us confident that we do not have to fear non-existence of
Wheeler-Feynman solutions for given Newtonian Cauchy data. We conclude this introductory
section with Subsection 4.2.2p.55 where we discuss an idea of reformulating certain functional
differential equations in terms of initial value problems, using the following strategy: We regard
the functional differential equations of the following type

x�(t) = V(x(t), f (t, x)) for f (t, x) =
1
2

�

±

�
f ±T +

� t

±T
ds W(x(s))

�
(4.3)

for given f ±T , functions V,W and fixed T > 0 and investigate the well-posedness of the initial
value problem for prescribed Cauchy data x(t)|t=0 = x0. To see the relationship with the WF
equations, think of x(t) as being position and momenta and f (t) to represent the Maxwell fields
at time t. The sum over ± is the sum over retarded as well as advanced fields. This problem can
be recast into initial value problem by enlarging the phase space where we regard

d
dt

�
x(t)
f (t)

�
=

�
V(x(t), f (t, x))

W(x(s)

�
. (4.4)

Given initial data (x(t), f (t))|t=0 = (x0, f 0) there exist unique solutions t �→ Mt[x0, f 0] =
(x(t), f (t)) of this set of equations, however, in order to solve (4.3) for given x0 we need to
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give the appropriate initial conditions f 0. The idea is to construct f 0 by iteration of the map

S [x0, f 0] :=
1
2

�

±

�
f ±T +

� t

±T
ds W(x(s))

�
for x(s) being the first component of Ms[x0, f 0].

(4.5)

For finite T the role of f ±T is to fix the incoming advanced and outgoing retarded fields f ±T

at time ±T . For T → ∞ one may set f ±∞ = 0 in analogy with the Maxwell equations which
forget their asymptotic incoming and outgoing initial fields. We discuss how for small T one
can still expect unique solutions if V and W are regular enough. However, for big or infinite T ,
though one might still get existence of the fixed point of S , it is not clear anymore how to ensure
uniqueness of solutions. Nevertheless, this method is the key idea behind our later existence
proof of Wheeler-Feynman solutions on finite time intervals for given Newtonian Cauchy data.

The main mathematical results which take up the aforementioned two questions for the Wheeler-
Feynman electrodynamics are then given in the two remaining sections. We start in Section
4.3p.59 where we deal with question one. As discussed in the end of the introductory Chapter
2p.7, there is an intimate connection between Wheeler-Feynman and ML-SI dynamics. The idea
is to exploit this feature in the following way: If there exists any solution to the WF equa-
tions then we know that its charge trajectories t �→ (qi,t, pi,t)1≤i≤N fulfill the Lorentz force law
(4.1p.43) for the Wheeler-Feynman fields t �→ (EWF

i,t ,B
WF
i,t )1≤i≤N given by (4.2p.43) and, moreover,

the Wheeler-Feynman fields fulfill the Maxwell equations by definition of the Liénard-Wiechert
fields. Hence, the map t �→ (qi,t, pi,t,E

WF
i,t ,B

WF
i,t )1≤i≤N constitutes a solution to the ML-SI equa-

tions. Now if the Wheeler-Feynman fields are actually compatible with the set of initial values
Dw(A) for which our existence and uniqueness theorem of the last chapter holds (in fact, we
will use Dw(A∞) to yield strong solutions), we can conclude that this ML-SI solution is uniquely
identified by specifying positions, momenta of the charge trajectories and the Wheeler-Feynman
fields at one instant time t. More precisely, we shall show that for TWF being the set of all once
differentiable Wheeler-Feynman solutions t �→ (qi,t, pi,t)1≤i≤N with bounded accelerations and
momenta, the map

it0 : TWF → Dw(A∞),
�
t �→ (qi,t, pi,t)1≤i≤N

�
�→ (qi,t0 , pi,t0 ,E

WF
i,t0 ,B

WF
i,t0 )1≤i≤N (4.6)

is well-defined and injective for all t0 ∈ R. With the preliminary work of the last chapter the only
involving part in the proof is to show that the Wheeler-Feynman fields are compatible with the
set of initial values Dw(A∞) for which the existence and uniqueness results of solutions to the
ML-SI equations hold. For this we solve the Maxwell equations (3.2p.15) explicitly for prescribed
and sufficient regular charge trajectories t �→ (qt, pt) and initial fields (E0,B0) at some time t0
which is the content of Subsection 4.3.1p.60. This is done by rewriting the Maxwell equations
into an inhomogeneous wave equation

�
�
Et
Bt

�
= 4π

�
−∇ρt − ∂tjt
∇ ∧ jt

�

for ρt := �(· − qt), jt := v(pt)�(· − qt) and charge density � such that any solution can then be
constructed by inverting the d’Alembert operator in terms of the propagator Kt = K−t − K+t . We
yield explicit formulas for the electric and magnetic field which we shall refer to as Kirchoff’s
formulas:
�
Et
Bt

�
:=
�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗

�
E

0

B
0

�
+ Kt−t0 ∗

�
−4πjt0

0

�
+ 4π

� t

t0
ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

�
(4.7)

and which for a charge trajectory with mass m � 0 we usually abbreviate by

Mm,�[(E0,B0), (q, p)](t, t0). (4.8)
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The same formulas (after a partial integration) have already been found by Komech and Spohn
using a slightly different technique [KS00]. Based on these Kirchoff formulas for given charge
trajectories and initial fields at some time t0 we derive the explicit form of the Liénard-Wiechert
fields by a limit procedure for which t0 is sent to ±∞ and show that the limit still fulfills the
Maxwell equations (though the Liénard-Wiechert formulas are well-known for over a hundert
years in the physical community we had trouble finding any reference of a rigorous derivation
along with a proof that they solve the Maxwell equations in the mathematical literature). The
well-known result [Jac98, Roh94, Spo04] is:

�
E
±
t

B
±
t

�
=

�
d3z �(z)

�
E

LW±
t (· − z)

B
LW±
t (· − z)

�

for

E
LW±
t (x) :=

�
(n ± v)(1 − v

2)
�x − q�2(1 ± n · v)3 +

n ∧ [(n ± v) ∧ a]
�x − q�(1 ± n · v)3

�±

B
LW±
t (x) := ∓[n ∧ Et(x)]±

where n is the normalized version of the vector x − q, v is the velocity and a is the acceleration
while the superscript ± denotes that these entities must be evaluated at advanced and delayed
time with respect to the space-time point (x, t); cf. Subsection 4.3.1p.60. As discussed in the
overview of the last chapter 3.1p.15, the “worst” behaving Wheeler-Feynman trajectories we ex-
pect are the Schild solutions and those have bounded accelerations and momenta. For such
charge trajectories the term, depending on the accelerations in the Liénard-Wiechert fields, does
not decay fast enough for the Liénard-Wiechert fields to be square integrable. But exactly for this
we have introduced the weight w in the ML-SI existence and uniqueness theorem and we show
that there is a w, e.g. w(x) = (1 + �x�2)−1, being conform with the requirements of the theorem
and in addition modulating the missing decay in the acceleration term such that E

±
t ,B

±
t ∈ L2

w.
Coming back to the Wheeler-Feynman fields which we need to be compatible with Dw(A∞) and
which are defined by one half of the sum of the advance and retarded Liénard-Wiechert fields
we yield (qi,t0 , pi,t0 ,E

WF
i,t0 ,B

WF
i,t0 )1≤i≤N ∈ Dw(A∞) where we owe the regularity to the convolution

representation.

In order to answer question 2 for the class of Wheeler-Feynman solutions TWF, one had to
determine the range of the map it0 but this task is beyond the present understanding of the WF
equations. Yet we start looking for an answer to this in Section 4.4p.73 in the following way:
With the characterization of Wheeler-Feynman solutions in TWF by it0 at hand it is natural to ask
whether there exist Wheeler-Feynman solutions for any prescribed Newtonian Cauchy data p =
(q0

i , p
0
i )1≤i≤N ∈ R6N which are positions and momenta of the N charges at time zero postponing

the question of uniqueness. For this we reformulate the Wheeler-Feynman functional differential
equations (4.1p.43) and (4.2p.43) into an initial value problem as in the discussed example (4.3p.44).
The analogue of equations (4.4p.44) are the ML-SI equations which we have treated in the last
chapter; recall the notation of the ML-SI solutions (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N = ML[p, F](t, 0) for
Newtonian Cauchy data p and initial electromagnetic fields F = (E0

i ,B
0
i )1≤i≤N at time zero.

In order to simplify the notation we denote the Liénard-Wiechert fields of a charge trajectory
t �→ (qt, pt) with mass m and charge density � at time t by Mm,�[(q, p)](t,±∞). The task is now
to find ML-SI equations whose charge trajectories obey the Newtonian Cauchy data

(qi,t, pi,t)1≤i≤N
���
t=0 = p (4.9)

and whose fields at time zero are the Wheeler-Feynman fields (4.2p.43), i.e. in our new notation

(EWF
i,t ,B

WF
i,t ) =

1
2

�

±

M�i,mi[(qi, pi)](t,±∞) (4.10)
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at time t = 0. As in the example above, it seems natural to construct such initial fields by
iteration of the map S p (this is the analogue of (4.5p.45) for T → ∞):

INPUT: The Fixed Point

Map

F = (E0
i ,B

0
i )1≤i≤N such that (p, F) ∈ Dw(A).

(i) Compute the ML-SI solution t �→ (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N := ML[p, F](t, 0).

(ii) Compute the Wheeler-Feynman fields for 1 ≤ i ≤ N

(EWF
i,t ,B

WF
i,t ) =

1
2

�

±

M�i,mi[(qi, pi)](t,±∞).

OUTPUT: S p[F] := (EWF
i,0 ,B

WF
i,0 )1≤i≤N .

By construction any fixed point needs to be a solution to the WF equations (4.1p.43) and (4.10p.46)
for Newtonian Cauchy data (4.9p.46). Therefore, it suffices to show the existence of a fixed point
of S p. The advantages compared to other fixed point approaches are twofold: First, existence
and uniqueness of solutions to functional differential equations can now be studied by the fixed
point methods of nonlinear functional analysis. And second, instead of working with a norm on
the space of the charge trajectories we only need to find a suitable norm on the space of initial
fields at time zero. However, there are two apparent difficulties:

1. If t �→ (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N as computed in step (i) has unbounded accelerations and/or
momenta, then the Wheeler-Feynman Fields computed in step (ii) need not to be well-
defined; cf. Theorem 4.18p.66.

2. Even if the Wheeler-Feynman Fields from step (ii) are well-defined, (p, S p[F]) does not
need to lie in Dw(A).

That the momenta and accelerations of charge trajectories of solutions to the ML-SI equations
cannot be bounded by the initial conditions in a simple way as it is the case for the ML+SI
dynamics is due to the fact that we lack any kind of energy conservation on equal time hyper-
surfaces. These difficulties force us to regard a related problem first which, however, only yields
charge trajectories which obey the Wheeler-Feynman equations on a finite but arbitrarily large
time interval. In Subsection 4.5p.92 we then discuss how the applied method could also yield true
Wheeler-Feynman solutions for all times.

Since the Wheeler-Feynman fields (4.10p.46) solve the Maxwell equations (as stated in Theorem
4.21p.68), we can express them for any T > 0 by

(EWF
i,t ,B

WF
i,t ) =

1
2

�

±

M�i,mi[X
±

i,±T , (qi, pi)](t,±T ) (4.11)

for the advanced and retarded Liénard-Wiechert fields

X±i,±T := (EWF
i,±T ,B

WF
i,±T ) = M�i,mi[(qi, pi)](±T,±∞) (4.12)

where we have been using the notation (4.8p.45). Let us then assume the fields X±i,±T as given
in terms of a function of the charge trajectory (qi, pi) for 1 ≤ i ≤ N such that they fulfill the
correct Maxwell constraints at time T , respectively −T . In contrast to the first approach we now
need to find trajectories (qi, pi)1≤i≤N that fulfill the equations (4.1p.43) and (4.11) which shall be
denoted as the bWF equations (which stands for “boundary field Wheeler-Feynman equations”).
However, if for 1 ≤ i ≤ N those fields X+i,+T , respectively X−i,−T , are for example advanced,
respectively retarded, Liénard-Wiechert fields generated by well-behaving trajectories in TWF,
then by Theorem 4.28p.72 the corresponding ML-SI solution takes values in Dw(A∞) for some
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appropriate weight function w. Furthermore, as the time-evolution of the Wheeler-Feynman
fields in (4.11) goes only over a time interval [−T,T ] we only need to control the ML-SI solution
there. For finite T > 0 we always get a bound on the maximal momentum and acceleration of
all charge trajectories. This way the difficulties of the first approach are shifted to the existence
of the boundary fields X±i,±T , 1 ≤ i ≤ N which we will discuss later. Again, we can formulate the
question of the existence of solutions in terms of the altered fixed point map S p,X±

T :

INPUT:The Fixed Point

Map for given

Boundary Fields

F = (E0
i ,B

0
i )1≤i≤N for any fields such that (p, F) ∈ Dw(A∞).

(i) Compute the ML-SI solution [−T,T ] � t �→ (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N := ML[p, F](t, 0).

(ii) Compute the fields for 1 ≤ i ≤ N

(�Ei,t,�Bi,t) =
1
2

�

±

M�i,mi[X
±

i,±T , (qi, pi)](t,±T ) (4.13)

where X±i,±T are given functions of the charge trajectory (qi, pi) for 1 ≤ i ≤ N.

OUTPUT: S p,X±
T [F] := (�Ei,0,�Bi,0)1≤i≤N .

By construction any fixed point solves the bWF equations (4.1p.43) and (4.11p.47) with prescribed
(X±i,±T )1≤i≤N for Newtonian Cauchy data (4.9p.46). Note that any fixed point then automatically
fulfills the Maxwell constraints at time zero, i.e. ∇ · E0

i = 4π�i(· − q
0
i ) and ∇ · B0

i = 0, for
1 ≤ i ≤ N, because the boundary fields fulfill them at times ±T .

This way we only get a Wheeler-Feynman interaction on a time interval within [−T,T ] for pre-
scribed asymptotes whose shape for times bigger than T , respectively smaller than −T is deter-
mined by the choice of X±T if one has not by chance taken the choice (4.12p.47) for the boundary
fields; see Figure 4.1p.51. We shall prove existence of fixed points of S p,X±

T for a convenient class
of boundary fields (which include Liénard-Wiechert fields of charge trajectories in TWF). Note
that even if this class (4.12p.47) were too small to include for all Wheeler-Feynman solutions the
fixed points of S p,X±

T are still of significance because:

1. Choosing boundary fields X± which are of the form of the advanced and retarded Liénard-
Wiechert, we shall show that for any T > 0 and T -dependent restrictions on the Newtonian
Cauchy data p and charge densities �i we can always find charge trajectories that fulfill the
true WF equations (4.1p.43) and (4.2p.43) for a non-zero interval within [−L, L] ⊂ [−T,T ];
see Figure 4.1p.51.

2. As for large T , assuming the charge trajectories are strictly time-like and have veloc-
ity bounds smaller than one, M�i,mi[X±i,±T , (qi, pi)](t,±T ) converges pointwise in R3 to
M�i,mi[(qi, pi)](t,±∞) which is independent of the boundary fields X± (cf. Theorem 4.18p.66),
one can expect that a fixed point of S p,X±

T is in some sense close to a true Wheeler-Feynman
solution.

Let us sketch the idea behind the proof for the existence of fixed points of the map S p,X±
T . We

aim at applying Banach’s Fixed Point Theorem for small times T and Schauder’s Fixed Point
Theorem [Eva98, Chapter 9, Theorem 3, p.502] for all finite times T :

Theorem 4.1.Schauder’s
Fixed Point

Theorem

Let B denote a Banach space and K ⊂ B be compact and convex. Assume
S : K → K is continuous, then S has a fixed point.
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We shall mostly work with the field space Fw :=
�N

i=1 L2
w ⊕ L2

w instead of the phase space of the
ML-SI dynamics so that it is convenient to introduce the operators A, J which are projections
of the operators A and J defined in the last chapter onto their field components. One can see
immediately that A generates a γ-contraction group (Wt)t∈R on its natural domain Dw(A) which,
again, is the projection of Dw(A) onto its field components. A natural choice for the Hilbert
spaces of fields is

F
n

w := {F ∈ Fw | A
jF ∈ Fw, 1 ≤ j ≤ n} with the norm � · �F n

w :=
n�

k=0

�A
k
· �Fw .

for n ∈ N. For fixed T > 0 the boundary fields X±i,T are defined such that they are functions
of (p, F) ∈ Hw instead of charge trajectories as it was discussed above. The reason for that
is that we can recover the charge trajectories by the ML-SI time-evolution of the initial value
(p, F). With the appropriate regularity conditions on the boundary fields one can define the map
F �→ S p,X±

T [F] as a continuous self-mapping on F 1
w . The most sensitive part of the proof is that

the range of S p,X±
T must be compact in order to apply Schauder’s Fixed Point Theorem. This

can be shown thanks to the fact that the fields generated by the charge trajectories on the time
interval [−T,T ] can be bounded by a finite constant depending only on the Newtonian Cauchy
data p and the time T . The reason that the bound is uniform in all initial fields F can be seen by
rewriting (4.13p.48)

(�Ei,t,�Bi,t) =
1
2

�
W∓T X±

±T [p, F] +
� 0

∓T
ds W−sJ(ϕs)

�
(4.14)

where X±
±T [p, F] := (X±i,±T [p, F])1≤i≤N and ϕs := ML[p, F](s, 0). The first summand is the

contribution of the boundary fields which behaves as we wish. The second contribution comes
from the integrated current of the charge trajectories over the interval [−T,T ]. The estimate of
the norm of the integrand in (4.14) for ϕs = (qi,s, pi,s,Ei,s,Bi,s)1≤i≤N

�J(ϕs)�Fw ≤

N�

i=1

�4πv(pi,s)�i(· − qi,t)�L2
w
≤

N�

i=1

�4π�i(· − qi,t)�L2
w

depends only on the position of the charges at time s (since the measure
√

wd3x is not transla-
tional invariant). But as the velocities are always smaller than the speed of light, their position
can be bounded by �p� + s. This observation implies that the range of S p,X±

T is bounded. If we
can in addition show that it is also compact, we can then take K to be the closed convex hull of it
which is again compact, restrict S p,X±

T to K → K so that Schauder’s Fixed Point Theorem would
ensure the existence of a fixed point in K. In order to show compactness we consider sequences
in the range of S p,X±

T . Because of their boundedness the Banach-Alaoglu theorem then states
that they have a F 1 weakly convergent subsequence, and it is left to show that this subsequence
also converges strongly. To show this, we only have to make sure that the subsequence of fields
does not oscillate too wildly and that no spatially outgoing spikes are formed. By imposing
further conditions on the boundary fields so that they behave as we wish we again have only to
concentrate on the fields which are created by the current of the charge trajectories on the time
interval [−T,T ]. By the finite propagation speed of the Maxwell equations those created fields
have support within a ball around the initial positions of the charge with radius �p�R6N + 2T + R
for balls BR(0) of radius R > 0 around the origin such that supp �i ⊆ BR(0). Furthermore, taking
into account the Maxwell constraints, we can also find bounds on the Laplacian of those fields
which depend only on T and �p�R6N where we use a similar technique than in the regularity proof
of the Maxwell-Lorentz equations in the last chapter. Hence, there is no formation of spikes and
the oscillations are mild so that we are able to show that the subsequence is also strongly conver-
gent in F 1. For small enough times and additional requirements on the boundary fields one can
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even apply Banach’s fixed point theorem to ensure also uniqueness which is due to the Lipschitz
continuous dependence on the initial values of the ML-SI dynamics. The exact requirements for
the boundary fields are condensed in Definition 4.38p.75 where we define the classes of boundary
fields. In Lemma 4.45p.79 we show that the Coulomb field is in all these classes but it is expected
(though not shown) that all Liénard-Wiechert fields of charge trajectories with bounded acceler-
ation and momentum are also included. In this sense the boundary fields can be seen as being the
advanced and retarded Liénard-Wiechert fields of the asymptotes of the actual charge trajecto-
ries on time interval [−T,T ]. In a last paragraph we then show that among these fixed point there
are fields F such that the charge trajectories t �→ (qi,t, pi,t)1≤i≤N of the ML-SI solution with initial
value (p, F) also fulfill the true WF equations on a finite time interval. In order to see this we
regard the difference of the true Wheeler-Feynman fields (4.10p.46) and fields (4.11p.47) depending
on the boundary fields for the ith charge trajectory in terms of Kirchoff formulas (4.7p.45)

M�i,mi[X
±

i,±T , (qi, pi)](t,±T ) − M�i,mi[(qi, pi)](t,±∞)

=

�
∂t ∇∧

−∇∧ ∂t

�
Kt∓T ∗ X±i,±T + Kt∓T ∗

�
−4πv(pi,±T )�i(· − qi,±T )

0

�

− 4π
�
±T

±∞

ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
�i(· − qi,s)

v(pi,s)�i(· − qi,s)

�
.

Whenever this difference is zero, at least within tubes around the positions of all other j �
i charge trajectories for times t in some interval [−L, L] for L > 0, they also solve the true
Wheeler-Feynman equations on this time interval. To show that such a non-empty time interval
exists we make use of the property of the Maxwell equations that Liénard-Wiechert initial fields
X±i,±T are cleared to zero by the first term above within the forward, respectively backward,
light-cone of the space-time points (qi,±T ,±T ) during the time-evolution to make way for the
fields generated by the charge trajectory. We show this by direct computation in the case of
the Coulomb fields as boundary fields using harmonic analysis. In the same region the third
term, coming from the Wheeler-Feynman fields for times outside of the time interval [−T,T ], is
naturally zero, too. Finally, the second term has support on the light-cone of space-time point
(qi,±T ,±T ) only. Hence, the above difference is zero within the intersection of the forward light-
cone of (qi,−T ,−T ) and the backward light-cone of (qi,T ,T ).

Now it is only left to ensure that all charge trajectories stay inside this space-time region long
enough so that L > 0. For this, if we had a uniform velocity estimate for the charge trajectories
(which in the case of, for example, two charges of equal sign would be physically reasonable)
we would only have to choose T large enough. However, the estimate we have for general initial
conditions comes from the Gronwall estimate of the ML-SI dynamics which is T dependent.
Therefore, we yield true Wheeler-Feynman solutions on a finite time interval only if the maximal
distance of the initial positions is small enough. Furthermore, we have to account for the radius
R > 0 of the extended charge which gives a restriction on the choice of the charge densities �i.
However, it is strongly expected that this velocity estimate can be improved for more special
initial conditions p so that all these conditions are only technicalities and this method would
yield Wheeler-Feynman solutions on arbitrary large, finite time intervals.

TheMain results main results of this chapter are:

1. The Kirchoff formulas for the Maxwell solutions and the derivation of the Liénard-
Wiechert fields which are shown to fulfill the Maxwell equations.

2. The unique characterization of the Wheeler-Feynman solution class TWF.

3. The existence of fixed point for the map S p,X±
T for any T > 0 and p ∈ R6N and a class of

boundary fields X± plus uniqueness for small enough T .
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Figure 4.1: For N = 2 charges, some T > 0 and Newtonian Cauchy data p denoted by the white
arrows, the charge trajectories t �→ (qi,t, pi,t)1≤i≤2 := (Q + P)ML[p, F](t, 0) for a hypothetical
fixed point F = S p,X±

T [F] are shown: solid black for t ∈ [−T,T ] and otherwise dashed. In this
figure the boundary fields X± are chosen to be the Coulomb fields of charges at rest at qi,±T for
i = 1, 2. In this case the charge i � j within the time interval [−T,T ] feels the Wheeler-Feynman
fields of a trajectory being equal to the charge trajectory of charge j on time interval [−T,T ] and
for times t > ±T being equal to the trajectory of a charge at rest at position q j,±T (solid black
straight lines). The shaded region denotes the time interval where the charge trajectories fulfill
the true WF equations. The gray 45◦ degree lines are used to denote the intersection of the light
cones of the space-time points (T, qi,±T ) with the charge trajectories.

4. The existence of Wheeler-Feynman solutions on non-zero time intervals.

The Literature reviewWheeler-Feynman equations appear only very sparsely in the mathematical literature. While
some special solutions to the Wheeler-Feynman equations of motions were found [Sch63], gen-
eral existence of solutions to these equations has only been settled in the case of restricted motion
of two point particles with equal charge on a straight line in R3 [Bau97]. An even bigger, out-
standing problem is the question how the solutions can be uniquely characterized, especially if
it is possible to pose a well-defined initial value problem for WFED with Newtonian Cauchy
data. Apart from the mentioned works, there exist only few discourses on WFED in the classical
literature, for example special analytic solutions [Ste92], numerical approximation [DW65] and
conjectures on as well as special cases of existence and uniqueness of solutions in one dimen-
sion [Dri69, Dri79]. In a recent work [Luc09] the Fokker variational principle for two charges
in three dimensions is discussed mathematically, which can be used to yield Wheeler-Feynman
solutions by specifying starting and ending points of the two world lines and giving in addition
a part of the future of the first charge and a part of the past of the other charge. Without the
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restriction to the motion on the straight line, only conjectures about existence and uniqueness
can be found, e.g. [WF49, DW65, And67, Syn76].

4.2 Functional Differential Equations

A functional differential equation is a differential equation that involves terms which are func-
tionals of the solution. This way the state change given by a functional differential equation at
a certain time may also depend on the past (delay equations), the future or on the entire history
of the solution. The existence and uniqueness properties of this type of equations are in gen-
eral very different from ordinary or partial differential equations. In order to become familiar
with the concept of functional differential equations and its difficulties of an ordinary differential
equation with delay, we borrow an example from [Dri77]: Let us look for solutions x : R → R
to the differential equations

x�(t) = ax(t) + bx(t − r) (4.15)

with coefficients a, b ∈ R and a constant delay r ∈ R. As in the theory of ordinary differential
equations commonly used we denote by x�(t) the derivative dx(t)

dt . For b and r different from zero,
the derivative of the solution x at time t depends not only on the solution at time t but also on the
retarded time t − r.

TheConstruction of

solutions to a

class of delay

differential

equations

first question is whether (4.15) has solutions. This question can be answered constructively:
Assume that we are given a once differentiable function x0 on the interval (−r, 0] (on the borders
of the interval we only need the one-sided derivative) and we look for a solution x that fulfills

x(t) = x0(t) on the interval t ∈ (−r, 0]. (4.16)

This initial function already specifies the solution x uniquely on the whole past (−∞, 0] as for
example for t ∈ (−2r,−r] we have

x(t) =
x�(t + r) − ax(t + r)

b
=

x�0(t + r) − ax0(t + r)
b

.

This construction can be continued inductively for each interval (−nr,−(n − 1)r] for n ∈ N to
yield an almost everywhere differentiable solution x on the whole past.

HoweverSolutions do not

necessarily

inherit the

smoothness of

the initial

function

, we observe that this construction does not necessarily yield a continuous function as
in general

lim
�↓0

x(−r − �) =
x�0(−�) − ax0(−�)

b
� lim
�↓0

x0(−r + �) = lim
�↓0

x(−r + �). (4.17)

Note that this does not only depend on the regularity of x0 but also on (4.17). In order to give
an example which we will use later, let us choose a special initial function x0, e.g. such that for
every t ∈ R

x0(t) :=




0 for t ≤ −r
e−t−2e−(t+r)−2 for − r < t < 0
0 otherwise

(4.18)

which is infinitely often differentiable and has the property that itself and each of its derivatives
are zero at t = 0 and t = −r, i.e. x(n)

0 (−r) = 0 = x(n)
0 (0) for n ∈ N0. This special choice of an

initial function x0 together with (4.16) then yields an infinitely often differentiable solution x on
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(−∞, 0] since the left- and right-hand side of (4.17) are equal. For any continuous x0 the future
[0,∞) can be constructed by the method of steps. For t ∈ (0, r] we have

x(t) = eat
�
x0(0) + b

� t

0
ds x0(s − r)e−as

�

where the right-hand side depends only on the given function x0. Step by step one yields x on
[0,∞). This way we have constructed an infinitely often differentiable solution x : R→ R.

Having Uniqueness of

solutions to

delay differential

equations

constructed one solution, the next question is uniqueness. Let us assume that x as well
as y are continuous solutions to equation (4.15p.52) on R, both fulfilling (4.16p.52) for a continuous
x0. By continuity the equations must fulfill the integral equation

x(t) − y(t) =
� t

0
ds
�
a(x(s) − y(s)) + b(x(s − r) − y(s − r))

�

= a
� t

0
ds
�
x(s) − y(s)

�
+ b
� t−r

−r
ds
�
x(s) − y(s)

�
.

Using (4.16p.52) we have the estimate

|x(t) − y(t)| ≤ (|a| + |b|)
� t

0
ds |x(s) − y(s)|

for t ≥ 0. Gronwall’s lemma in differential form then yields y(t) − x(t) = 0 for all times t ≥ 0.
Hence, the x0(t) = x(t) for t ∈ (−r, 0] determines the solution x uniquely for t ≥ 0 and thus,
together with the argument above, on whole R.

Initial Non-existence

and

non-uniqueness

for Cauchy initial

conditions

conditions in form of a function x0 : (−r, 0] → R are uncommon in physical problems.
Usually one hopes to tell solutions apart by giving Cauchy data at time t = 0. This becomes cum-
bersome for functional differential equations. In fact, there are counterexamples [Dri77] which
prove the non-existence of solutions to linear delay equations even with constant coefficients for
given Cauchy data x(t)|t=0. And even if there is a solution for specific Cauchy initial conditions
the solution will in general not be unique. As an example let us assume that y : R → R is a
solution to (4.15p.52) fulfilling

y(n)(t)|t=0 = cn for n ∈ N0 (4.19)

and given constants (cn)n∈N0 . Let x be the constructed solution to (4.15p.52) with initial condition
(4.16p.52) for the choice (4.18p.52). Then we have

x(n)(t) = 0 for n ∈ N0

and therefore, by linearity, for every c ∈ R, y + cx is another solution fulfilling (4.19).

Note that an approximation of the delay by its Taylor series turns the delay differential equation
into an ordinary differential equation and, hence, the approximate equation loses the discussed
features like non-existence and non-uniqueness and therefore, the true delay character cannot be
studied anymore.

4.2.1 Wheeler-Feynman Toy Model

So far we have discussed an example of a functional differential equation with delay. The next
example we look at is an equation that includes also advanced effects. Let x, y : R→ R3 be two
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trajectories of charges of equal sign which interact with their Coulomb fields only. The defining
equations of the model are given byWheeler-

Feynman toy

model

ẍ(t) =
�

±

x(t) − y(t±x )
�x(t) − y(t±x )�3

t±x = t ± �x(t) − y(t±x )�

ÿ(t) =
�

±

y(t) − x(t±y )
�y(t) − x(t±y )�3

t±y = t ± �y(t) − x(t±y )�
(4.20)

In comparison to the example given in the introduction to this section, we have added two new
features to the functional differential equations. First, the acceleration at time t of one trajectory
does not only depend on the past but also on the future of the other trajectory. And second, the
advance and delay are not static but depend on the state of the dynamical system – to be more
precise on the actual position at some instant of time. Because of these two features one could
regard these equations as a toy model of the Wheeler-Feynman equations.

WeInitial conditions want to get a feeling how much data of a solution is needed to identify it uniquely. The
idea is to apply the same construction used for the example in the introduction of this section,
where the solution to the whole past could be generated from a given piece of the solution. Let
x0 : Dx → R3 and y0 : Dy → R3 for domains Dx,Dy ⊂ R be two time continuously differentiable
functions. We assume a solution to t �→ (x(t), y(t)) of the equations (4.20) has initial conditions
(x0, y0) if

x(t) = x0(t), for t ∈ Dx and y(t) = y0(t), for t ∈ Dy. (4.21)

As the advance and delay at time t = 0 depends on the state of the dynamical system at t = 0,
we cannot take any domains Dx,Dy. However, a sensible choice is apparent: Dx,Dy ⊂ R need
to include the 0 and the advance and delay terms in (4.20) need to be well-defined, i.e. the
equations

τ±x = ±�x0(0) − y0(τ±x )� and τ±y = ±�y0(0) − x0(τ±y )�

need to have solutions τ±x ∈ Dy and τ±y ∈ Dx. Furthermore, as the Coulomb fields become
singular whenever the two trajectories cross, we demand in addition that �x(t) − y(t)� > 0 for
t ∈ Dx ∩Dy. In order to avoid being over-determined we assume the special form Dx := [τ−y , τ+y ]
and Dy := [τ−x , τ+x ]. Finally, we need the equations (4.20) to be fulfilled for time t = 0. That
such initial conditions exist can be seen by the following construction: Take any two trajectories
t → x0(t) and t → y0(t) that do not cross and have velocities smaller than one. Compute the
intersection times τ±x and τ±y of the forward and backward light cone of x0(0), respectively y0(0),
with t → y0(t), respectively, t → x0(t). Holding these intersection points x0(τ±y ) and y0(τ±x ) fixed,
one finally needs to correct the second derivative at time t = 0 in a continuous manner to be able
to fulfill the equations (4.20) at t = 0.

InConstruction of

solutions

the following we give a construction yielding a unique solution t �→ (x(t), y(t)) of the equations
(4.20) on arbitrary bounded time intervals that fulfill the initial conditions (4.21). We rearrange
the equations of motion for t �→ x(t), cf. (4.20), into the form

x(t) − y(t+x )
�x(t) − y(t+x )�3

= ẍ(t) −
x(t) − y(t−x )
�x(t) − y(t−x )�3

The function f(x) = x�x�−3 wherever well-defined has an inverse f
−1(x) = x�x�−

3
2 . Hence, we

yield

y(t+x ) = x(t) − f
−1
�
ẍ(t) −

x(t) − y(t−x )
�x(t) − y(t−x )�3

�
.
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Now for a time 0 ≤ t ≤ τ+x the right-hand side of this equation involves only known entities and
we may express these equations as

y(t+x ) = x0(t) − f
−1
�
ẍ0(t) −

x0(t) − y0(t−x )
�x0(t) − y0(t−x )�3

�
.

Note that this also determines the advance term

t+x = t +
������f
−1
�
ẍ0(t) −

x0(t) − y0(t−x )
�x0(t) − y0(t−x )�3

�������

which is a simple function of t. Hence, as long as the trajectories t �→ x(t) and t �→ y(t) do not
cross, the trajectory of t �→ y(t) which is initially defined on the domain [τ−x , τ+x ] by (4.21p.54) can
be extended to the domain [τ−x , t+x (τ+y )]. By the same construction we can extend the trajectory
t → x(t) to the domain [τ−y , t+y (τ+x )]. Under the assumption that the trajectories do not cross,
the maximal velocities of both trajectories are uniformly bounded and that this bound is below
one, we can continue this construction to yield trajectories t → x(t) on the domain [τ−y ,∞) and
t → y(t) on [τ−x ,∞). Note that the stated assumptions are very likely to hold at least for a lot of
initial conditions as the charges are repelling and their interaction decays over their distance. A
similar construction can be done for the past so that we end up with a solution t → (x, y) of the
equations (4.20p.54) on whole R.

The above construction relies heavily on the existence of f
−1 which enables us to solve for the

future or past trajectory. For a Lorentz boosted Coulomb field this will be already not possible
anymore since in this case the position and the velocity coordinates mix in the inner products
and there is no unique way to tell them apart knowing only the values of the field. Whether
additional conditions like smoothness and conservations laws better the situation is not known.
Nevertheless, we learn from this toy model that Newtonian Cauchy data (x(t), ẋ(t), y(t), ẏ(t))|t=0 is
not sufficient to identify a solution uniquely disregarding any conditions on regularity. Whether
demanding smoothness for the solutions renders them unique for only Newtonian Cauchy data
is an interesting question. On the other hand, we also learned that we do not have reasons
to believe that we encounter non-existence of solutions to the Wheeler-Feynman equations for
given Newtonian Cauchy data.

4.2.2 Reformulation in Terms of an Initial Value Problem

The type of functional differential equations we shall be looking for are of the following form:

x�(t) = V(x(t), f (t, x)) (4.22)

To keep it simple let X,Y be Banach spaces and we take x : R → X, V : X × Y → X and f a
function of t ∈ R and a functional x taking values in Y. To get the connection to the Wheeler-
Feynman equations imagine x to encode position and momentum of all charges, f the electric
and magnetic fields and V the Lorentz force. As in electrodynamics where the fields depend on
the charge trajectories, f depends on the whole solution x : R→ X.

We want to study equation (4.22) in terms of Cauchy data

x(t)|t=0 = x0 (4.23)

for given x0 ∈ X. Therefore, the key idea of the rest of this entire chapter is to reformulate
the question of the existence of solution to the functional differential equation in terms of an
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ordinary initial value problem. This can be done for any functional differential equation if the
functional can be given in terms of a propagator, for example,

f (t, x) =
1

δ+ + δ−

�

±

δ±

�
f ±T +

� t

±T
ds W(x(s))

�
for all t ∈ R (4.24)

for some T ≥ 0 and initial values f ±T ∈ R and δ+, δ− ∈ {0, 1}. In case of f encoding the electro-
dynamic fields of the charge trajectories specified in x, the initial values f ±T will be forgotten
for T → ∞ which is due to the differential operator of the free Maxwell equations omitted in
our simplified considerations here. For δ+ = 1 = δ− we have a functional differential equa-
tion depending on the solution x in the interval [−T,T ], while for δ+ = 0, δ− = 1, respectively,
δ+ = 1 and δ− = 0, it would only depend on the past [−T, 0], respectively, the future [0,T ].
Differentiation with respect to time gives

d
dt

f (t, x) = W(x(t)) (4.25)

which encodes a time-evolution of the functional f for given x. In the analogy with electrody-
namics this can be viewed as the Maxwell equations with omission of the differential operator
of the free Maxwell equations.

SoReformulation of

the initial value

problem for the

functional

differential

equation

instead of studying (4.22p.55) and (4.23p.55) we can as well consider the equation

d
dt

�
x(t)
f (t)

�
=

�
V(x(t), f (t))

W(x(t))

�
(4.26)

together with the initial condition (4.23p.55). If we demand in addition

f (t)|t=0 =
1

δ+ + δ−

�

±

δ±

�
f ±T +

� 0

±T
ds W(x(s))

�
, (4.27)

which by (4.25) is equivalent to (4.24), any solution x then fulfills (4.22p.55) for initial value
(4.23p.55).

Let us use the notation

ϕ(t) =
�
x(t)
f (t)

�
and J(ϕ(t)) =

�
V(x(t), f (t))

W(x(t))

�

so that (4.26) reads

ϕ�(t) = J(ϕ(t)). (4.28)

IfTime zero

Cauchy data

J is nonlinear and Lipschitz continuous, we get existence and uniqueness of solutions to (4.26)
for Cauchy data at time t = 0 without much effort.

Theorem 4.2. Assume that J : X ⊕ Y → X ⊕ Y is nonlinear and Lipschitz continuous with
Lipschitz constant L > 0, i.e.

�J(ϕ − �ϕ)�X⊕Y ≤ L�ϕ − �ϕ�X⊕Y.

Let ϕ0 ∈ X ⊕ Y, then there is a unique solution ϕ ∈ C(R,X ⊕Y) of (4.28) and ϕ(t)|t=0 = ϕ0.

Proof. Let us define the Banach space

Xγ :=
�
ϕ ∈ C(R,X ⊕Y)

���� �ϕ�γ := sup
t∈R

e−γ|t|�ϕ(t)�X⊕Y
�
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for γ ≥ 0 and the map S : C(R,X ⊕Y)→ C(R,X ⊕Y) pointwise for every t ∈ R by

S [ϕ](t) := ϕ0 +

� t

0
ds J(ϕ(s)).

Let ϕ ∈ Xγ, then S [ϕ] is in C(R,X ⊕Y) and

�S [ϕ]�γ = sup
t∈R

e−γ|t|
������ϕ

0 +

� t

0
ds J(ϕ(s))

������
X⊕Y

≤ �ϕ0
�X⊕Y + sup

t∈R
e−γ|t|

�
|t|

−|t|
ds �J(ϕ(s)) − J(0) + J(0)�X⊕Y

≤ �ϕ0
�X⊕Y + sup

t∈R
e−γ|t|

�
L
�
|t|

−|t|
ds �ϕ(s)�X⊕Y + 2|t| �J(0)�X⊕Y

�

≤ �ϕ0
�X⊕Y + sup

t∈R
e−γ|t|

�
L�ϕ�γ

�
|t|

−|t|
ds eγ|s| + 2|t| �J(0)�X⊕Y

�

≤ �ϕ0
�X⊕Y + sup

t∈R
e−γ|t|

�
L�ϕ�γ2

eγ|t|

γ
+ 2|t| �J(0)�X⊕Y

�
.

Now te−γt has t = 1
γ as maximum so that we find

�S [ϕ]�γ ≤ �ϕ
0
�X⊕Y +

2
γ

�
L�ϕ�γ + �J(0)�X⊕Y

�
< ∞

such that S is a nonlinear map Xγ → Xγ for every γ ≥ 0. Furthermore, we compute

�S [ϕ] − S [�ϕ]�γ = sup
t∈R

e−γ|t|
������

� t

0
ds J(ϕ(s)) − J(�ϕ)

������
X⊕Y

≤ L sup
t∈R

e−γ|t|
�
|t|

−|t|
ds �ϕ(s) − �ϕ(s)�X⊕Y

≤ L�ϕ − �ϕ�γ sup
t∈R

e−γ|t|
�
|t|

−|t|
ds eγ|s| ≤

2L
γ
�ϕ − �ϕ�γ

which states that S is a contraction for sufficiently large γ. Hence, by Banach’s fixed point
theorem we have existence and uniqueness of a fixed-point in Xγ ⊂ C(,X ⊕Y). �

We Uniqueness for

the functional

differential

equation for

small times

mainly get the uniqueness from the fact that J is nonlinear. However, this changes when we
want to solve (4.28p.56) for (4.23p.55) and (4.27p.56). For small times T ≥ 0 we can settle the issue
of existence and uniqueness by a similar technique like above. Let us extend our short-hand
notation with projectors on the coordinates

Qϕ(t) =
�
x(t)
0

�
and Fϕ(t) =

�
0

f (t)

�
.

If there is no source for type errors, we shall also use Qϕ(t) = x(t) as anX value and Fϕ(t) = f (t)
as a Y value.

Lemma 4.3. Let J and x0 ∈ X be as before and let ( f ±T )T≥0 be a family in Y. Then there is a
constant τ > 0 which depends only on the Lipschitz constant L of J such that for all 0 ≤ T < τ
there is a unique solution ϕ ∈ C(R,X ⊕Y) of (4.28p.56) for (4.23p.55) and (4.27p.56), i.e.

ϕ�(t) = J(ϕ(s)) (4.29)

ϕ(t)|t=0 = χ
0 +

1
δ+ + δ−

�

±

δ±

�
χ±T +

� 0

±T
ds FJ(x(s))

�
. (4.30)

for χ0 =

�
x0

0

�
and χ±T =

�
0

f ±T

�
.
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Proof. From Theorem 4.2p.56 we know that for every f 0 ∈ Y there is a unique solution to (4.29)
for initial value

ϕ(t)|t=0 =

�
x0

f 0

�
.

Therefore, we need only to find the one which fulfills also (4.30p.57). It seems that the natural
way is to construct such initial conditions via a fixed-point map. Let us denote by t �→ Mt[ϕ0]
the unique solution ϕ(·) ∈ C(R,X ⊕ Y) with initial conditions ϕ(t)|t=0 = ϕ for all ϕ ∈ X ⊕ Y.
Furthermore, we define a candidate for such a map by S : X ⊕Y → X ⊕Y by

S χT [ϕ] := χ0 +
1

δ+ + δ−

�

±

δ±

�
χ±T +

� 0

±T
ds FJ(Ms[ϕ])

�
(4.31)

for all ϕ ∈ X ⊕ Y. For another �ϕ ∈ X ⊕ Y we find

���S χt [ϕ] − S χt [�ϕ]
���
X⊕Y
≤

� T

−T
ds �J(Ms[ϕ]) − J(Ms[�ϕ])�X⊕Y

≤ 2T L sup
t∈[−T,T ]

�Mt[ϕ] − Mt[�ϕ]�X⊕Y . (4.32)

From Gronwall’s lemma we get an estimate on the supremum because

�Mt[ϕ] − Mt[�ϕ]�X⊕Y =
������ϕ − �ϕ +

� t

0
ds
�
J(Ms[ϕ]) − J(Ms[�ϕ])

�
������
X⊕Y

≤ �ϕ − �ϕ�X⊕Y + L
� t

0
ds �Ms[ϕ] − Ms[�ϕ]�X⊕Y

which means that

�Mt[ϕ] − Mt[�ϕ]�X⊕Y ≤
�
1 + LteLt

�
�ϕ − �ϕ�X⊕Y

Entering this into equations (4.32) we get
���S χt [ϕ] − S χt [�ϕ]

���
X⊕Y
≤ 2T L

�
1 + LTeLT

�
�ϕ − �ϕ�X⊕Y. (4.33)

As T �→ 2T L
�
1 + LTeLT

�
is a continuous and strictly increasing function taking values in [0,∞),

there is a 0 < τ < ∞ such that 2τL
�
1 + LτeLτ

�
= 1. Hence, for any 0 ≤ T < τ the map S χT is a

contraction on the Banach space X⊕Y. The Banach’s fixed point theorem ensures the existence
of a unique fixed point ϕ ∈ X ⊕ Y and therefore

ϕ(t) := Mt[ϕ] := ϕ +
� t

0
ds J(ϕ(s))

is a solution to (4.29p.57) which fulfills

ϕ(t)|t=0 = ϕ = S χT [ϕ] = χ0 +
1

δ+ + δ−

�

±

δ±

�
χ±T +

� 0

±T
ds FJ(Ms[ϕ])

�
,

i.e. it fulfills (4.30p.57), which concludes the proof. �

Theorem 4.4. Let τ > 0 as in the last theorem, then for all such 0 ≤ T < τ and functionals

f (t, x) :=
1

δ+ + δ−

�

±

δ±

�
f ±T +

� t

±T
ds W(x(s))

�
,

then for every x0 ∈ X there is a unique solution x ∈ C(R,X) of

x�(t) = V(x(t), f (t, x)) and x(t)|t=0 = x0.
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Proof. Let ϕ be the unique fixed point of S χT , i.e. (4.31), of Lemma 4.3p.57. We compute

Fϕ(t) = F
�
S χT [ϕ] +

� t

0
ds J(ϕ(s))

�
=

1
δ+ + δ−

�

±

δ±

�
χ±T +

� t

±T
ds FJ(Ms[ϕ])

�
.

Since Mt[ϕ] =
�
x(t)
f (t)

�
and J(Ms[ϕ]) =

�
V(x(s), f (s))

W(x(s))

�
, we yield Fϕ(t) = f (t, x) which concludes

the proof. �

To Why uniqueness

for small times?

picture what is going on let us consider the delay case only, i.e. here δ+ = 0 and δ− = 1.
This means we are looking for solutions to ϕ�(t) = J(ϕ(t)) for initial conditions given at different
times

Qϕ(t)|t=0 = x0 and Fϕ(t)|t=−T = f −T

for given x0 ∈ X and f −T ∈ Y. If T > 0 is not chosen to be too large Theorem 4.4p.58 provides
a unique solution to this problem which we call t �→ ϕ(t). In turn, Theorem 4.2p.56 states that for
every prescribed x ∈ X there is a unique solution t �→ ϕx(t) := M(t−T )[(x, f −T )]. By uniqueness
all these trajectories do not cross in phase spaceX⊕Y unless they are the same. The mechanism
which keeps them apart is the Lipschitz continuity of the vector field of the differential equation.
Imagine x very close to Qϕ(−T ), then by the Lipschitz continuity the vectors J(ϕ(t)) and J(ϕx(t))
are almost parallel for t ∈ [−T, 0], and Qϕ(0) and Qϕx(0) will lie near but have no chance to
become equal. The other extreme would be an x very far away from Qϕ(−T ), the trajectory
t �→ Qϕx(t) can then not reach x0 anymore during the time T as the maximal velocity is bounded
by the Lipschitz constant L. Hence, it is clear that T is approximately inverse proportional to the
Lipschitz constant L as equation (4.33p.58) suggests.

As Why we cannot

expect

uniqueness for

all times T

a concluding remark we consider the problem above for arbitrary large or even infinite T .
Without more assumptions on J, it will in general not be possible to apply Banach’s fixed point
theorem to infer existence of solutions. In fact, for the Wheeler-Feynman equations in Subsec-
tion 4.4p.73 the existence of solutions for arbitrary but finite T can only be shown by Schauder’s
Fixed Point Theorem. This raises the question about uniqueness. For example, imagine we had
an existence and uniqueness theorem like (4.4p.58) without the restriction that T needs to be small.
Then for two trajectories t �→ ϕx(t) and t �→ ϕy(t) for x, y ∈ X as defined before with x � y,
theorem (4.2p.56) states ϕx(t) � ϕy(t) for all t ∈ R. If at one time t ∈ R the two trajectories cross
in X space, i.e. if we have Qϕx(t) = Qϕy(t), theorem (4.4p.58) without the restriction on T would
imply that ϕx(t) = ϕy(t) for all t ∈ R which is a contradiction. Therefore, two such trajectories
could never cross in X space. This is big restriction either on the vector fields J or on the set of
initial conditions in X⊕Y or both. However, such a property cannot be expected for any general
nonlinear and Lipschitz continuous vector field.

4.3 Wheeler-Feynman Initial Fields

In the following we will develop a way to characterize a class of possible Wheeler-Feynman
solutions by initial values for the ML-SI dynamics. This characterization will be based on prop-
erties of the corresponding Maxwell solutions which we infer by solving the Maxwell equations
explicitly in Subsection 4.3.1p.60. The Characterization of Wheeler-Feynman solutions is then
done in Subsection 4.3.2p.70.
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4.3.1 Solutions to the Maxwell equations

In this chapter we prove explicit representation formulas for strong solutions t �→ (Et,Bt) of the
Maxwell equations given a charge trajectory or charge-current density:

Definition 4.5.Charge
trajectories

We shall call any map

(q, p) ∈ C1(R,R3
× R3), t �→ (qt, pt)

a charge trajectory where qt denotes the position and pt the momentum of the charge with mass
m � 0. We collect all time-like trajectories in the set

T
1
∨ :=

�
(q, p) ∈ C1(R,R3

× R3)
�����
���v(pt)

��� < 1 for all t ∈ R
�
,

and all strictly time-like trajectories in the set

T
1
� :=

�
(q, p) ∈ T 1

∨

����� ∃vmax < 1 such that sup
t∈R

���v(pt)
��� ≤ vmax

�

where v(p) := p
√

m2+p2
. We shall also use the notation T# := ×N

i=1T
1
# for the N-fold Cartesian

product where # is a placeholder for ∨ or �. Furthermore, two charge trajectories are equal if
and only if their positions and momenta are equal for all times.

Definition 4.6.Charge-current
densities

We shall call any pair of maps ρ : R × R3 → R, (t, x) �→ ρt(x) and j : R × R3 →

R3, (t, x) �→ jt(x) a charge-current density whenever:

(i) For all x ∈ R3: ρ(·)(x) ∈ C1(R,R) and j(·)(x) ∈ C1(R,R3).

(ii) For all t ∈ R: ρt, ∂tρt ∈ C
∞(R3,R) and jt, ∂tjt ∈ C

∞(R3,R3).

(iii) For all (t, x) ∈ R × R3: ∂tρt(x) + ∇ · jt(x) = 0 which we call continuity equation.

We denote the set of such pairs (ρ, j) byD.

We shall also need the following connection between charge trajectories and charge-current
densities:

Definition 4.7.Induced
charge-current

densities

For � ∈ C∞c (R3,R) and (q, p) ∈ T 1
∨ we call (ρ, j) ∈ D defined by

ρt(x) := �(x − qt) and jt(x) :=
pt�

m2 + p
2
t

�(x − qt)

for all (t, x) ∈ R × R3 the � induced charge-current density of (q, p) with mass m.

The Maxwell equations including the Maxwell constraints for a given charge-current density
(ρ, j) ∈ D read:

Ėt = ∇ ∧ Bt − 4πjt
Ḃt = −∇ ∧ Et.

∇ · Et = 4πρt

∇ · Bt = 0.
(4.34)

The class of fields (Et,Bt) we are interested in is:

Definition 4.8.Space of the
fields

F 1 := C∞(R3,R3) ⊕ C∞(R3,R3).
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The class of solutions to these Maxwell equations we want to study is characterized by:

Definition 4.9. Maxwell
solutions

Let t0 ∈ R and F0 ∈ F 1. Then any mapping F : R → F 1, t �→ Ft := (Et,Bt)
that solves (4.34) for initial value Ft|t=t0 = F0 is called a solution to the Maxwell equations with
t0 initial value F0.

The explicit representation formulas are constructed with the help of:

Definition 4.10. Green’s
functions of the
d’Alembert

We set

K±t (x) :=
δ(�x� ± t)

4π�x�

where δ denotes the one-dimensional Dirac delta distribution. Furthermore, for every f ∈
C∞(R3) we define

K±t ∗ F(x) =




0 for ± t > 0
t
�

∂B|t|(x)
dσ(y)F(y) := t

�
∂B|t|(x) dσ(y) F(y)

4πt2 otherwise

In the next lemma we collect useful properties of these Green’s functions.

Lemma 4.11. Green’s
functions
properties

The distributions K±t introduced in Definition 4.10 have the following properties:

(i) For any f ∈ C∞(R3) the mapping (t, x) �→ [K±t ∗ f ](x) is in C∞((R \ {0})×R3), �K±t ∗ f = 0
for t � 0 and for any n ∈ N

lim
t→0∓

�
∂2n

t K±t ∗ f
∂2n+1

t K±t ∗ f

�
=

�
0
∓�n f

�
. (4.35)

(ii) For any f ∈ C∞(R3) and Kt =
�
± ∓K±t the mapping (R \ {0}) ×R � (t, x) �→ [K±t ∗ f ](x) is

continuously extendable to a C∞(R×R3) function. Furthermore, �Kt ∗ f = 0 for all t ∈ R.

(iii) Let R3 ×R � (x, t) �→ ft(x) be a map that is for each fixed x ∈ R3 an once continuously dif-
ferentiable function and for each fixed t ∈ R infinitely often differentiable then the following
estimates hold for an R ≥ |t|:

�[Kt ∗ ft](x)� ≤ R sup
y∈∂BR(x)

� ft(y)� and �[Kt ∗ ft](x)� ≤ sup
y∈∂BR(x)

�
� ft(y)� +

R2

3
�� f (y)�

�

Furthermore, for all n ∈ N it is true that

lim
t→0

Kt ∗ ft = 0 and lim
t→0
∂tKt ∗ ft = f0.

Proof. A straightforward computation(see Computation in Appendix 5.2p.97) yields

K±t ∗ f = ∓t
�

∂B∓t(0)

dσ(y) f (· − y) (4.36)

∂tK±t ∗ f = ∓
�

∂B∓t(0)

dσ(y) f (· − y) ∓
t2

3

�

B∓t(0)

d3y � f (· − y) (4.37)

∂2
t K±t ∗ f = K±t ∗ � f = �K±t ∗ f . (4.38)
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(i) Therefore, the first and second derivatives exist with respect to t, while the second derivative
can be written as a spacial derivative on f . By induction one easily computes all combinations
of x and t derivatives and finds that the mapping (t, x) �→ [K±t ∗ f ](x) is in C∞

�
(R \ {0}) × R3

�
.

With (4.36), (4.37), (4.38) and induction in N together with Lebesgue’s differentiation theorem
one finds (4.35). (ii) With (i) we need to show that for any f ∈ C∞(R3) the limits of Kt ∗ f and
∂tKt ∗ f from the right and from the left exist and agree at t = 0. The former case is clear because
the limit is zero. Regarding the latter we observe

lim
t→0+
∂tKt ∗ f = lim

t→0+
∂tK−t ∗ f = f = − lim

t→0−
∂tK+t ∗ f = lim

t→0−
∂tKt ∗ f .

limt→0 �Kt ∗ f = 0 is a special case of the above. (iiip.61) The estimates are the immediate
consequence of (4.36p.61) and (4.37p.61). The limits can be computed by

lim
t→0

���[Kt ∗ ft](x)
��� ≤ lim

t→0

���[Kt ∗ ( ft − f0)](x)
��� + lim

t→0

���[Kt ∗ f0](x)
���

where the second term is zero by (ip.61). For every x ∈ R3, ft(x) is continuous in t, therefore
choosing t small enough and R > |t| we obtain

lim
t→0

���[Kt ∗ ( ft − f0)](x)
��� ≤ R lim

t→0
sup

y∈Bδ(x)
� ft(y) − f0(y)� = 0.

Similarly, we find

lim
t→0

���[∂tKt ∗ ft](x) − f0(x)
��� ≤ lim

t→0

���[∂tKt ∗ ( ft − f0)](x)
��� + lim

t→0

���[∂tKt ∗ f0](x) − f0(x)
���

while, again, the second term is zero by (ip.61). The same continuity argument as above gives

lim
t→0

���[∂tKt ∗ ( ft − f0)](x)
��� ≤ lim

t→0
sup

y∈Bδ(x)

�
� ft(y) − f0(y)� +

R2

3
�� ft(y) − � f0(y)�

�
= 0

which concludes the proof. �

REMARK 4.12. In the future we will always denote this continuous extension by the same
symbol Kt. It is often called the propagator of the homogeneous wave equation.

A simply consequence of this lemma is:

Corollary 4.13.Kirchoff’s
formula

A solution t �→ At of the homogeneous wave equation �At = 0 for initial value
At|t=0 = A0 and ∂tAt|t=0 = A0, for A0, Ȧ0 ∈ C∞(R3), is given by

At = ∂tKt ∗ A0 + Kt ∗ Ȧ0 (4.39)

The next result gives explicit representation formulas of the Maxwell equations (4.34p.60). These
formulas can be constructed by the following line of thought: In the distribution sense every
solution to the Maxwell equations (4.34p.60) is also a solution to

�
�
Et
Bt

�
= 4π

�
−∇ρt − ∂tjt
∇ ∧ jt

�

for initial values

(Et,Bt)
���
t=t0
= (E0,B0) as well as ∂t(Et,Bt)

���
t=t0
= (∇ ∧ B

0
− 4πjt0 ,−∇ ∧ E

0). (4.40)

Using the abbreviation F#
t = (E#

t ,B
#
t ), using # as placeholder for future superscripts, and with

the help of the Green’s functions from Definition 4.10p.61 we can easily guess the general form
of any solution to these equations which is given by:

Ft = Fhom
t +

�
∞

−∞

ds K±t−t0−s ∗

�
−∇ρt0+s − ∂sjt0+s
∇ ∧ jt0+s

�
(4.41)

where any homogeneous solution Fhom
t fulfills �Fhom

t = 0. Considering the forward as well as
backward time-evolution we regard two different kinds of initial value problems:
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(i) Initial fields F0 are given at some time t0 ∈ R ∪ {−∞} and propagated to a time t > t0.

(ii) Initial fields F0 are given at some time t0 ∈ R ∪ {+∞} and propagated to a time t < t0.

The kind of initial value problem posed will then determine Fhom
t and the corresponding Green’s

function K±t . For (i) we shall use K−t and for (ii) K+t which are uniquely determined by �K±t =
δ(t)δ3 and K±t = 0 for ± t > 0. Without a proof we note at least for time-like charge trajectories
and ∓(t − t0) > 0

�
� 0

±∞

ds K±t−t0−s ∗

�
−∇ρt0+s − ∂sjt0+s
∇ ∧ jt0+s

�
=

� 0

±∞

ds �K±t−t0−s ∗

�
−∇ρt0+s − ∂sjt0+s
∇ ∧ jt0+s

�
= 0

by Lemma 4.11p.61. Terms of this kind will simply be added to the homogeneous solution while
here we denote this sum by the same symbol Fhom

t . This way we arrive at two solution formulas.
One being suitable for our forwards initial value problem, i.e. t − t0 > 0,

Ft = Fhom
t + 4π

� t−t0

0
ds K−t−t0−s ∗

�
−∇ρt0+s − ∂sjt0+s
∇ ∧ jt0+s

�
,

and the other suitable for the backwards initial value problem, i.e. t − t0 < 0,

Ft = Fhom
t + 4π

� 0

t−t0
ds K+t−t0−s ∗

�
−∇ρt0+s − ∂sjt0+s
∇ ∧ jt0+s

�
.

As a last step one needs to identify the homogeneous solutions which satisfy the given initial
conditions (4.40p.62). With Corollary 4.13p.62 we have given the explicit representation formula:

Fhom
t :=

�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗ F0.

Therefore, using the definition of Kt =
�
± ∓K±t and a substitution in the integration variable, we

finally arrive at the expression for t ∈ R:

Ft =

�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗ F0 + Kt−t0 ∗

�
−4πjt0

0

�
+ 4π

� t

t0
ds Kt−s ∗

�
−∇ρs − ∂sjs
∇ ∧ js

�
.

Theorem 4.14. Maxwell
solutions

Let (ρ, j) ∈ D be a given charge-current density.

(i) Given (E0,B0) ∈ F 1 fulfilling the Maxwell constraints ∇ · E0 = 4πρt0 and ∇ · Bt0 = 0, then
for any t0 ∈ R the mapping t �→ Ft = (Et,Bt) with

�
Et
Bt

�
:=
�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗

�
E

0

B
0

�
+ Kt−t0 ∗

�
−4πjt0

0

�
+ 4π

� t

t0
ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

�

for all t ∈ R is F 1 valued, infinitely often differentiable and a solution to the Maxwell equations
(4.34p.60) with t0 initial value F0.

(ii) Furthermore, if for fixed t0, t∗ ∈ R and x
∗ ∈ R3 it holds that

Kt−t0 ∗ �t0 = 0 and Kt−t0 ∗ jt0 = 0 (4.42)

for all t ∈ B1(t∗) and x ∈ B1(x∗), then statement (i) restricted to such (t, x) is also true for initial
fields (E0,B0) = 0.
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Proof. The regularity for the first two terms is given by Lemma 4.11p.61. The third term is
well-defined by Definition 4.6p.60. Lemma 4.11p.61 states that its integrand is infinitely often
differentiable in t and x. As the integral goes over a compact set it inherits the regularity from
the integrand. In the following we treat both cases (i) and (ii) together. We shall frequently
commute spatial differential operators with integrals which is justified because the integrals go
over compact sets and the integrand is continuously differentiable. It is convenient to make
partial integrations in the third term first to yield:

Kt−t0 ∗

�
−4πjt0

0

�
+ 4π

� t

t0
ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

�
= 4π

� t

t0
ds
�
−∇ −∂t
0 ∇∧

�
Kt−s ∗

�
ρs
js

�
.

The spatial partial integrations hold by Definition 4.10p.61. The partial integration in s holds as,
according to Lemma 4.11p.61, the boundary terms give 4π[Kt−s ∗ js]s=t

s=t0 = −4πKt−t0 ∗ jt0 . Next we
verify the Maxwell constraints. At first for the electric field:

∇ · Et = ∂tKt−t0 ∗ ∇ · E
0 + 4π

� t

t0
ds
�
−�Kt−s ∗ ρs − ∂tKt−s ∗ ∇ · js

�
.

Applying the continuity equation, cf. 4.6p.60, in the last term we get

. . . = ∂tKt−t0 ∗ ∇ · E
0 + 4π

� t

t0
ds
�
−�Kt−s ∗ ρs + ∂tKt−s ∗ ∂sρs

�

After a partial integration in the last term we find

. . . = ∂tKt−t0 ∗ ∇ · E
0 + 4π

�
∂sKt−s ∗ ρs

�s=t
s=t0 + 4π

� t

t0
ds �Kt−s ∗ ρs.

Lemma 4.11p.61 identifies the middle term 4π
�
∂sKt−s ∗ ρs

�s=t
s=t0 = 4πρt − 4π∂tKt−t0 ∗ ρt0 and states

that the last term is zero. Therefore,

. . . = ∂tKt−t0 ∗ ∇ · E
0
− 4π∂tKt−t0 ∗ ρt0 + 4πρt.

In the case (i) we have ∇ · E0 = 4π�t0 and the first two terms cancel each other. In the case
(ii) these two terms are identically zero because of (4.42p.63). Hence, we get for both cases
∇ · Et = 4πρt. Second, for the magnetic field we immediately get ∇ · Bt = ∂tKt−t0 ∗ ∇ · B0 = 0
because in the case (i) ∇ ·B0 = 0 and in the case (ii) B0 = 0. Therefore, the Maxwell constraints
are fulfilled in both cases. Next we verify the rest of the Maxwell equations:

13 :=
�
∂t −

�
0 ∇∧

−∇∧ 0

�� �
Et
Bt

�
=

�
� + ∇ ∧ (∇ ∧ ·) 0

0 � + ∇ ∧ (∇ ∧ ·)

�
Kt−t0 ∗

�
E

0

B
0

�

+ 4π∂t

� t

t0
ds
�
−∇ −∂t
0 ∇∧

�
Kt−s ∗

�
ρs
js

�
− 4π

� t

t0
ds
�
0 ∇ ∧ (∇ ∧ ·)
0 ∂t∇∧

�
Kt−s ∗

�
ρs
js

�

=: 14 + 15 + 16

where we have used Equation (4.38p.61) from Lemma 4.11p.61 in the first term, which together
with ∇ · B0 = 0 further reduces to

14 = ∇Kt−t0 ∗

�
∇ · E

0

0

�
.

The time derivative in the second term gives

15 = 4π∂t

� t

t0
ds
�
−∇ −∂t
0 ∇∧

�
Kt−s ∗

�
ρs
js

�
= 4π

�
−∇ −∂t
0 ∇∧

�
Kt−s ∗

�
ρs
js

�������
s→t

+ 4π
� t

t0
ds
�
−∂t∇ −∂2

t
0 ∂t∇∧

�
Kt−s ∗

�
ρs
js

�
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where Lemma 4.11p.61 states that the first term on the right-hand side equals −4π
�
jt
0

�
. Therefore,

with ∇ ∧ (∇ ∧ ·) = ∇(∇ · (·)) − � we yield

13 = ∇Kt−t0 ∗

�
∇ · E

0

0

�
+

�
−4πjt

0

�
+ 4π

� t

t0
ds
�
−∂t∇ −� − ∇(∇·)

0 0

�
Kt−s ∗

�
ρs
js

�
.

According to Lemma 4.11p.61, the term involving the � is zero. Inserting the continuity equation
for the current, i.e. ∇ · jt = −∂tρt, together with another partial integration in the last term, the
electric (first) component of this vector equals

. . . = −4πjt +
�
∇Kt−t0 ∗ ∇ · E

0 + 4π
�
Kt−s ∗ ∇ρs

�s=t
s=t0

�
.

Again, by Lemma 4.11p.61 the braket yields

Kt−t0 ∗ ∇ · E
0
− 4πKt−t0 ∗ ∇ρt0

In the case (i) ∇·E0 = 4πρt0 so that both terms cancel while in case (ii) both terms are identically
zero by E

0 = 0 and (4.42p.63). Hence,

13 =
�
−4πjt

0

�
,

and, thus, t → (Et,Bt) solves the Maxwell equations (4.34p.60). The initial values can be com-
puted with Lemma 4.11p.61

�
Et
Bt

� �����
t=t0
= lim

t→t0

�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗

�
E

0

B
0

�
=

�
E

0

B
0

�
.

�

REMARK 4.15. Clearly one needs less regularity of the initial values in order to get a strong
solution. However, in our context we will only need initial values in F 1. The formula of the
solutions, after the additional partial integration as noted in the beginning of the proof, agrees
with the one in [KS00][(A.24),(A.25)]1 which was derived with the help of the Fourier trans-
form. For the purposes in this work, this direct approach is, however, more convenient for our
regularity requirements.

Theorem 4.14p.63 gives rise to the following definition:

Definition 4.16. Maxwell
time-evolution

Let (ρ, j) be the � ∈ C∞c (R3,R) induced charge-current density of a given a
charge trajectory (q, p) ∈ T 1

∨ with mass m � 0, cf. Definition 4.7p.60. Then denote the solution
t �→ Ft of the Maxwell equations given by Theorem 4.14p.63 corresponding to (ρ, j) and t0 initial
values F0 = (E0,B0) ∈ F 1 by

t �→ M�,m[F0, (q, p)](t, t0) := Ft.

The second result of this section puts the well-known Liénard-Wiechert field formulas of time-
like charge trajectories on mathematical rigorous grounds.

Definition 4.17. Liénard-
Wiechert
fields

Let (q, p) ∈ T 1
� be a strictly time-like charge trajectory and (ρ, j) the � ∈

C∞c (R3,R) induced charge-current density for some mass m � 0, cf. Definitions 4.5p.60 and
4.7p.60. Then we define

t �→ M�,m[(q, p)](t,±∞) := 4π
� t

±∞

ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

�

which we call the advanced and retarded Liénard-Wiechert fields of the charge trajectory (q, p).
1There seems to be a misprint in equation [KS00][(A.24)]. However, (A.20) from which it is derived is correct.
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That this definition makes sense for charge trajectories in T 1
� is part of the content of the next

theorem:

Theorem 4.18.Liénard-
Wiechert

fields

Let (q, p) ∈ T 1
� be a strictly time-like charge trajectory and (ρ, j) the � ∈

C∞c (R3,R) induced charge-current density for some mass m � 0, cf. Definitions 4.5p.60 and
4.7p.60. Furthermore, let F0 = (E0,B0) ∈ F 1 be fields which fulfill the Maxwell constraints
∇ · E

0 = 4πρt0 and ∇ · Bt0 = 0 as well as

�E
0(x)� + �B0(x)� + �x�

3�

i=1

�
�∂xiE

0(x)� + �∂xiB
0(x)�
�
= O
�x�→∞

�
�x�
−�� (4.43)

for some � > 0. Then for all t ∈ R

M�,m[(q, p)](t,±∞) = pw-limt0→±∞ M�,m[F0, (q, p)](t, t0)

= 4π
� t

±∞

ds
�
Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

��
=

�
d3z �(z)

�
E

LW±
t (· − z)

B
LW±
t (· − z)

� (4.44)

is in F 1 for

E
LW±
t (x − z) :=

�
(n ± v)(1 − v

2)
�x − z − q�2(1 ± n · v)3 +

n ∧ [(n ± v) ∧ a]
�x − z − q�(1 ± n · v)3

�±
(4.45)

B
LW±
t (x − z) := ∓[n ∧ Et(x − z)]± (4.46)

and

q
± := qt± v

± := v(pt±) a
± := v̇

±

n
± := x−z−q

±

�x−z−q±�
t± = t ± �x − z − q

±�.
(4.47)

In this context pw-lim denotes the point-wise limit in R3.

For the proof we need the following lemma:

Lemma 4.19. Given a strictly time-like charge trajectory (q, p) ∈ T 1
� and a function f on R3

with supp f ⊆ BR(0) for some R > 0 and x
∗ ∈ R3 there exists a Tmax > 1 so that

Kr ∗ f (· − qt±r) = 0

for all x ∈ B1(x∗) and |r| > Tmax.

Proof. Since

Kr ∗ f (· − qt±r) = r
�

∂B|r|(x)

dσ(y) f (y − qt±r)

this expression is zero if ∂B|r|(x) ∩ BR(qt±r) = ∅. On the one hand, for x ∈ B1(x∗), y ∈ ∂B|r|(x)
gives

�x − y� ≥ �x
∗
− y� − �x − x

∗
� < |r| − 1. (4.48)

In the following we consider |r| > 1 such that the right-hand side above is positive. On the other
hand, if y ∈ BR(qt±r), we have

�x − y� ≤ �x
∗
− qt±r� + 1 + �qt±r − y� ≤ �x

∗
− qt±r� + 1 + R ≤ �x∗ − qt� + 1 + vmax|r| + R.

The last estimate is due to the strictly time-like nature of the charge trajectory; cf. Definition
4.5p.60. Combining this estimate with (4.48) we get ∂B|r|(x) ∩ BR(qt±r) = ∅ whenever

|r| > max
�

1,
�x∗ − qt� + 2 + R

1 − vmax

�
=: Tmax.

�
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Proof of Theorem 4.18. Proof of

Theorem 4.18

Fix t ∈ R and x ∈ R3. By Theorem 4.14p.63 for every t0, t ∈ R

M�,m[F0, (q, p)](t, t0) :=
�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗

�
E

0

B
0

�
+ Kt−t0 ∗

�
−4πjt0

0

�

+ 4π
� t

t0
ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

�
=: 17 + 18 + 19

is in F 1. At first we show that for t0 → ±∞ the terms 17 and 18 vanish with the help of
(4.43p.66), which ensures that there is a constant 1 ≤ C21 < ∞ such that for �x� large enough


�E

0(x)� + �B0(x)� + �x�
3�

i=1

�
�∂xiE

0(x)� + �∂xiB
0(x)�
�

 �x�

�
≤ C21.

By Definition 4.10p.61 and for large enough t0 we get:

���[∇ ∧ Kt−t0 ∗ E
0](x)
��� ≤ |t − t0|

�

∂B|t−t0 |(x)

dσ(y)

���∇ ∧ E
0(y)
���
���y
���1+�

���y
���1+�

≤ |t − t0|
�

∂B1(0)

dσ(y)
C21���x − |t − t0|y
���−(1+�) ≤

C21|t − t0|
(|t − t0| − �x�)1+�

R
−−−−−→
t0→±∞

0

where the constant C21 < ∞ is given by (4.43p.66). By Equation (4.37p.61) we have

���[∂tKt−t0 ∗ E
0](x)
��� ≤

�

∂B|t−t0 |(x)

dσ(y) �E0(y)� + |t − t0|
�

∂B1(0)

dσ(y) �y · ∇E
0(x − |t − t0|y)�.

Let again t0 be sufficiently large. The first term on the right-hand side equals
�

∂B|t−t0 |(x)

dσ(y)
�E

0(y)� �y��

�y��
≤

C21

(|t − t0| − �x�)�
R

−−−−−→
t0→±∞

0,

while the second term is smaller or equals

|t − t0|
�

∂B1(0)

dσ(y)
�3

i=1 �∂xiE
0(x − |t − t0|y)� �x − |t − t0|y�1+�

�x − |t − t0|y�1+�

≤
C21|t − t0|

(|t − t0| − �x�)1+�
R

−−−−−→
t0→±∞

0.

Next we show that in the limit t0 → ±∞ the term 18 also vanishes. As (q, p) is a time-like
charge trajectory we can apply Lemma 4.19p.66 for r = t − t0 which yields

�[Kt−t0 ∗ jt0 ](x)� = 0

for large enough |t0|. Therefore, we can conclude that term 18 is zero for t0 large enough. The
same holds with E

0 replaced by B
0, and therefore we find

lim
t0→±∞

19 = 4π
� t

±∞

ds
�
Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

��
(x) =

�
M�,m[(q, p)](t,±∞)

�
(x)

= 4π
�
∞

0
dr
�
Kr ∗

�
−∇ −∂t
0 ∇∧

� �
ρt±r
jt±r

��
(x) =

�
d3y
�
−∇ −∂t
0 ∇∧

�
ρ(x − y − qt±�y�)

�y�

�
1

vt±r

�

=:
�
E
±
t (x)

B
±
t (x)

�
.

(4.49)
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Let us first compute the electric fields

E
±
t (x) =

�
d3y
�
−∇ρ(x − y − qt±�y�)

�y�
+

vt±�y� · ∇ρ(x − y − qt±�y�) vt±�y�

�y�

−
ρ(x − y − qt±�y�) at±�y�

�y�

�
.

In order to simplify this expression we make a transformation of the integration variable:

y→ z(y) := x − y − qt±�y� (4.50)

Here, we use that (q, p) ∈ T 1
� is a strictly time-like charge trajectory. We observe that z(·) is

a diffeomorphism because, first, it is bijective since for supt∈R �vt� ≤ vmax < 1 the equation
y(z) = x − z − qt±�y(z)� has a unique solution y(z) for all z ∈ R3 which is given by {q±} =�

r≥0
�
∂Br(x − z) ∩ {qt±r}

�
, i.e. the intersection of the charge trajectory and the forward, re-

spectively backward, light cone of x − z. And second, z(·) is continuously differentiable with
(∂yiz j(y))1≤i, j≤3 = −δi j ± v j,t±�y�

yi
�y�

such that it has a non-zero determinant which equals (−1 ±
vt±�y� ·

y

�y�
), again because supt∈R �vt� ≤ vmax < 1, and therefore the inverse of z(·) is also continu-

ously differentiable. In order to make the notation more readable we shall use the abbreviations
(4.47p.66). We then get

E
±
t (x) =

�
d3z
−∇ρ(z) + v

± · ∇ρ(z) v
± − ρ(z) a

±

�x − z − q±�(1 ± n± · v±)

=

�
d3z ρ(z)

�
∇z

1
�x − z − q±�(1 ± n± · v±)

−

3�

k=1

∂zk

v±k v
±

�x − z − q±�(1 ± n± · v±)

−
a
±

�x − z − q±�(1 ± n± · v±)

�
.

(4.51)

after a partial integration. Note that for this we only need almost everywhere differentiability.
Doing the same for the magnetic field yields

B
±
t (x) =

�
d3z ρ(z)

�
−∇ ∧

v
±

�x − z − q±�(1 ± n± · v±)

�
(4.52)

After a tedious but not really interesting computation(see Computation in Appendix 5.3p.98) one
finds that Equation (4.44p.66) holds. Since we can represent the Maxwell solution by a convolu-
tion with a � ∈ C∞c (R3,R) function it is immediate that F±t ∈ F 1. This concludes the proof. �

REMARK 4.20. Condition (4.43p.66) guarantees that in the limit t0 → ±∞ the initial value F0

are forgotten by the time-evolution of the Maxwell equations. Note that in order to compute the
Liénard-Wiechert fields the strictly time-like nature of the charge trajectory is sufficient for the
limit to exists t0 → ±∞. This condition could be softened into an integrability condition for
more general ρ and j, e.g. one must only demand that the right-hand side of (4.49p.67) is finite.
However, the Liénard-Wiechert fields for time-like charge trajectories would then in general not
be given by (4.44p.66) since (4.50) does not have to be bijective anymore. This fact is indicated
by the blow up of the factors (1 ± n · v)−3 in Equation (4.45p.66) for v→ 1.

Theorem 4.21.Liénard-
Wiechert Fields

Solve the
Maxwell

equations

Let (q, p) ∈ T 1
� be a strictly time-like charge trajectory and (ρ, j) the � ∈

C∞c (R3,R) induced charge-current density for some mass m � 0, cf. Definitions 4.5p.60 and 4.7p.60.
Then the Liénard-Wiechert fields M�,m[(q, p)](t,±∞) are a solution to the Maxwell equations
(4.34p.60) including the Maxwell constraints for all t ∈ R.
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Proof. (ρ, j) is the � ∈ C∞c (R3,R) induced charge-current density of the strictly time-like charge
trajectory (q, p) ∈ T 1

� . Hence, for any t ∈ R

ρt = �(· − qt) and jt = v(pt)�(· − qt).

Therefore, Lemma 4.19p.66, for the choice r = t − s, states that for all t∗ ∈ R and x
∗ ∈ R3 there

exists a constant 1 < Tmax < ∞ such that: For all t ∈ B1(t∗) and x ∈ B1(x∗)
�
Kt−s ∗

�
ρs
js

��
(x) = 0 if |s| > T := Tmax + |t∗| + 1.

This allows for any t ∈ B1(t∗) and x ∈ B1(x∗) to rewrite Equation (4.49p.67) into

�
M�,m[(q, p)](t,±∞)

�
(x) =

�
E
±
t (x)

B
±
t (x)

�
= 4π

� t

±∞

ds
�
Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

��
(x) (4.53)

= 4π
� t

±T
ds
�
Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

��
(x). (4.54)

So, for t0 = ±T , the right-hand side of (4.53) equals

Kt−t0 ∗

�
−4πjt0

0

�
+ 4π

� t

t0
ds
�
Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

��
(x)

which by Theorem 4.14p.63(ii) solves the Maxwell Equation including the Maxwell constraints
4.34p.60 for all t ∈ B1(t∗) and x ∈ B1(x∗). Since t∗ ∈ R and x

∗ ∈ R3 are arbitrary, the Maxwell
Equation including the Maxwell constraints are fulfilled for all t ∈ R and x ∈ R3 which concludes
the proof. �

From their explicit expressions we immediately get a simple bound on the Liénard-Wiechert
fields:

Corollary 4.22. Liénard-
Wiechert
estimate

Let (q, p) ∈ T 1
� be a strictly time-like charge trajectory and (ρ, j) the � ∈

C∞c (R3,R) induced charge-current density for some mass m � 0, cf. Definitions 4.5p.60 and
4.7p.60. Furthermore, assume there exists an amax < ∞ such that supt∈R �∂tv(pt)� ≤ amax, we
then get a simple estimate for the Liénard-Wiechert fields for all x ∈ R3, t ∈ R and multi-index
α ∈ N3:

�DαE±t (x)� + �DαB±t (x)� ≤
C22

(α)

(1 − vmax)3

�
1

1 + �x − qt�
2 +

amax

1 + �x − qt�

�

for
�
E
±

i
B
±

i

�
:= M�,m[(q, p)](t,±∞),

a family of finite constants (C22
(α))α∈N3 and vmax as defined in Definition 4.5p.60.

Proof. From Theorem 4.18p.66 we know that for this sub-light charge trajectory the Liénard-
Wiechert fields take the form

�
E
±

i (x)
B
±

i (x)

�
=

�
d3z �(x − z)

�
E

LW±
i (z)

B
LW±
i (z)

�
. (4.55)

As the integrand is infinitely often differentiable in x and has compact support, the derivatives
for any multi-index α ∈ N3 are given by

DαF±t (x) =
�

d3z Dα�i(x − z)
�
E
±

i (z)
B
±

i (z)

�
.
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First, we take a look at (4.45p.66) and (4.46p.66) for given x ∈ R3 and t ∈ R. As we have a strictly
time-like charge trajectory (q, p) ∈ T 1

� , �x − z − q
±� is the smallest if we assume the worst case,

i.e. that from time t on the rigid charge moves into the future (respectively into the past) with
the speed of light towards the point x − z. Therefore, �x − z − q

±� ≤
1
2�x − z − qt� and, hence,

�B
LW±
t (x − z)� + �ELW±

t (x − z)� ≤
2

(1 − vmax)3

�
1

�x − z − qt�
2 +

amax

�x − z − qt�

�±
(4.56)

because supt∈R �vt� ≤ vmax < 1. The rest is straightforward computation (see Computation in
Appendix 5.4p.99). �

4.3.2 Unique Identification of Wheeler-Feynman Solutions

Using the results of Section 4.3.1p.60 we can give a sensible definition of what we mean by so-
lutions to the Wheeler-Feynman equations (4.1p.43) and (4.2p.43). We restrict the class of possible
Wheeler-Feynman solutions to:

Definition 4.23.Class of
Wheeler-
Feynman
solutions

Let TWF denote the set of strictly time-like charge trajectories (qi, pi)1≤i≤N ∈

T� with masses mi � 0, 1 ≤ i ≤ N and with the properties:

(i) There exists an amax < ∞ such that supt∈R �∂tv(pi,t)� ≤ amax, i.e. the accelerations of the
charges are bounded.

(ii) for all times t ∈ R solve the Wheeler-Feynman equations (4.1p.43) and (4.2p.43).

REMARK 4.24. (i) Note that this definition is sensible because with (qi, pi)1≤i≤N ∈ T�, equa-
tions (4.2p.43) for 1 ≤ i ≤ N can by Definition 4.17p.65 be rewritten as:

(EWF
i,t ,B

WF
i,t ) =

1
2

�

±

M�i,mi[(qi, pi)](t,±∞).

Theorem 4.18p.66 guarantees that the right-hand side is well-defined. Furthermore, charge tra-
jectories in T 1

� are once continuously differentiable so that the left-hand side of (4.1p.43) is also
well-defined. The bound on the acceleration will give us a bound on the Wheeler-Feynman fields
in theHw norm; see Lemma 4.26p.71.

(ii) Furthermore, it is highly expected thatTWF is non-empty for two reasons: 1. In the point par-
ticle case there are explicit solutions to the Wheeler-Feynman equations known, i.e. the Schild
solutions [Sch63] and the solutions of Bauer’s existence theorem [Bau97], which yield strictly
time-like charge trajectories with bounded accelerations. 2. Physically, one would expect that
in general scattering solutions have accelerations that decay at t → ±∞.

For the main theorem of this section we need the following lemmas. First, we give an example
of a suitable weight w inW∞.

Lemma 4.25.Explicit
expression for

the weight w

For x �→ w(x) := (1 − �x�2)−1 it holds w ∈ W∞; cf. Equation (3.6p.18).

Proof. By Equation (3.8p.19) w is inW. Thus, it is left to show that this w is also inWk for any
k ∈ N. To see this let us consider

0 = Dα
�
w(x)(1 + �x�2)

�

=

α1,α2,α3�

k1,k2,k3=0

�
α1
k1

� �
α2
k2

� �
α3
k3

�
∂α1−k1

1 ∂α2−k2
2 ∂α3−k3

3 w(x)∂k1
1 ∂

k2
2 ∂

k3
3 (1 + �x�2)

=
�
Dαw(x)

�
(1 + �x�2) +

3�

i=1

αi
�
∂αi−1

i w(x)
�

2xi +

3�

i=1

1
2
αi(αi − 1)

�
∂αi−2

i w(x)
�

2
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where α = (α1, α2, α3) ∈ N3 is a multi-index. This leads to the recursive estimate

���Dαw(x)
��� ≤ w(x)




3�

i=1

2αi

����∂αi−1
i w(x)

���� |xi| +

3�

i=1

αi(αi − 1)
����∂αi−2

i w(x)
����




in the sense that terms involving ∂l for negative l equal zero. Hence, the left-hand side can
be bounded by lower derivatives, and therefore, by induction over the multi-index α, we get
constants Cα < ∞ such that |Dαw(x)| ≤ Cαw(x). Furthermore, from the computation

Dαw(x) = Dα
� �

w(x)
�

w(x)
�
=

α1,α2,α3�

k1,k2,k3=0

�
α1
k1

� �
α2
k2

� �
α3
k3

�
∂α1−k1

1 ∂α2−k2
2 ∂α3−k3

3

�
w(x)∂k1

1 ∂
k2
2 ∂

k3
3

�
w(x)

and with Iα := {k ∈ N3 | 0 ≤ ki ≤ αi, i = 1, 2, 3} \ {(0, 0, 0), α} we get the recursive formula

����Dα
�

w(x)
���� ≤

1
2

�
Cα
�

w(x) +
1
√

w(x)

�

(k1,k2,k3)∈Iα

�
α1
k1

� �
α2
k2

� �
α3
k3

�
×

×

����∂α1−k1
1 ∂α2−k2

2 ∂α3−k3
3

�
w(x)
����
����∂k1

1 ∂
k2
2 ∂

k3
3

�
w(x)
����
�
.

where we have used the above established estimate |Dαw(x)| ≤ Cαw(x). Again, the left-hand
side can be bounded by lower derivatives, and therefore, by induction over the multi-index α,
we yield finite constants Cα such that also |Dα

√
w| ≤ Cαw. Therefore, w ∈ Wk for any k ∈ N

and, thus, w ∈ W∞. �

Second, we show that this weight w decays quickly enough such that all Liénard-Wiechert fields
of strictly time-like charge trajectories in T 1

� with bounded accelerations lie in Dw(A∞).

Lemma 4.26. Regularity of the
Liénard-
Wiechert
fields

Let (qi, pi)1≤i≤N ∈ T
1
� with masses mi � 0, 1 ≤ i ≤ N, and assume there exists an

amax < ∞ such that supt∈R �∂tv(pi,t)� ≤ amax. Define t �→ (Ei,t,Bi,t) := M[(qi, pi)](t,±∞). Then
there exists a w ∈ W∞ such that for any qi, pi ∈ R

3, 1 ≤ i ≤ N, it is true that

(qi, pi,Ei,t,Bi,t)1≤i≤N ∈ Dw(A∞), for all t ∈ R.

Proof. The charge trajectories are in T 1
� and therefore strictly time-like. Furthermore, they have

bounded accelerations. Therefore, by Corollary 4.22p.69, for 1 ≤ i ≤ N and each multi-index
α ∈ N3 there exists a constant C22

(α) < ∞ such that

�DαE±i,t(x)� + �DαB±i,t(x)� ≤
C22

(1 − vmax)3

�
1

1 + �x − qt�
2 +

amax

1 + �x − qt�

�
.

Hence, for w(x) = 1
1+�x�2 we get

���An(qi,t, pi,t,E
±

i,t,B
±

i,t)
���
Hw
≤

N�

i=1

�

|α|≤n

�
�qi,t� + �pi,t� +

�
d3x w(x)

�
�DαE±i,t(x)�2 + �DαB±i,t(x)�2

��

which is finite, so that for any t ∈ R we have ϕt ∈ Dw(A∞). �

Third, we show that the charge trajectories in TWF and their Liénard-Wiechert fields give rise to
a ML-SI solution.
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Lemma 4.27.Wheeler-
Feynman

trajectories give
rise to ML-SI

solutions

Let (qi, pi)1≤i≤N ∈ TWF and (EWF
i,t ,B

WF
i,t ) := 1

2
�
± M�i,mi[(qi, pi)](t,±∞) for all

t ∈ R. Define

t �→ ϕt := (qi,t, pi,t,E
WF
i,t ,B

WF
i,t )1≤i≤N .

Then for the case (ML-SIp.16), i.e. ei j = 1 − δi j, 1 ≤ i, j ≤ N, and any t0, t ∈ R it holds

ϕt = ML[ϕt0 ](t, t0);

cf. Definition 3.28p.41.

Proof. First, as the charge trajectories fulfill the Wheeler-Feynman equations (4.1p.43), they also
fulfill the Lorentz force law (3.1p.15) because we set ei j = 1 − δi j, 1 ≤ i, j ≤ N. Second,
by Theorem 4.21p.68 the fields (E±i,t,B

±

i,t) solve the Maxwell equations including the Maxwell
constraints, both given in the set of equations (3.2p.15). Therefore, t �→ ϕt is a solution to the ML-
SI equations, i.e. the coupled set of equations (3.1p.15) plus (3.2p.15) for ei j = 1 − δi j, 1 ≤ i, j ≤ N.
By Lemma 4.26p.71 for any t0 we yield ϕt0 ∈ Dw(A∞) so that the existence assertion of Theorem
3.5p.20 states that there is a solution t �→ �ϕt of the ML-SI equations with ϕt0 = �ϕt0 while the
uniqueness assertion of that theorem states that if ϕt0 = �ϕt0 for any t0 ∈ R, we have ϕt = �ϕt for
all t ∈ R. Therefore, we conclude ϕt = �ϕt = ML[ϕt0 ](t, t0) for all t ∈ R. �

From these lemmas and the uniqueness of ML-SI solutions it follows that all Wheeler-Feynman
solutions inTWF can be identified uniquely by specifying their positions, momenta and Wheeler-
Feynman fields at a certain time t0 ∈ R:

Theorem 4.28.Sufficient
Wheeler-

Feynman initial
conditions

There exists a w ∈ W∞ such that for each t0 ∈ R the following map is injective:

it0 : TWF → Dw(A∞), (qi, pi)1≤i≤N �→ (qi,t0 , pi,t0 ,E
WF
i,t0 ,B

WF
i,t0 )1≤i≤N

where (EWF
i,t0 ,B

WF
i,t0 ) := 1

2
�
± M�i,mi[(qi, pi)](t0,±∞).

Proof. Let (qi, pi)1≤i≤N , (�qi,�pi)1≤i≤N ∈ TWF and t0 ∈ R. Define ϕt := (qi,t, pi,t,E
WF
i,t ,B

WF
i,t )1≤i≤N

and �ϕt := (�qi,t,�pi,t,�E
WF
i,t ,�B

WF
i,t )1≤i≤N for all t ∈ R as in Lemma 4.27. By Lemma 4.26p.71 there is a

w ∈ W∞ such that ϕt0 ,�ϕt0 ∈ Dw(A∞) and therefore the range of it0 is a subset of Dw(A∞). From
Lemma 4.27 we know in addition that for all t ∈ R, ϕt = ML[ϕt0 ](t, t0) and �ϕt = ML[�ϕt0 ](t, t0).
Assume (qi, pi)1≤i≤N � (�qi,�pi)1≤i≤N , i.e. there exist t ∈ R such that we have (qi,t, pi,t)1≤i≤N �
(�qi,t,�pi,t)1≤i≤N . For such t we have then ML[ϕt0 ](t, t0) = ϕt � �ϕt = ML[�ϕt0 ](t, t0). The uniqueness
assertion of Theorem 3.5p.20 then states ϕt0 � ϕt0 . By construction ϕt0 = it0 ((qi, pi)1≤i≤N and
�ϕt0 = it0 (�qi,�pi)1≤i≤N . Hence it0 : TWF → Dw(A∞) is injective. �

REMARK 4.29. Note that the weight function w could be chosen to decay faster than the choice
in Lemma 4.25p.70. This freedom allows to generalize Theorem 4.28 also for possible Wheeler-
Feynman solutions whose acceleration is not bounded but may grow with t → ±∞. This is due
to the fact that growth of the acceleration a in equations (4.44p.66) can be pushed down by the
weight w. However, since the weight w must be at least inW1, which then ensures by Lemma
3.23p.30 that the group (Wt)t∈R exists, one can only allow the acceleration a to grow slower than
exponentially.
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4.4 Existence of Wheeler-Feynman Initial Fields

We shall now come to the question of existence of Wheeler-Feynman solutions. Once and for
all we fix the parameters:

Definition 4.30. Global definition
of w, �i, mi and
ei j

To the very end of this chapter we fix the charge distributions �i ∈ C
∞
c (R3,R)

such that supp �i ⊂ BR(0) ⊂ R3 for one finite R > 0 and the masses mi � 0, 1 ≤ i ≤ N.
Furthermore, we shall use the (ML-SIp.16) choice, i.e. ei j = 1 − δi j, 1 ≤ i, j ≤ N, whenever we
use the notation ML[·] from Definition 3.28p.41 or the Maxwell-Lorentz equations which we refer
to as the ML-SI equations. Furthermore, we choose a weight w ∈ W∞ for which Theorem 4.28
holds.

In subsection 4.4.2p.75 we shall formalize the map S p,X±
T and prove the existence of a fixed point.

The proof will rely on the explicit expressions for the Maxwell fields of the ML-SI dynamics of
chapter 3p.15 in terms of the Kirchoff’s formulas given in section 4.3.1p.60. Therefore, we inserted
a small intermediate subsection before the main proof which will provide all necessary formulas.

4.4.1 The Maxwell Fields of the Maxwell-Lorentz Dynamics

This intermediate subsection is supposed to bring quickly together the solution theories of the
Maxwell-Lorentz equations (chapter 3p.15) on Dw(A) and the Maxwell equations (subsection
4.3.1p.60) on F 1. In particular, it will provide explicit formulas for the Maxwell solutions ex-
pressed by (Wt)t∈R and J on a suitable domain. We recall the Newtonian phase space P = R6N ,
the space of weighted square integrable fields Fw, the phase spaceHw = P⊕Fw of the Maxwell-
Lorentz equations, cf. Definition 3.2p.19, the definition of the operator A on Dw(A) ⊂ Hw, cf.
Definition 3.3p.19, as well as the one of the operator J on Hw, cf. Definition 3.4p.19. In order not
to blow up the notation we use the following:

Notation 4.31. Projectors P, Q, FFor any ϕ = (qi, pi,Ei,Bi)1≤i≤N ∈ Hw we define the projectors Q, P, F by

Qϕ = (qi, 0, 0, 0)1≤i≤N , Pϕ = (0, pi, 0, 0)1≤i≤N , Fϕ = (0, 0,Ei,Bi)1≤i≤N .

Wherever formal type errors do not lead to ambiguities we sometimes forget about or add the
zero components and write, e.g.,

(qi, pi)1≤i≤N = (Q + P)ϕ or (qi, pi, 0, 0)1≤i≤N = (Q + P)(qi, pi)1≤i≤N .

As we now treat N fields simultaneously, we need to extend F 1, cf. Definition 4.8p.60, according
to:

Definition 4.32. Space of N
smooth fields

F :=
�N

i=1 C
∞(R3,R3) ⊕ C∞(R3,R3).

Furthermore, we recall that A is the generator of a γ contractive group (Wt)t∈R on Dw(A) which
was the content of Definition 3.24p.32 and its preceding lemma. Since we shall mainly work in
field spaces, we need the projections of the operators A,Wt and J onto field space Fw:

Definition 4.33. Projection of
A,Wt , J to field
space Fw

For all t ∈ R and ϕ ∈ Hw we define

A := FAF, Wt := FWtF and J := FJ(ϕ).

The natural domain of A,Wt is given by Dw(A) := FDw(A) ⊂ Fw. We shall also need Dw(An) :=
FDw(An) ⊂ Fw for every n ∈ N ∪ {∞}. Clearly, the operator A on Dw(A) is also closed and
inherits also the resolvent properties from A on Dw(A). Furthermore, this implies (Q + P)Wt =

idP and FWt = Wt so that (Wt)t∈R is also a γ contractive group on the smaller space Dw(A).
Finally, note also that by the definition of J we have J(ϕ) = J((Q + P)ϕ) for all ϕ ∈ Hw, i.e. J

does not depend on the field components Fϕ.
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The following corollary translates the explicit Kirchoff formulas for free Maxwell solutions
computed in subsection 4.3.1p.60 into the language of the group (Wt)t∈R. We have used Kirchoff’s
formulas for initial fields in F while the group (Wt)t∈R operates on Dw(A). Therefore, by unique-
ness, we expect to be able to express free Maxwell solution generated by the group by Kirchoff’s
formulas as long as the initial conditions come from F ∩ Dw(A).

Corollary 4.34.Kirchoff’s
formulas in

terms of (Wt)t∈R

Let w ∈ W1, F ∈ Dw(An) ∩ F for some n ∈ N, and

(Ei,t,Bi,t)1≤i≤N := WtF, for all t ∈ R.

Then
��Ei,t
�Bi,t

�
=

�
∂t ∇∧

−∇∧ ∂t

�
Kt ∗

�
Ei,0
Bi,0

�
−

� t

0
ds Kt−s ∗

�
∇∇ · Ei,0
∇∇ · Bi,0

�
.

fulfill Ei,t = �Ei,t and Bi,t = �Bi,t for all t ∈ R and 1 ≤ i ≤ N in the L2
w sense. Furthermore, for all

t ∈ R it holds also that (Ei,t,Bi,t)1≤i≤N ∈ Dw(An) ∩ F .

Proof. By the group properties WtF ∈ Dw(An) and by Definition 4.33p.73 and 3.3p.19

∂tWtF = AWtF = (0, 0,∇ ∧ Bi,t,−∇ ∧ Ei,t)1≤i≤N .

Since (Ei,0,Bi,0) ∈ F , a straight-forward computation together with the properties of Kt from
Lemma 4.11p.61 yields

20 =
�
∂t −

�
0 ∇∧

−∇∧ 0

�� �
Ei,t
Bi,t

�

= −∂t

� t

t0
ds Kt−s ∗

�
∇∇ · Ei,0
∇∇ · Bi,0

�
+

�
∂2

t + ∇ ∧ (∇ ∧ ·) 0
0 ∂2

t + ∇ ∧ (∇ ∧ ·)

�
Kt ∗

�
Ei,0
Bi,0

�

Applying ∇ ∧ (∇ ∧ ·) = ∇(∇·) − � and Lemma 4.11p.61 again gives

(∂2
t − �)Kt ∗

�
Ei,0
Bi,0

�
= 0

and

∂t

� t

0
ds Kt−s ∗

�
∇∇ · Ei,0
∇∇ · Bi,0

�
= Kt−s ∗

�
∇∇ · Ei,0
∇∇ · Bi,0

� �����
s→t
−

�
Kt−s ∗

�
∇∇ · Ei,0
∇∇ · Bi,0

��s→t

s→0

= Kt ∗

�
∇∇ · Ei,0
∇∇ · Bi,0

�
.

Hence, we get 20 = 0 and, therefore, for �Ft := (�Ei,t,�Bi,t)1≤i≤N it is true that ∂t�Ft = A�Ft in the
strong sense. By the group properties Wt and A commute on Dw(A) which implies

∂t
�
W−t�Ft

�
= −AW−t�Ft +W−tA�Ft = 0.

Therefore, �Ft = Wt�F0 = WtF0 = χt as by definition F0 = F = �F0. This means in particular
that Ei,t = �Ei,t and Bi,t = �Bi,t for all t ∈ R and 1 ≤ i ≤ N in the L2

w sense. Furthermore, as
F ∈ Dw(An) ∩ F , Lemma 4.11p.61 states that �Ft ∈ F , and by the group properties of (Wt)t∈R we
also have Ft ∈ Dw(An) for all t ∈ R. Hence, Ft = �Ft ∈ Dw(An)∩F for all t ∈ R which concludes
the proof. �

A ready application of this corollary is the following lemma which allows to express the smooth
inhomogeneous Maxwell solutions of subsection 4.3.1p.60 in terms of (Wt)t∈R.
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Lemma 4.35. The Maxwell
solutions in
terms of (Wt)t∈R
and J

Let t, t0 ∈ R be given times, F = (Fi)1≤i≤N ∈ Dw(An) ∩ F for some n ∈ N be
given initial fields and (qi, pi) ∈ T 1

∨ time-like charge trajectories for 1 ≤ i ≤ N. If in addition
the initial fields Fi = (Ei,Bi) fulfill the Maxwell constraints

∇ · Ei = 4π�i(· − qi,t0 ) and ∇ · Bi = 0

for 1 ≤ i ≤ N, then for all t ∈ R

Ft := Wt−t0χ +

� t

t0
ds Wt−sJ(ϕs) ∈ Dw(An) =

�
M�i,mi[Fi, (qi, pi)](t, t0)

�
1≤i≤N .

in the L2
w sense where ϕs := (Q + P)(qi,s, pi,s)1≤i≤N for s ∈ R. Furthermore, Ft ∈ Dw(An) ∩ F for

all t ∈ R.

Proof. This can be computed by applying Corollary 4.34p.74 twice and using one partial integra-
tion. �

4.4.2 Newtonian Cauchy Data: Wheeler-Feynman Interaction for Finite Times

The strategy will be to use Banach’s and Schauder’s fixed point theorem to prove the existence
of a fixed point of S T . The following normed spaces will prove to be suitable for this problem:

Definition 4.36. Hilbert Spaces
for the fixed
point theorem

For n ∈ N let F n
w be the linear space of functions F ∈ Dw(An) with

�F�F n
w (B) :=




n�

k=0

�A
kF�Fw




1
2

.

with B = R3 in which case we simply write � · �F n
w instead of � · �F n

w (R). For other B ⊂ R3 we shall
use this notation to split up integration domains. We shall use this notation also for Fw = F

0
w.

Lemma 4.37. For n ∈ N, F n
w is a Hilbert space.

Proof. This is an immediate consequence of Theorem 3.14p.26 which relies on the fact that A is
closed on Dw(A). �

Next we specify the class of boundary fields (X±i,±T )1≤i≤N which we want to allow.

Definition 4.38. The class of
boundary fields
An

w, �An
w and

A
Lip
w

For weight w ∈ W and n ∈ N letAn
w be the set of maps

X : R × Dw(A)→ Dw(A∞) ∩ F , (T, ϕ) �→ XT [ϕ]

which have the following properties for all p ∈ P and T ∈ R:

(i) There is a function C23 ∈ Bounds such that for all ϕ ∈ Dw(A) with (Q + P)ϕ = p it is true
that �XT [ϕ]�F n

w ≤ C23
(n)(|T |, �p�).

(ii) The map F �→ XT [p, F] as F 1
w → F

1
w is continuous.

(iii) For (Ei,T ,Bi,T )1≤i≤N := XT [ϕ] and (qi,T , pi,T )1≤i≤N := (Q + P)ML[ϕ](T, 0) one has ∇·Ei,T =

4π�i(· − qi,T ) and ∇ · Bi,T = 0.

Let the subset �An
w ⊂ A

n
w comprise such maps X that fulfill:
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(iv) For balls Bτ := Bτ(0) ⊂ R3 with radius τ > 0 around the origin and any bounded set
M ⊂ Dw(A) it holds that limτ→∞ supF∈M �XT [p, F]�F n

w (Bc
τ) = 0.

Furthermore, let the subsetALip
w ⊂ A1

w comprise such maps X that fulfill:

(v) There is a function C24 ∈ Bounds such that for all ϕ,�ϕ ∈ Dw(A) with (Q + P)ϕ = p =
(Q + P)�ϕ it is true that �XT [ϕ] − XT [�ϕ]�F 1

w
≤ |T |C24(|T |, �ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw.

REMARK 4.39. The boundary fields needed are now encoded via (X±i,±T )1≤i≤N := X±
±T [ϕ] for

two elements X± ∈ An
w and some ϕ ∈ Dw(A). The dependence of X±

±T on a ϕ ∈ Dw(A) instead of
the charge trajectories (qi, pi), 1 ≤ i ≤ N, in T 1

� makes sense as ϕ carries the whole information
about the charge trajectories by t �→ (Q + P)ML[ϕ](t, 0) which are the charge trajectories of the
ML-SI solutions. As we shall discuss after showing that these classes are not empty, one can
imagine their elements to be the Liénard-Wiechert fields of any charge trajectories in T 1

� which
continue the ML-SI charge trajectories on either the time interval (−∞,−T ] or [T,∞) for the
given T ∈ R. Finally, the reason why we define three classesAn

w, �An
w andALip is to distinguish

clearly the properties needed, first, to define what we mean by a bWF solution, second, to show
existence of bWF solutions, and third, to show uniqueness of the bWF solution for small enough
T . Note also thatAn+1

w ⊂ An
w as well as �An+1

w ⊂ �An
w for n ∈ N.

Having this we can formalize what we mean by a solution to the bWF equations for Newtonian
Cauchy data and boundary fields.

Definition 4.40.bWF solutions
for Newtonian
Cauchy Data

and boundary
fields

Let T > 0, Newtonian Cauchy data p ∈ P and two boundary fields X± ∈ A1
w

be given. We define T p,X±
T to be the set of time-like charge trajectories in (qi, pi)1≤i≤N ∈ T∨

which solve the bWF equations in the form (4.1p.43) and

(EWF
i,t ,B

WF
i,t ) =




1
2

�

±

M�i,mi[X
±

±T [p, F], (qi, pi)](0,±T )

 for F = (EWF

i,t ,B
WF
i,t )1≤i≤N

���
t=0

(4.57)

and initial conditions (4.9p.46). We shall call every element of T p,X±
T a bWF solution for initial

value p and boundary fields X± at time T .

REMARK 4.41. Equations (4.11p.47) which where used in the introduction were replaced by
(4.57) because it turns out to be more convenient to have the boundary fields depending only on
ML-SI initial data (p, F) which encodes the trajectory. By Definition 4.38p.75(iv) the boundary
fields fulfill the Maxwell constraints at time ±T. This is important as our formulas for the
Maxwell solutions of subsection 4.3.1p.60 are only valid if the Maxwell constraints are fulfilled.
Though this requirement could be loosened by refining the formulas for the Maxwell fields it is
natural to stick with it because the fields of true Wheeler-Feynman solution fulfills the Maxwell
equations including the constraints, and the final goal is to find solutions for T → ∞.

Now we can define a convenient fixed point map whose fixed points are the bWF solutions.

Definition 4.42.The fixed point
map S T

For finite time T > 0, Newtonian Cauchy data p ∈ P and boundary fields
X± ∈ A1

w, we define

S p,X±
T : Dw(A)→ Dw(A∞), F �→ S p,X±

T [F]

for

S p,X±
T [F] :=

1
2

�

±

�
W∓T X±

±T [p, F] +
� t

±T
ds W−sJ(ϕs[p, F])

�

where ϕs[p, F] := ML[p, F](s, 0) for s ∈ R is the ML-SI solution, cf. Definition 3.28p.41, for
initial value (p, F) ∈ Dw(A).
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We got to make sure that the fixed point map is well-defined and that its possible fixed points
have the desired properties, i.e. their corresponding charge trajectories are in T p,X±

T .

Theorem 4.43. The Map S T and
its fixed points

For finite time T > 0, Newtonian Cauchy data p ∈ P and boundary fields
X± ∈ A1

w the following is true:

(i) The map S p,X±
T introduced in Definition 4.42p.76 is well-defined.

(ii) For F ∈ Dw(A), setting (X±i,±T )1≤i≤N := X±
±T [p, F] and denoting the ML-SI charge trajectories

t �→ (qi,t, qi,t)1≤i≤N := (Q + P)ML[p, F](t, 0)

by (qi, pi)1≤i≤N it holds that

S p,X±
T [F] =

1
2

�

±

�
M�i,mi[X

±

i,±T , (qi, pi)](0,±T )
�

1≤i≤N
∈ Dw(A∞) ∩ F .

(iii) For any F = S p,X±
T [F] it is true that and that the corresponding charge trajectories

(qi, pi)1≤i≤N as defined in (ii) are in T p,X±
T .

Proof. (i) Let F ∈ Dw(A), then (p, F) ∈ Dw(A) and, hence, by the ML±SI existence and
uniqueness Theorem 3.5p.20 t �→ ϕt := ML[ϕ](t, 0) is a once continuously differentiable map
R → Dw(A) ⊂ Hw. By properties of J stated in lemma (3.26p.32) we know that AkJ : Hw →

Dw(A∞) ⊂ Hw is locally Lipschitz continuous for any k ∈ N. By projecting onto field space
Fw, cf. Definition4.33p.73, we yield that also A

k
J : Hw → Dw(A∞) ⊂ Fw is locally Lipschitz

continuous. Hence, by the group properties of (Wt)t∈R we know that s �→ W−sA
k
J(ϕs) for any

k ∈ N is continuous. Therefore, we may apply Corollary 5.6p.100 which states that

A
k
� 0

±T
ds W−sJ(ϕs) =

� 0

±T
ds W−sA

k
J(ϕs)

while the integral on the right-hand side exists because the integrand is continuous and the
integral goes over a compact set. As this holds for any k ∈ N,

� 0
±T ds W−sJ(ϕs) ∈ Dw(A∞). Fur-

thermore, by Definition 4.38p.75 the term X±
±T [p, F] is in Dw(A∞) and therefore W∓T X±

±T [p, F] ∈
Dw(A∞) by the group properties. Hence, the map S φ,χ

±

T is well-defined as a map Dw(A) →
Dw(A∞).

(ii) For F ∈ Dw(A) let (qi, pi)1≤i≤N denote the charge trajectories t �→ (qi,t, pi,t)1≤i≤N = (Q + P)ϕt
of t �→ ϕt := ML[p, F](t, 0). Since (p, F) ∈ Dw(A), we know again by Theorem 3.5p.20 that these
charge trajectories are once continuously differentiable as R → Dw(A) ⊂ Hw. As the absolute
value of the velocity is given by �v(pi,t)� =

�pi,t��
m2

i +p
2
i,t

< 1, we conclude that (qi, pi)1≤i≤N are once

continuously differentiable and time-like and therefore in T∨, cf. Definition 4.5p.60. Furthermore,
the boundary fields X±

±T [p, F] are in Dw(A∞) ∩ F and obey the Maxwell constraints by the
definition of An

w. So we can apply Lemma 4.35p.75 which states for (X±i,±T )1≤i≤N := X±
±T [p, F]

that

�
M�i,mi[Xi, (qi, pi](t,±T )

�
1≤i≤N = Wt∓T X±±[p, F] +

� t

±T
ds Wt−sJ(ϕs) ∈ Dw(A) ∩ F . (4.58)

For t = 0 this proves claim (ii).

(iii) Finally, assume there is an F ∈ Fw such that F = S p,X±
T [F]. By (ii) this implies F ∈

Dw(A∞)∩F . Let (qi, pi)1≤i≤N and t �→ ϕt be as defined in the proof of (ii) which now is infinitely
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often differentiable asR→ Hw since (p, F) ∈ Dw(A∞). We shall show that the following integral
equality holds

ϕt = (p, 0) +
� t

0
ds (Q + P)J(ϕs) +

1
2

�

±

�
Wt∓T (0, X±

±T [p, F]) +
� t

±T
ds Wt−sFJ(ϕs)

�
(4.59)

for all t ∈ R; keep in mind that t �→ ϕt depends also on (p, F). Then differentiation with respect
to time t of the phase space components of (qi,t, pi,t,Ei,t,Bi,t)1≤i≤N := ϕt yields ∂t(Q + P)ϕt =

(Q + P)J(ϕt) which by definition of J yields

∂tqi,t = v(pi,t) :=
σipi,t�
m2

i + p
2
i,t

∂tpi,t =
�

j�i

�
d3x �i(x − qi,t)

�
E j,t(x) + v(qi,t) ∧ B j,t(x)

�
.

(4.60)

Furthermore, the field components fulfill

Fϕt = F
1
2

�

±

�
Wt∓T (0, X±

±T [ϕ]) +
� t

±T
ds Wt−sFJ(ϕs)

�

=
1
2

�

±

�
Wt∓T X±

±T [p, F] +
� t

±T
ds Wt−sJ(ϕs)

�

where we only used the definition of the projectors, cf. Definition 4.33p.73. Hence, by (4.58p.77)
we know

(Ei,t,Bi,t) =
1
2

�

±

M�i,mi[Fi, (qi, pi](t,±T ). (4.61)

Finally, we have

(qi,t, pi,t)1≤i≤N
���
t=0 = p = (q0

i , p
0
i )1≤i≤N . (4.62)

Equations (4.60), (4.61) and (4.62) are exactly the bWF equations (4.1p.43) and (4.57p.76) for New-
tonian Cauchy data (4.9p.46). Hence, since in (ii) we proved that (qi, pi)1≤i≤N are in T∨, we con-
clude that they are also in T p,X±

T , cf. Definition 4.40p.76.

Now it is only left to prove that the integral equation (4.59) holds. By Definition 3.28p.41, ϕt
fulfills

ϕt = Wt(p, F) +
� t

0
ds Wt−sJ(ϕs)

for all t ∈ R. Inserting the fixed point equation F = S p,X±
T [F], i.e.

F = Wt∓T X±±[p, F] +
� t

±T
ds Wt−sJ(ϕs),

we find

ϕt = (p, 0) +
1
2

�

±

Wt∓T
�
0, X±

±T [p, F]
�
+

1
2

�

±

Wt

� 0

±T
ds W−s

�
0, J(ϕs)

�
+

� t

0
ds Wt−sJ(ϕs).

Using the continuity of the integrands we may apply Lemma 5.5p.100 to commute Wt with the
integral. This together with J = (Q + P)J + FJ and that (Q + P)Wt = idP yields the desired result
(4.59) for all t ∈ R which concludes the proof. �
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In the next Lemma we discuss a simple element C ∈ An
w and thereby show that the classes of

boundary fields �An
w andALip

w are not empty.

Definition 4.44. Coulomb
boundary field

For n ∈ N define C : R ×Hn
w → Dw(An), (T, ϕ) �→ CT [ϕ] to be

CT [ϕ] :=
�
E

C
i (· − qi,T ), 0

�
1≤i≤N

where (qi,T )1≤i≤N := QML[ϕ](T, 0) and the Coulomb field

(EC
i , 0) := M�i,mi[t �→ (0, 0)](0,−∞) =

��
d3z �i(· − z)

z

�z�3
, 0
�
.

Note that the last equality holds by Theorem 4.18p.66.

Lemma 4.45. The class of
boundary fields
is non-empty

For any n ∈ N and any w ∈ W the set C ∈ An
w ∩A

Lip
w .

Proof. We need to show the properties given in Definition 4.38p.75. Fix T > 0 and p ∈ P.
Recall the definition of CT as introduced in Definition 4.44. Let ϕ ∈ Dw(A) and F = Fϕ for
(Q + P)ϕ = p. Furthermore, we define (qi,T )1≤i≤N := QML[ϕ](T, 0). Since E

C is a Liénard-
Wiechert field of the charge trajectory t �→ (qi,T , 0) in T 1

� , we can apply Corollary 4.22p.69 to
yield the following estimate for any multi-index α ∈ N3 and x ∈ R3

���DαEC(x)
���
R3 ≤

C25
(α)

1 + �x�2
. (4.63)

which allows to define the finite constants C26
(α) := �DαEC�L2

w
. Using the properties of the

weight w ∈ W we find

�CT [ϕ]�2
F n

w
≤

n�

k=0

�A
kCT [ϕ]�Fw ≤

n�

k=0

N�

i=1

���(∇∧)k
E

C
i (· − qi,T )

���
L2

w
≤

n�

k=0

�

|α|≤k

N�

i=1

���DαEC
i

���
L2

w

≤

n�

k=0

�

|α|≤k

N�

i=1

�
1 +Cw

���qi,T
���
� Pw

2
���DαEC

i

���
L2

w
≤

n�

k=0

�

|α|≤k

N�

i=1

�
1 +Cw

���qi,T
���
� Pw

2 C26
(α) < ∞.

This implies CT ∈ Dw(A∞) ∩ F and that C : R × Dw(A)→ Dw(A∞) ∩ F is well-defined.

Note that the right-hand side depends only on
���qi,T
��� which is bounded by �p� + |T | since the

maximal velocity is below one. Hence, property (i) holds for

C23
(n)(|T |, �p�) :=

n�

k=0

�

|α|≤k

N�

i=1

(1 +Cw (�p� + |T |))
Pw
2 C26

(α).

Instead of showing property (ii), we prove the stronger property (v). For this let �ϕ ∈ Dw(A) such
that (Q + P)ϕ = (Q + P)�ϕ, (�qi,T )1≤i≤N := QML[�ϕ](T, 0). Starting with

�CT [ϕ] −CT [�ϕ]�F 1
w
≤

N�

i=1

�

|α|≤1

����Dα
�
E

C(· − qi,T ) − E
C(· −�qi,T )

�����
L2

w

we compute

����Dα
�
E

C(· − qi,T ) − E
C(· −�qi,T )

�����
L2

w
=

������

� 1

0
dλ (�qi,T − qi,t) · ∇DαEC

i,T (· −�qi,T + λ(�qi,T − qi,t))
������

L2
w

≤

� 1

0
dλ
���(qi,t −�qi,T ) · ∇DαEC(· −�qi,T + λ(�qi,T − qi,t))

���
L2

w
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where in the last step we have used Minkowski’s inequality. Therefore, for all |α| ≤ 1 we get
�

|α|≤1

����Dα
�
E

C(· − qi,T ) − E
C(· −�qi,T )

�����
L2

w

≤ �qi,T −�qi,T �R3 sup
0≤λ≤1

�

|β|≤2

���DβEC(· + λ(qi,T −�qi,T ))
���

L2
w
.

The estimate (4.63p.79) and the properties of w ∈ W yield

���DβEC(· −�qi,T + λ(�qi,T − qi,t))
���

L2
w
≤
�
1 +Cwλ

����qi,T + λ(�qi,T − qi,t)
���
R3

� Pw
2
���DβEC

���
L2

w

≤ (1 +Cw(�qi�R3 + ��qi�R3 + 2|T |)
Pw
2 C26

(β)

Furthermore, since the maximal velocity is smaller than one, property (v) holds for

C24(|T |, �ϕ�Hw , ��ϕ�Hw) := N
�

|β|≤2

(1 +Cw(�Qϕ�R3 + �Q�ϕ�R3 + 2|T |)
Pw
2 C26

(β).

(iii) holds by Theorem 4.14p.63.

(iv) Let Bτ(0) ⊂ R3 be a ball of radius τ > 0 around the origin. For any F ∈ Dw(A) we define
(qi,T )1≤i≤N := QML[ϕ](T, 0) and yield

�CT [p, F]�F n
w (Bc

τ(0) ≤

N�

i=1

�

|α|≤n

���DαEC(· − qi,T )
���

L2
w(Bc

τ(0))

≤

N�

i=1

�

|α|≤n

�
1 +Cw�qi,T �

� Pw
2
���DαEC

���
L2

w(Bc
τ(qi,T )) .

Note again that the maximal velocity is smaller than one so that �qi,T ≤ �q
0
i � + T . Hence, for

τ > �q0
i � + T define r(τ) := τ − �q0

i � + T such that it holds

sup
F∈Dw(A)

�CT [p, F]�F n
w (Bc

τ(0) ≤

N�

i=1

�

|α|≤n

�
1 +Cw�qi,T �

� Pw
2
���DαEC

���
L2

w(Bc
r(τ)(0)) −−−−→τ→∞

0

To summarize we have shown that for all n ∈ N the map C as introduced in Definition 4.44p.79 is
an element of �An

w ∩A
Lip which is a subset ofAn

w. �

REMARK 4.46. In view of (4.13p.48) the boundary fields are a guess of how the charge trajecto-
ries (q0

i , pi)1≤i≤N continue on the intervals (−∞,−T ] and [T,∞). Instead of the Coulomb fields
of a charge at rest we could have also taken the Liénard-Wiechert fields of a charge trajectory
which starts at qi,T and has constant momentum pi,T for (qi,T , pi,T )1≤i≤N := (Q + P)ML[ϕ](T, 0)
with only minor modification (the result would be a Lorentz boosted Coulomb field). Such bound-
ary fields would also be inALip

w as for (pi,T )1≤i≤N := PML[�ϕ](T, 0) we have

�pi,T −�pi,T � ≤

� T

0
ds �ṗi,s − �̇pi,s� ≤ T sup

s∈[0,T ]
�ṗi,s − �̇pi,s�

while the supremum exists because the charge trajectories are smooth thanks to ϕ,�ϕ ∈ Dw(A).
Only if one wanted to continue the charge trajectories (q0

i , pi)1≤i≤N in (4.13p.48) more smoothly,
for example also continuously in the acceleration, the resulting boundary fields would not lie in
A

Lip
w anymore but rather in �A1

w since in general different initial value for the ML-SI equations
yield different accelerations at time zero.
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Now we are able to state the main theorem of this section:

Theorem 4.47. S p,X±
T has a fixed

point
Let Newtonian Cauchy data p ∈ P be given. For the maps S p,X±

T for finite T > 0
as defined in Definition 4.42p.76 the following is true:

(i) For any boundary fields X± ∈ ALip
w and T sufficiently small, S p,X±

T has a unique fixed point.

(ii) For any boundary fields X± ∈ A3
w and finite T > 0, the map S p,X±

T has a fixed point.

The strategy for the proof is to use Banach’s and Schauder’s fixed point theorem. Before we
give a proof of Theorem 4.47 we collect the needed estimates and properties of S p,X±

T in a series
of lemmas.

Lemma 4.48. Estimates on F n
wFor n ∈ N0 the following is true:

(i) For all t ∈ R and F ∈ Dw(An) it holds that �WtF�F n
w ≤ eγ|t|�F�F n

w .

(ii) For all ϕ ∈ Hw there is a constant C27
(n) ∈ Bounds such that

�J(ϕ)�F n
w ≤ C27

(n)(�Qϕ�Hw).

(iii) For all ϕ,�ϕ ∈ Hw there is a C28
(n) ∈ Bounds such that

�J(ϕ) − J(�ϕ)�F n
w ≤ C28

(n)(�ϕ�Hw , ��ϕ�Hw)�ϕ − �ϕ�Hw .

Proof. (i) By Definition 4.33p.73 and Lemma 3.10p.22, (Wt)t∈R is a γ contractive group generated
by A on Dw(A). Hence, A and Wt commute for any t ∈ R which implies for all F ∈ Dw(An) that

�WtF�2F n
w
=

n�

k=0

�A
k
WtF�2Fw

=

n�

k=0

�WtA
kF�2

Fw
≤ eγ|t|

n�

k=0

�A
kF�2

Fw
= eγ|t|�F�F n

w .

For (ii) let (qi, pi,Ei,Bi)1≤i≤N = ϕ ∈ Hw. Using then the definitions of J, cf. Definition 4.33p.73

and 3.4p.19, we find

�J(ϕ)�F n
w ≤

n�

k=0

�(∇∧)k
v(pi)�i(· − qi)�L2

w
.

By applying the triangular inequality one finds a constant C29, e.g. C29 = 4
√

6, for which

�(∇∧)k
v(pi)�i(· − qi)�L2

w
≤ (C29)n

�

|α|≤n

�v(pi)D
α�i(· − qi)�L2

w
≤ (C29)n

�

|α|≤n

�Dα�i(· − qi)�L2
w

whereas in the last step we used the fact that the maximal velocity is smaller than one. Using
the properties of the weight function w ∈ W, cf. Definition 3.1p.18, we conclude

�Dα�i(· − qi)�L2
w
≤ (1 +Cw�qi�)

Pw
2 �Dα�i�L2

w
.

Collecting these estimates we yield that claim (ii) holds for

C27
(n)(�Qϕ�Hw) := (C29)n

N�

i=1

(1 +Cw�qi�)
Pw
2
�

|α|≤n

�Dα�i�.

Claim (iii) is shown by repetitively applying estimate (3.31p.33) of Lemma 3.26p.32 on the right-
hand side of

�J(ϕ) − J(�ϕ)�F n
w ≤

n�

k=0

�Ak[J(ϕ) − J(�ϕ)]�Hw

which yields a constant C28
(n) :=

�n
k=0 C4

(k)(�ϕ�Hw , ��ϕ�Hw) where C4 ∈ Bounds was defined in
Lemma 3.26p.32. This concludes the proof. �
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Lemma 4.49.Properties of

S p,X±
T

Let T > 0, p ∈ P and X± ∈ An
w for n ∈ N. Then it holds:

(i) There is a function C30 ∈ Bounds such that for all F ∈ F 1
w we have

�S p,X±
T [p, F]�F n

w ≤ C30
(n)(T, �p�).

(ii) F �→ S p,X±
T [F] as F 1

w → F
1

w is continuous.

If X± ∈ ALip
w , it is also true that:

(iii) There is a function C31 ∈ Bounds such that for all F, �F ∈ F 1
w we have

�S p,X±
T [F] − S p,X±

T [�F]�F 1
w
≤ TC31(T, �p�, �F�Fw , ��F�Fw)�F − �F�Fw .

Proof. Fix T > 0, p ∈ P, X± ∈ An
w for n ∈ N. Before we prove the claims we preliminarily recall

the relevant estimates of the ML-SI dynamics. Throughout the proof and for for any F, �F ∈ F n
w

we define Dw(An) � ϕ = (p, F) and Dw(An) � �ϕ = (p, �F) and furthermore the ML-SI solutions
ϕt := ML[ϕ](t, 0) and �ϕt := ML[�ϕ](t, 0) for any t ∈ R. Recall the estimate (3.11p.20) from the
ML±SI existence and uniqueness Theorem 3.5p.20 which gives the following T dependent upper
bounds on these ML-SI solutions:

sup
t∈[−T,T ]

�ϕt − �ϕt�Hw ≤ C2(T, �ϕ�Hw , ��ϕ�Hw)�ϕ − �ϕ�Hw , (4.64)

sup
t∈[−T,T ]

�ϕt�Hw ≤ C2(T, �ϕ�Hw , 0)�ϕ�Hw and sup
t∈[−T,T ]

��ϕt�Hw ≤ C2(T, ��ϕ�Hw , 0)��ϕ�Hw . (4.65)

To prove claim (i) we estimate

�S p,X±
T [F]�F n

w ≤

�������
1
2

�

±

W∓T X±
±T [p, F]

�������
F n

w

+

�������
1
2

�

±

� 0

±T
ds W−sJ(ϕs)

�������
F n

w

=: 21 + 22 ,

cf. Definition 4.42p.76 where S p,X±
T was defined. By the estimate given in Lemma 4.48p.81(i) and

the property given in Definition 4.38p.75(i) of the boundary fields we find

21 ≤
1
2

�

±

�W∓T X±
±T [p, F]�F n

w ≤ eγT �X±
±T [p, F]�F n

w ≤ eγTC23
(n)(T, �φ�Hw).

Furthermore, using in addition the estimates given in Lemma 4.48p.81(i-ii) we get a bound for the
next term by

22 ≤ TeγT sup
s∈[−T,T ]

�J(ϕs)�F n
w ≤ TeγT sup

s∈[−T,T ]
C27(�Qϕs�Hw) ≤ TeγTC27(�p� + T )

whereas the last step is implied by the fact that the maximal velocity is below one. These
estimates prove claim (i) for

C30
(n)(T, �φ�Hn

w) := eγT
�
C23

(n)(T, �p�) + TC27(�p� + T )
�
.

Next we prove claim (ii). Therefore, we regard

�S p,X±
T [F] − S p,X±

T [�F]�F n
w ≤ eγT �X±

±T [ϕ] − X±
±T [�ϕ]�F n

w + TeγT sup
s∈[−T,T ]

�J(ϕs) − J(�ϕs)�F n
w

=: 23 + 24
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where we have already applied Lemma 4.48p.81(i). Next we use Lemma 4.48p.81(iii) on 24 and
yield

24 ≤ TeγT sup
s∈[−T,T ]

C28
(n)(�ϕs�Hw , ��ϕs�Hw)�ϕs − �ϕs�Hw

Finally, by the ML-SI estimates (4.64) and (4.65) we yield

24 ≤ TC32(T, �p�, �F�F n
w , �
�F�F n

w )�ϕ − �ϕ�Hw (4.66)

for

C32(T, �p�, �F�F n
w , �
�F�F n

w ) :=eγTC28
(n)
�
C2(T, �ϕ�Hw , 0)�ϕ�Hw ,C2(T, 0, ��ϕ�Hw)�ϕ�Hw

�
×

×C2(T, �ϕ�Hw , ��ϕ�Hw).

For �F → F in F 1
w these estimates imply S p,X±

T [�F] → S p,X±
T [F] in F 1

w since here �ϕ − �ϕ�Hw =

�F − �F�Fw which proves claim (ii).

(iii) Let now X± ∈ ALip
w . Term 23 then behaves by Definition 4.38p.75 as

23 ≤ TC24
(n)(|T |, �ϕ�Hw , ��ϕ�Hw) �ϕ − �ϕ�Hw

Together with the estimate (4.66) this proves claim (ii) for

C31
(n)(T, �p�, �F�Fw , ��F�Fw) := C24

(n)(|T |, �ϕ�Hw , ��ϕ�Hw) +C32(T, �p�, �F�F n
w , �
�F�F n

w )

since in our case �ϕ − �ϕ�Hw = �F − �F�Fw . �

Before we proof the main theorem of this section we need a last lemma which gives a criterion
for precompactness of sequences in L2

w.

Lemma 4.50. Criterion for
precompactness

Let (Fn)n∈N be a sequence in L2
w(R3,R3) such that

(i) The sequence (Fn)n∈N is uniformly bounded inH�w .

(ii) limτ→∞ supn∈N �Fn�L2
w(Bc

τ(0)) = 0.

Then the sequence (Fn)n∈N is precompact, i.e. it contains a convergent subsequence.

Proof. (see Proof in Appendix 5.4p.101) The idea for the proof is based on [Lie01, Chapter 8,
Proof of Theorem 8.6, p.208]. �

REMARK 4.51. Of course one only needs to control solely the gradient, however, the Laplace
turns out to be more convenient for the later application of the lemma.

Now we can prove the first main theorem of this subsection.

Proof of Theorem 4.47p.81. Proof of

Theorem

4.47p.81

Fix p ∈ P.

(i) Let X± ∈ ALip
w ⊂ A1

w, then Lemma 4.49p.82(i) states

�S p,X±
T [p, F]�F 1

w
≤ C30

(1)(T, �p�) =: r.
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Hence, the map S p,X±
T restricted to the ball Br(0) ⊂ F 1

w with radius r around the origin is a
nonlinear self-mapping. Lemma 4.49p.82(iii) states for all T > 0 and F, �F ∈ Br(0) ⊂ Dw(A) that

�S p,X±
T [F] − S p,X±

T [�F]�F 1
w
≤ TC31(T, �p�, �F�Fw , ��F�Fw)�F − �F�Fw

≤ TC31(T, �p�, r, r)�F − �F�Fw .

where we have also used that C31 ∈ Bounds is a continuous and strictly increasing function of
its arguments. Hence, for T sufficiently small we have TC31(T, �p�, r, r) < 1 such that S p,X±

T is a
contraction on Br(0) ⊂ F 1

w . By Banach’s fixed point theorem S p,X±
T has a unique fixed point in

Br(0) ⊂ F 1
w .

(ii) Given a finite T > 0, p ∈ P and X± ∈ �A3
w Lemma 4.43p.77(i) states for all F ∈ F 1

w

�S p,X±
T [p, F]�F 1

w
≤ �S p,X±

T [p, F]�
F 3

w
≤ C30

(3)(T, �p�) =: r. (4.67)

Let K be the closed convex hull of M := {S p,X±
T [F] | F ∈ F 1

w } ⊂ Br(0) ⊂ F 1
w . By Lemma

4.43p.77(ii) we know that the map S p,X±
T : K → K is continuous as a map F 1

w → F
1

w . If M is
compact, it implies that K is compact, and hence, Schauder’s Fixed Point Theorem 4.1p.48 ensures
the existence of a fixed point.

It is left to show that M is compact. Therefore, let (Gm)m∈N be a sequence in M. We need to
show that it contains an F 1

w convergent subsequence. To show this we intend to use Lemma
4.50p.83. By definition there is a sequence (Fm)m∈N in Br(0) ⊂ F 1

w such that Gm := S p,X±
T [Fm],

m ∈ N. We define for m ∈ M

(E(m)
i ,B

(m)
i )1≤i≤N := S p,X±

T [Fm].

Recall the definition of the norm of F n
w , cf. Definition 4.36p.75, for some (Ei,Bi)1≤i≤N = F ∈ F n

w
and n ∈ N

�F�2
F n

w
=

n�

k=0

�A
kF�2

Fw
=

n�

k=0

N�

i=1

�
�(∇∧)k

Ei�
2
L2

w
+ �(∇∧)k

Bi�
2
L2

w

�
. (4.68)

Therefore, since A on Dw(A) is closed, (Gm)m∈N has an F 1
w convergent subsequence if and only

if all the sequences ((∇∧)k
E

(m)
i )m∈N, ((∇∧)k

B
(m)
i )m∈N for k = 0, 1 and 1 ≤ i ≤ n have a common

convergent subsequence in L2
w.

To show this we first provide the bounds needed for Lemma 4.50p.83(i). Estimate (4.67) implies
that

3�

k=0

N�

i=1

�
�(∇∧)k

E
(m)
i �

2
L2

w
+ �(∇∧)k

B
(m)
i �

2
L2

w

�
= �Gm�

2
F 3

w
≤ r2 (4.69)

for all m ∈ N. Furthermore, by Lemma 4.43p.77(ii) the fields (E(m)
i ,B

(m)
i )1≤i≤N are a solution to the

Maxwell equations at time zero and hence, by Theorem 4.14p.63 fulfill the Maxwell constraints
for (q0

i , p
0
i )1≤i≤N := p which read

∇ · E
(m) = 4π�i(· − q

0
i ) and ∇ · B

(m)
i = 0.

Also by Theorem 4.14p.63, Gm is in F so that for every k ∈ N0

(∇∧)k+2
E

(m)
i = 4πδk0∇�i(· − q

0
i ) − �(∇∧)k

E
(m)
i and (∇∧)k+2

B
(m)
i = −�(∇∧)k

B
(m)
i
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where δk0 is the Kronecker delta which is zero except for k = 0. Estimate (4.69) implies for all
m ∈ N that

1�

k=0

N�

i=1

�
��(∇∧)k

E
(m)
i �

2
L2

w
+ ��(∇∧)k

B
(m)
i �

2
L2

w

�

≤ 2
1�

k=0

N�

i=1

�
�(∇∧)k+2

E
(m)
i �

2
L2

w
+ �(∇∧)k+2

B
(m)
i �

2
L2

w

�
+ 2

N�

i=1

�4π∇�i(· − q
0
i )�L2

w

≤ 2r2 + 8π
N�

i=1

�
1 +Cw

���q0
i

���
�Pw
�∇�i�

2
L2

w

where we made use of the properties of the weight w ∈ W. Note that the right-hand does not
depend on m. Therefore, all the sequences ((∇∧)k

E
(m)
i )m∈N, (�(∇∧)k

E
(m)
i )m∈N, ((∇∧)k

B
(m)
i )m∈N,

(�(∇∧)k
B

(m)
i )m∈N for k = 0, 1 and 1 ≤ i ≤ N are uniformly bounded in L2

w.

Second, we need to show that all the sequences ((∇∧)k
E

(m)
i )m∈N, ((∇∧)k

B
(m)
i )m∈N for k = 0, 1

and 1 ≤ i ≤ N decay uniformly at infinity to meet condition (ii) of Lemma 4.50p.83. De-
fine (E(m),±

i,±T ,B
(m),±
i,±T )1≤i≤N := X±

±T [p, Fm] for m ∈ N and denote the ith charge trajectory t �→
(q(m)

i,t , p
(m)
i,t ) := (Q + P)ML[p, Fm](t, 0) by (q(m)

i , p
(m)
i ), 1 ≤ i ≤ N. Using Lemma 4.43p.77(ii) and

afterwards Lemma 4.14p.63 we can write the fields as


E

(m)
i

B
(m)
i


 =

1
2

�

±

M�,mi[(E
±

i,±T ,E
±

i,±T ), (q(m)
i , p

(m)
i )](0,±T )

=
1
2

�

±

� �
∂t ∇∧

−∇∧ ∂t

�
Kt∓T ∗



E

(m),±
i,±T

B
(m),±
i,±T


 + Kt∓T ∗

�
−4πj(m)

i,±T
0

�

+ 4π
� t

±T
ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� 
ρ(m)

i,s
j
(m)
i,s



�

t=0
=: 25 + 26 + 27

where ρ(m)
i,t := �i(· − q

(m)
i,t ) and j

(m)
i,t := v(p(m)

i,t )ρi,t for all t ∈ R.

We shall show that there is a τ∗ > 0 such that for all m ∈ N the terms 26 and 27 are point-wise
zero on Bc

τ∗(0) ⊂ R3. Recalling the computation rules for Kt from Lemma 4.11p.61 we calculate

�4π[K∓T ∗ j
(m)
±T ](x)�R3 ≤ 4πT

�

BT (x)

dσ(y) �i(y − q
(m)
±T ).

The right-hand side is zero for all x ∈ R3 such that ∂BT (x) ∩ supp �i(· − q±T ) = ∅. Because
the charge distributions have compact support there is a R > 0 such that supp �i ⊆ BR(0) for all
1 ≤ i ≤ N. Now for any 1 ≤ i ≤ N and m ∈ N we have

supp �i(· − q
(m)
i,±T ) ⊆ BR(q(m)

i,±T ) ⊆ BR+T (q0
i )

since the supremum of the velocities of the charge supt∈[−T,T ],m∈N �v(p(m)
i,t � is smaller or equal

one. Hence, ∂BT (x) ∩ BR+T (q0
i ) = ∅ for all x ∈ Bc

τ(0) with τ > �p� + R + 2T .

Considering 27 we have
�������
4π
� 0

±T
ds


K−s ∗

�
−∇ −∂s
0 ∇∧

� 
ρ(m)

i,s
j
(m)
i,s





 (x)

�������
R3⊕R2

≤ 4π
� 0

±T
ds s

�

∂B|s|(x)

dσ(y) �G(y − q
(m)
s )�R3⊕R3

(4.70)
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where we used the abbreviation

G :=
�
−∇ −∂s
0 ∇∧

� 
ρ(m)

i,s
j
(m)
i,s




and the computation rules for Kt given in Lemma 4.11p.61. As supp G ⊆ supp �i ⊆ BR(0), the
right-hand side of (4.70p.85) is zero for all x ∈ R such that

�

s∈[−T,T ]

�
∂B|s|(x) ∩ BR(q(m)

i,s )
�
= ∅.

Now the left-hand side is subset equal

∪s∈[−T,T ]∂B|s|(x)
�
∪s∈[−T,T ]BR(q(m)

i,s ) ⊆ BT (x) ∩ BR+T (q0
i )

which is equal the empty set for all x ∈ Bc
τ(0) with τ > �p� + R + 2T .

Hence, setting τ∗ := �p� + R + 2T we conclude that for all τ > τ∗ the terms 26 and 27 and
all their derivatives are zero on Bc

τ(0) ⊂ R3. That means in order to show that all the sequences
((∇∧)k

E
(m)
i )m∈N, ((∇∧)k

B
(m)
i )m∈N for k = 0, 1 and 1 ≤ i ≤ N decay uniformly at spatial infinity,

it suffices to show

lim
τ→∞

sup
m∈N

n�

k=0

N�

i=1

�
�(∇∧)k

e
(m)
i �L2

w(Bc
τ(0)) + �(∇∧)k

b
(m)
i �L2

w(Bc
τ(0))

�
= 0. (4.71)

for


e

(m)
i

b
(m)
i


 := 25 =

�
∂t ∇∧

−∇∧ ∂t

�
Kt∓T ∗



E

(m),±
i,±T

B
(m),±
i,±T



�����
t=0

for 1 ≤ i ≤ N. Let F ∈ C∞(R3,R3) and τ > 0. By computation rules for Kt given in Lemma
4.11p.61 we then yield

�∇ ∧ K∓T ∗ F�L2
w(Bc

τ+T (0)) = �K∓T ∗ ∇ ∧ F�L2
w(Bc

τ+T (0)) ≤

���������
T
�

∂BT (0)

dσ(y) ∇ ∧ F(· − y)

���������
L2

w(Bc
τ+T (0))

≤ T
�

∂BT (0)

dσ(y) �∇ ∧ F(· − y)�L2
w(Bc

τ+T (0)) ≤ T sup
y∈∂BT (0)

�∇ ∧ F(· − y)�L2
w(Bc

τ+T (0))

≤ T sup
y∈∂BT (0)

(1 +Cw�y�)
Pw
2 �∇ ∧ F(· − y)�L2

w(Bc
τ+T (0)) ≤ T (1 +CwT )

Pw
2 �∇ ∧ F�L2

w(Bc
τ(0)).

We also estimate using the computation rules for Kt given in Lemma 4.11p.61 the term

�∂tKt∓T |t=0 ∗ F�L2
w(Bc

τ+T (0)) =

���������

�

∂BT (0)

dσ(y) F(· − y) +
T 2

3

�

BT (0)

d3y �F(· − y)

���������
L2

w(Bc
τ+T (0))

≤

�

∂BT (0)

dσ(y) �F(· − y)�L2
w(Bc

τ+T (0)) +
T 2

3

�

BT (0)

d3y ��F(· − y)�L2
w(Bc

τ+T (0))

≤ (1 +CwT )
Pw
2 �F�L2

w(Bc
τ(0)) +

T 2

3
(1 +CwT )

Pw
2 ��F�L2

w(Bc
τ(0)).



Chapter 4. Wheeler-Feynman Equations of Motion 87

Substituting F with (∇∧)k
E

(m),±
i,±T and (∇∧)k

B
(m),±
i,±T for k = 0, 1 and 1 ≤ i ≤ N in the two estimates

above yields
n�

k=0

N�

i=1

�
�(∇∧)k

e
(m)
i �L2

w(Bc
τ+T (0)) + �(∇∧)k

b
(m)
i �L2

w(Bc
τ+T (0))

�

≤ (1 +CwT )
Pw
2

�
�(∇∧)k

E
(m),±
i,±T �L2

w(Bc
τ(0)) + �(∇∧)k

B
(m),±
i,±T �L2

w(Bc
τ(0))+

+
T 2

3

�
�(∇∧)k

�E
(m),±
i,±T �L2

w(Bc
τ(0)) + �(∇∧)k

�B
(m),±
i,±T �L2

w(Bc
τ(0))

�
+

+ T
�
�(∇∧)k+1

E
(m),±
i,±T �L2

w(Bc
τ(0)) + �(∇∧)k+1

B
(m),±
i,±T �L2

w(Bc
τ(0))

� �
.

(4.72)

Now X± lie in �A3
w ⊂ A

3
w which means that the fields E

(m),±
i,±T and B

(m),±
i,±T for 1 ≤ i ≤ N fulfill the

Maxwell constraints so that

�(∇∧)k
�E

(m),±
i,±T �L2

w(Bc
τ(0)) = �(∇∧)k+2

E
(m),±
i,±T �L2

w(Bc
τ(0)) + 4π�(∇∧)k

∇�i(· − q
(m)
i,±T �L2

w(Bc
τ(0))

and

�(∇∧)k
�B

(m),±
i,±T �L2

w(Bc
τ(0)) = �(∇∧)k+2

B
(m),±
i,±T �L2

w(Bc
τ(0)).

Applying Definition 4.38p.75(iv) yields

lim
τ→∞

sup
m∈N

3�

j=0

N�

i=1

����(∇∧) j
E

(m),±
i,±T �

2
L2

w(Bc
τ(0)) + �(∇∧) j

B
(m),±
i,±T �

2
L2

w(Bc
τ(0))

�
≤ lim
τ→∞

sup
m∈N
�χ±
±T [p, Fm]�2

Hn
w
= 0

because Fm ∈ Br(0) ⊂ F 1
w for all m ∈ N, which implies (4.71p.86) by the above estimates.

By the above estimate (4.72) we conclude that equation (4.71p.86) holds which we proved to
be sufficient to show the uniform decay at spatial infinity of all the sequences ((∇∧)k

E
(m)
i )m∈N,

((∇∧)k
B

(m)
i )m∈N for k = 0, 1 and 1 ≤ i ≤ N.

Let us summarize using the abbreviations E
(m,k)
i := (∇∧)k

E
(m)
i and B

(m,k)
i := (∇∧)k

B
(m)
i for

k = 0, 1, 1 ≤ i ≤ N and m ∈ N: First, we have shown that the sequences (E(m,k)
i )m∈N, (B(m,k)

i )m∈N,
(�E

(m,k)
i )m∈N and (�B

(m,k)
i )m∈N are all uniformly bounded in L2

w. Second, we have shown that the
sequences (E(m,k)

i )m∈N, (B(m,k)
i )m∈N, (�E

(m,k)
i )m∈N decay uniformly at spatial infinity.

Having this we can now successively apply Lemma 4.50p.83 to yield the common F 1
w convergent

subsequence: Fix 1 ≤ i ≤ N. Let (E(m0
l ,0)

i )l∈N be the L2
w convergent subsequence of (E(m,0)

i )m∈N

and (E(m1
l ,1)

i )l∈N the L2
w convergent subsequence of (E(m0

l ,1)
i )l∈N. In the same way we proceed with

the other indices 1 ≤ i ≤ N and the magnetic fields, every time choosing a further subsequence
of the previous one. Let us denote the final subsequence by (ml)l∈N ⊂ N. Then we have con-
structed sequences (Gml)l∈N as well as (AGml)l∈N which are convergent in Fw. However, A on
Dw(A) is closed so that this implies convergence of (Gml)l∈N in F 1

w . As (Gm)m∈N was arbitrary,
we conclude that every sequence in M has an F 1

w convergent subsequence and therefore M is
compact which had to be shown. �

Having established the existence of a fixed point F for all times T > 0, Newtonian Cauchy data
p ∈ P and boundary fields (X±i,±T )1≤i≤N = X± ∈ �A3

w, Theorem 4.43p.77(iii) states that the charge
trajectories t �→ (qi,t, pi,t)1≤i≤N := (Q + P)ML[p, F](t, 0) are in T p,X±

T . This means they are time-
like charge trajectories that solve the bWF equations for all times t ∈ R, which are given by the
Lorentz force law (4.1p.43) together with the equation for the fields (4.57p.76)

(EWF
i,t ,B

WF
i,t ) =

1
2

�

±

M�i,mi[X
±

i,±T , (qi, pi)](t,±T ), (4.73)
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1 ≤ i ≤ N, and initial conditions (4.9p.46).

However, how much do such fixed points tell us about the true Wheeler-Feynman solution? With
regard to this question we shall show in the following that under conditions on the Newtonian
Cauchy data p and on the charge densities �i, 1 ≤ i ≤ N, one always finds a fixed point F whose
corresponding charge trajectories fulfill the Wheeler-Feynman equations, i.e. the Lorentz force
law (4.1p.43) together with the fields (4.10p.46)

(EWF
i,t ,B

WF
i,t ) =

1
2

�

±

M�i,mi[(qi, pi)](t,±∞), (4.74)

1 ≤ i ≤ N, for t in a time interval [−L, L] for some L > 0. Note that for this to be true the
right-hand side of equation (4.73p.87) does not have to agree with the right-hand side of (4.74)
everywhere on R3 but only within the tubes of radius R around the position of the j � i charge
trajectories as only these values enter the Lorentz force law (4.1p.43).

Definition 4.52.Partial Wheeler-
Feynman

solutions for
Newtonian

Cauchy data

For Newtonian Cauchy data p ∈ P we define T L
WF to be the set of time-like

charge trajectories in (qi, pi)1≤i≤N ∈ T∨ which solve the Wheeler-Feynman equations in the form
(4.1p.43) and (4.74) for time t ∈ [−L, L] and initial conditions (4.9p.46). We shall call every element
of T L

WF a partial Wheeler-Feynman solution for initial value p.

In order to see that a bWF solution (qi, pi)1≤i≤N ∈ T
p,X±

T is also a partial Wheeler-Feynman
solution we have to regard the difference

M�i,mi[X
±

i,±T , (qi, pi)](t,±T ) − M�i,mi[(qi, pi)](t,±∞)

=

�
∂t ∇∧

−∇∧ ∂t

�
Kt∓T ∗ X±i,±T + Kt∓T ∗

�
−4πv(pi,±T )�i(· − qi,±T )

0

�

− 4π
�
±T

±∞

ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
�i(· − qi,s)

v(pi,s)�i(· − qi,s)

�
.

(4.75)

where we used Definition 4.16p.65 with Theorem 4.14p.63 as well as Definition 4.17p.65. Whenever
the difference is zero everywhere within the tubes around the positions of the j � i charge
trajectories for t ∈ [−L, L], the charge trajectories (qi, pi)1≤i≤N are in T L

WF. This is certainly not
true for all boundary fields X± ∈ �A3

w. However, it is the case for the advanced, respectively
retarded, Liénard-Wiechert fields of any charge trajectories which continue (qi, pi)1≤i≤N on the
time interval [T,∞), respectively (−∞,−T ], and we shall show this in the particular case of the
Coulomb boundary fields C, cf. Definition 4.44p.79.

In fact, for the Coulomb boundary fields C ∈ �A3
w ∩ A

Lip
w we find that the difference discussed

above is for “+” zero everywhere on the backward light-cone of the space-time point (T, qi,T ) as
well as for “−” everywhere on the forward light-cone of (−T, qi,−T ).

Lemma 4.53.Shadows of the
boundary fields

and Wheeler-
Feynman

fields

Let q, v ∈ R3, � ∈ C∞c (R3,R) such that supp � ⊆ BR(0) for some finite R > 0.
Furthermore, let E

C be the Coulomb field of a charge at rest at the origin

E
C :=

�
d3z �(· − z)

z

�z�3

Then for T > R
��
∂t ∇∧

−∇∧ ∂t

�
Kt∓T ∗

�
E

C(· − q)
0

�
+ Kt∓T ∗

�
−4πv�(· − q)

0

��
(x) = 0 (4.76)

and
�
±T

±∞

ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
�i(· − qi,s)

v(pi,s)�i(· − qi,s)

�
(x) = 0 (4.77)

for t ∈ (−T + R,T − R) and x ∈ B|t∓T |−R(q).
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Proof. Let t ∈ [−T + R,T − R]. With regard to the second term we compute

���−4πv
�
Kt∓T ∗ �(· − q)

�
(x)
��� = 4π�v�

���������
(t ∓ T )

�

∂B|t∓t|(0)

dσ(y) �(x − y − q)

���������

≤ 4π�v�|t ∓ T | sup |�|
�

∂B|t∓t|(q)

dσ(y) BR(x)(y)

where we used Definition 4.10p.61 for Kt∓T . Now x ∈ B|t∓T |−R(q) implies ∂B|t∓T |(q) ∩ BR(x) = ∅
and hence that the term above is zero.

With regard to the first term we note that the only non-zero contribution is ∂tKt∓T ∗ E
C
i since

∇ ∧ E
C = 0. We shall need the computation rules for Kt as given in Lemma 4.11p.61 and in

particular equation (4.37p.61) which in our case reads

�
∂tKt∓T ∗ E

C(· − q)
�

(x) =
�

∂B|t∓T |(0)

dσ(y) E
C(x − y − q) + (t ∓ T )∂t

�

∂B|t∓T |(0)

dσ(y) E
C(x − y − q)

(4.78)

=

�

∂B|t∓T |(0)

dσ(y) E
C(x − y − q) +

(t ∓ T )2

3

�

B|t∓T |(0)

d3y �E
C(x − y) =: 28 + 29 . (4.79)

Using Lebesgue’s theorem we start with

28 = E
C(x − q) +

�
|t∓T |

0
ds ∂s

�

∂Bs(0)

dσ(y) E
C(x − y − q)

= E
C(x − q) +

�
|t∓T |

0
dr

r
3

�

Br(0)

d3y �E
C(x − y − q).

Furthermore, we know that 0 = (∇∧)2
E

C = ∇(∇ ·EC) − �E
C and ∇ ·EC = 4π�. So we continue

the computation with

28 = E
C(x − q) +

�
|t∓T |

0
dr

r
3

�

Br(0)

d3y 4π∇�(x − y − q)

= E
C(x − q) −

�
|t∓T |

0
dr

1
r2

�

∂Br(0)

dσ(y)
y

r
�(x − y − q)

where we have used (4.78) to evaluate the derivative and in addition used Stoke’s Theorem.
Note that the minus sign in the last line is due to the fact that ∇ acts on x and not y. Inserting the
definition of the Coulomb field E

C we finally get

28 =
�

Bc
|t∓T |(0)

d3y �(x − y − q)
y

�y�3
.

This integral is zero if, for example, Bc
|t∓T |(q)∩ BR(x) = ∅ and this is the case for x ∈ B|t∓T |−R(q).

So it remains to show that 29 also vanishes. Therefore, using �E
C = 4π∇� as before, we get

29 = −
�

∂B|t∓T |(0)

dσ(y)
y

(t ∓ T )2 �(x − y − q).
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This expression is zero, for example, when ∂B|t∓T |(q) ∩ BR(x) = ∅ which is true for x ∈

B|t∓T |−R(q). Hence, we have shown that for t ∈ (−T + R,T − R) and x ∈ B|t∓T |(q) the term
(4.76p.88) is zero.

Looking at the support of the integrand and the integration domain in term (4.77p.88) we find that
for all t ∈ (−T + R,T − R) it is zero for all x ∈ R3 such that

�

|s|>T

�
∂B|t−s|(x) ∩ BR(qs)

�
= ∅. (4.80)

Hence, for t ∈ (−T + R,T − R) and x ∈ B|t∓T |(q) the term (4.77p.88) is also zero which concludes
the proof. �

REMARK 4.54. This lemma directly applies to the difference (4.75p.88) we were discussing
before. By looking at the explicit formulas for the Maxwell solutions given in Theorem 4.14p.63

we recognize that this difference term is in some sense the free time-evolution of the initial fields.
This time-evolution makes sure that the initial fields coming from a charge at rest have to make
way for the new fields generated by the current of the charge during the time interval [−T,T ].
This will certainly hold for all boundary fields which are Liénard-Wiechert fields of given charge
trajectories on the intervals (−∞,T ] and [T,∞) not only for the case of a charge at rest.

Now that we know a big region where the difference (4.75p.88) is zero we have to make sure
that the charge trajectories spend the time interval [−L, L] there. For this we need a uniform
momentum estimate:

Lemma 4.55.Uniform velocity
bound

For finite T > 0 and r > 0 there is a continuous and strictly increasing map
va,b : R+ → [0, 1), T �→ va,b

T such that

sup
�
�v(pi,t)�R3

����� t ∈ [−T,T ], �p� ≤ a, F ∈ Ran S p,C
T , ��i�L2

w
+ �w−1/2�i�L2 ≤ b, 1 ≤ i ≤ N

�
≤ va,b

T .

for (pi,t)1≤i≤N := PML[p, F](t, 0) for all t ∈ R.

Proof. Recall the estimate (3.10p.20) from the ML±SI existence and uniqueness Theorem 3.5p.20

which gives the following T dependent upper bounds on these ML-SI solutions for all ϕ ∈
Dw(A):

sup
t∈[−T,T ]

�ML[ϕ](t, 0)�Hw ≤ C1

�
T, ��i�L2

w
, �w−1/2�i�L2 , 1 ≤ i ≤ N

�
�ϕ�Hw . (4.81)

Note further that by Lemma 4.49p.82 since C ∈ A1
w, there is a C30

(1) ∈ Bounds such that fields
F ∈ Ran S p,C

T ∈ Dw(A∞) fulfill

�F�Fw ≤ C30
(1)(T, �p�) ≤ C30

(1)(T, a).

Therefore, setting c := a +C30
(1)(T, a) we estimate the maximal momentum of the charges by

sup
�
�v(pi,t)�R3

����� t ∈ [−T,T ], �p� ≤ a, F ∈ Ran S p,C
T , ��i�L2

w
+ �w−1/2�i�L2 ≤ b, 1 ≤ i ≤ N

�

≤ sup
�
�v(pi,t)�R3

����� t ∈ [−T,T ], ϕ ∈ Dw(A), �ϕ�Hw ≤ c, ��i�L2
w
+ �w−1/2�i�L2 ≤ b, 1 ≤ i ≤ N

�

≤ C1 (T, b, b, ) c =: pa,b
T < ∞.

Now, since C2 as well as C30
(1) are in Bounds the map T �→ pa,b

T as R+ → R+ is continuous and
strictly increasing. We conclude that claim is fulfilled for the choice

va,b
T :=

pa,b
T�

m2 + (pa,b
T )2

and m := min1≤i≤N |mi|. �



Chapter 4. Wheeler-Feynman Equations of Motion 91

With this we can formulate our last result.

Theorem 4.56. Existence of
partial Wheeler-
Feynman
solutions

For (q0
i , p

0
i )1≤i≤N = p ∈ P define

�qmax(p) := max
1≤i, j≤N

�q
0
i − q

0
j�.

Choose T > 0, a > 0 and b > 0. Furthermore, let R > 0 be a radius small enough such that
the charge densities fulfill supp �i ⊆ BR(0), ��i�L2

w
+ �w−1/2�i�L2 ≤ b, (1 − va,b

T )T − 2R > 0 and
T > 2R. Then for Newtonian Cauchy data

p ∈
�

p ∈ P
����� �p� ≤ a,�qmax(p) < (1 − va,b

T )T − 2R
�

the charge trajectories in T p,C
T ⊂ T L

WF for L := (1−va,b
T )T−�qmax−2R

1+va,b
T

> 0.

Proof. Let F be a fixed point F = S p,C
T [F] which exists by Theorem 4.47p.81. Define the charge

trajectories (qi, pi)1≤i≤N by t �→ (qi,t, pi,t)1≤i≤N := (Q + P)ML[p, F](t, 0). By the fixed point prop-
erties of F we know that these trajectories are in T p,C

T and therefore solve the bWF equations,
i.e. the Lorentz force law (4.1p.43) and the equations for the fields (4.73p.87) for Newtonian Cauchy
data (4.9p.46). In order to show that the charge trajectories (qi, pi)1≤i≤N are also in T L

WF for the
given L we need to show that the difference (4.75p.88)

M�i,mi[X
±

i,±T , (qi, pi)](t,±T ) − M�i,mi[(qi, pi)](t,±∞)

=

�
∂t ∇∧

−∇∧ ∂t

�
Kt∓T ∗ X±i,±T + Kt∓T ∗

�
−4πv(pi,±T )�i(· − qi,±T )

0

�

− 4π
�
±T

±∞

ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
�i(· − qi,s)

v(pi,s)�i(· − qi,s)

�
.

is zero for times t ∈ [−L, L] at least for all points x in a tube around the position of the j � i
charge trajectories. Lemma 4.53p.88 states that this expression is zero for all t ∈ [−T + R,T − R]
and x ∈ B|t∓T |−R(qi,±T ). So it is sufficient to show that the charge trajectories spend the time
interval [−L, L] in this particular space-time region. Clearly, the position q

0
i at time zero is in

BT−R(qi,±T ). Hence, we need to compute the earliest exit time L of this space-time region of a
charge trajectory j in the worst case. The exit time L is the time when the jth charge trajectory
leaves the region B|L∓T |−R(qi,±T ). By Lemma 4.55p.90 the charges can in the worst case move
apart from each other with velocity va,b

T during the time interval [−T,T ]. Putting the origin at q
0
i

we can compute the exit time L by

−va,b
T T = �q0

j − q
0
i � + 2R + va,b

T L − (T − L)

This gives L := (1−va,b
T )T−�qmax−2R

1+va,b
T

> 0 as long as �qmax < (1 − va,b
T )T wich is the case. �

REMARK 4.57. The intention behind this theorem is to only show that at least on finite intervals
it is possible to find Wheeler-Feynman solutions for Newtonian Cauchy data. The conditions are
very restrictive, however, only technical. For example, if we consider the special case of two
charges of the same sign and positive masses one can expect to get a uniform bound va,b

T ≤

va,b < 1 on the maximal velocity for all times. In this case all the restrictions disappear because
for any choice of p ∈ P we can take T to be large enough to ensure �qmax(p) < (1− va,b)T − 2R.
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4.5 Conclusion and Outlook

As discussed in the introductory Section 4.1p.43, the question whether there exist true Wheeler-
Feynman solutions for all times for given Newtonian Cauchy data remains open. There are at
least two ways to proceed from here:

1) Fixed Point Theorems for T → ∞. The problem we have already addressed towards the
end of Section 4.1p.43 is that we are missing uniform bounds for the accelerations and velocities
of the charges. Note that since the S p needs to be a self-mapping, we cannot easily put such
conditions in by hand but rather have to work them out given the form of the ML-SI and WF
equations. There are two fixed point theorems which seem most convenient for this case:

First, one could try to apply Krasnosel’skii’s Fixed Point Theorem in the following way:

Theorem 4.58 (Krasnosel’skii’s Fixed Point Theorem [Sma74] Chapter 4.4 Theorem 4.4.1). Let
B be a Banach space, and R, S maps on M ⊆ B with the following properties:

(i) Ran(S + R) ⊆ M,

(ii) S is continuous and Ran S is compact,

(iii) R is a contraction.

Then the map S + R has a fixed point on M.

For any Newtonian Cauchy data p ∈ P, boundary fields X± ∈ A1
w and field F ∈ Dw(A∞)∩F let

(S p,X±
i,T [F])1≤i≤N := S p,X±

T [F] and (Xpm
i,±T [p, F])1≤i≤N := Xpm

±T [p, F]. Using the Kirchoff formulas
for the Maxwell equations we have for all 1 ≤ i ≤ N

S p,X±
i,T =

�
∂t ∇∧

−∇∧ ∂t

�
Kt−t0 ∗ X±i,±T [p, F] + Kt−t0 ∗

�
−4πjt0

0

�
+ 4π

� t

t0
ds Kt−s ∗

�
−∇ −∂s
0 ∇∧

� �
ρs
js

�

=: Rp
i,T [F] + S p

i,T [F].

Define Rp
T := (Rp

i,T )1≤i≤N and S p
T := (S p

i,T )1≤i≤N . We have shown that for all T > 0 and given

boundary fields X± the map S p,X±
T is continuous and has compact range if the boundary fields

decay uniformly at spatial infinity and depend continuously on F. Therefore, this holds also
for zero boundary fields and one yields that S p

T is continuous and Ran S p
T is compact. Now

replace the boundary fields X±i,T in the definition of Rp
T by the true boundary fields of a possible

Wheeler-Feynman solution (4.12p.47) as discussed in the overview Section 4.1p.43, i.e.

X±i,±T := M�i,mi[(qi, pi)](±T,±∞). (4.12)

So S p
T are the fields generated by the charge trajectories in the time interval [−T,T ]. Similarly

Rp
T are the fields generated in the time interval [−∞,−T ]∪ [T,∞] which are morally transported

from ±T to time zero with the help of the free Maxwell time-evolutions. The hope is that
for large T one can get good enough bounds on the accelerations and velocities of the charge
trajectories such that Rp

T becomes a contraction. The hope is based on the facts that, first, the
Maxwell time-evolution forgets its initial fields at large times which gives additional decay, and
second, at least for scattering states one should be able to get bounds on the accelerations and
velocities for large T . Note that we can choose T to be as large as we want which does not
change the needed properties of S p

T .

Another but apparently more difficult way is to try to apply Schäfer’s Fixed Point Theorem:
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Theorem 4.59 (Schäfer’s Fixed Point Theorem [Eva98]). Let B be a Banach space. If the map
S : B → B is continuous and compact (i.e. it maps bounded sequences to precompact ones)
and the set

{F ∈ B | F = λS [F], 0 ≤ λ ≤ 1} (4.82)

is bounded, then S has a fixed point.

Using our results concerning S p,X±
T , one can show that even for T → ∞ it remains continuous

and compact if the ML-SI dynamics comply with the following physically reasonable a priori
bound: For each ball B of initial conditions in Dw(A∞) there is a constant K < ∞ such that

sup
t∈R

sup
ϕ∈B

�
�Pϕt�Hw + �PJ(ϕt)�Hw

�
≤ K

for ϕt := ML[ϕ](t, 0) with ϕ ∈ B. This estimate implies that the acceleration and momenta
of the charge trajectories of ML-SI solutions having initial value in B are bounded by a finite
constant depending only on B. Even if we assume such a bound for the ML-SI dynamics as
given, we need to show the a priori bound (4.82). The case λ = 1 for which we need to get
an a priori bound for possible Wheeler-Feynman solutions is difficult enough. For λ < 1 the
chance of getting appropriate bounds is even smaller because we would be looking at altered
Wheeler-Feynman equations whose fields would not even satisfy the Maxwell constraints. It
seems that the appearance of the parameter λ, which comes from a topological argument of the
Leray-Schauder degree theory, does not have any connection with the resulting dynamics. For
this reason it seems rather difficult to conduct such a program.

2) Continuation of Fixed Points for Finite T . In general it appears that fixed point methods
for T → ∞ rely on uniform bounds of the accelerations and momenta of the charge trajectories.
At the present stage it is not clear how such bounds could be computed – having in mind that
on equal time hypersurfaces we do not even have constants of motion for the ML-SI dynamics.
This situation seems rather bad but it is indeed not surprising as even for ordinary differential
equations one is usually not able to give uniform bounds for all times but only for compact
time intervals. As we proceeded in the proof of existence of solutions for the ML-SI equations
one usually computes local solutions and then concatenates them which yields solutions on
any finite but arbitrary large time interval. For this purpose, bounds being uniform on only
compact time intervals like the ones we have for the ML-SI dynamics are sufficient. The problem
with functional differential equations is that we do not know what the fixed points of S p,X±

T and

S p,�X±
�T

for two times T < �T and boundary field X±, �X± have in common. For example, one
could imagine that in the worst case the maps have not even the same number of fixed points
so that even for arbitrarily small time distances �T − T the fixed points of both maps do not
even have to be close in the Banach space. However, as soon as we have found a Wheeler-
Feynman solutions on a finite interval the situation changes. First, we get conservation laws from
the Wheeler-Feynman action integral by Noether’s theorem, and second, we get consistency
conditions similar to those we found for the toy model in Section 4.2.1p.53 which were sufficient
to construct the whole solution. This approach we regard to be most promising and we shall
focus in our future work on:

• Getting a better velocity estimate than Lemma 4.55p.90 in order to yield Wheeler-Feynman
solutions for Newtonian Cauchy data p ∈ R6N on arbitrary large time intervals without
extra conditions on p and charge densities �i.

• Studying how the conservation laws and consistency conditions for Wheeler-Feynman
trajectories strips can be used for the concatenation of different Wheeler-Feynman solution
on finite intervals.
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• Because the strips of world lines which by the Wheeler-Feynman equations are only con-
nected by space-time points on world lines within time interval [−L, L] are independent on
the boundary fields X±, we have reason to believe that these strips are already the unique
Wheeler-Feynman trajectories corresponding to Newtonian Cauchy data p.
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Appendix for Part I

5.1 Equations of Motion in a Special Reference Frame

In classical electromagnetism a theory about time-like world lines in Minkowski space M :=
(R4, g) for the metric tensor g is given by

(gµν)µ,ν=0,1,2,3 =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



.

In the following we use the standard four-vector notation and Einstein’s summation convention,
e.g. for x, y ∈ M we write

xµyµ =
3�

µ,ν=0

gµνx
νyµ.

A time-like world line is a set {xµ(s) | s ∈ R} ⊂ M parametrized by a differential function
x : R → M such that the corresponding velocity fulfills ẋµ(s)ẋµ(s) > 0 for all s ∈ R. For time
t : R→ R and position q : R→ R3 in a special reference frame we have

xµ(s) =
�

t(s)
q(t(s))

�µ
for all s ∈ R.

and define the velocity by

uµ(s) =
d
ds

xµ(s) =
dt(s)
ds

�
1

v(t(s)) = dq(t)
dt |t=t(s)

�
for all s ∈ R. (5.1)

Since the world line is time-like we know that

0 < uµ(s)uµ(s) =
�
dt(s)
ds

�2 �
1 − v(t(s))2

�

so that dt(s)
ds � 0 and 0 ≤ �v(s)� < 1 for all s ∈ R. A natural choice is

dt(s)
ds
=

1
�

1 − v(t(s))2
=: γ(v(t(s))) (5.2)
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because then uµ(s)uµ(s) = 1 and uµ transforms as a Lorentz four-vector for all s ∈ R. This way
formulas involving terms dependent on uµ will be Lorentz invariant. This also implies that

0 =
d
ds

�
uµ(s)uµ(s)

�
= 2uµ(s)

duµ(s)
ds
, (5.3)

i.e. that the acceleration duµ(s)
ds is always Minkowski-orthogonal to the velocity at s ∈ R. A

simple Lorentz invariant force law for a time-like world line parameterized by x is then given by

d
ds

�
xµ(s)

muµ(s)

�
=

�
uµ(s)

uν(s)Fµν(x(s))

�
(5.4)

where F is an anti-symmetric tensor field onM and m ∈ R \ {0} is the mass of the particle. The
anti-symmetry of F ensures that the world line is time-like because

muµ(s)
duµ

ds
= uµFµν(x(s))uν(s) = −uµFνµ(x(s))uν(s) = uνFνµ(x(s))uµ(s)

holds only if the right-hand side equals zero.

At some places we need to express this relativistic notation by choosing coordinates in a special
reference frame where we use position q and momentum p as in Hamilton mechanics which
depend on the actual time t to describe the world line. The upper equation (5.4) is only the
definition (5.1p.95) with (5.2p.95), i.e.

d
ds

t(s) = γ(v(t(s))) and
d
ds

q(t(s)) = γ(v(t(s)))v(t(s)) (5.5)

for v(t) = dq(t)
dt and all s ∈ R. From the lower equation of (5.4) we yield

m
d
ds
γ(v(t(s))) = uν(s)F0ν(x(s)) and

d
ds

p(t(s)) =
�
uν(s)Fiν(x(s))

�
i=1,2,3

for p(t) = mγ(v(t))v(t). Using the notation v = (v1, v2, v3) the second equation gives

d
dt

p(t) =


F

i0(t, q(t)) −
3�

j=1

v j(t)Fi j(t, q(t))




i=1,2,3

. (5.6)

The anti-symmetry of F yields F00 = 0 and

m
d
dt
γ(v(t)) = −

3�

j=1

v j(t) · F0 j(t, q(t)) =
3�

j=1

v j(t)F j0(t, q(t)).

But (5.6) gives

3�

j=1

v j(t)F j0(t, q(t)) = v(t) ·
dp(t)

dt
+

3�

i, j=1

vi(t)v j(t)Fi j(t, q(t)) = v(t) ·
dp(t)

dt

so that we find

m
d
dt
γ(v(t)) = v(t) ·

dp(t)
dt
.
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However, this is trivially fulfilled because it basically expresses the Minkowski orthogonality
property (5.3) of the four-vector velocity and acceleration:

0 = muµ(s)
d
ds

uµ(s) = γ(v(t))
�

1
v(t)

�

µ

d
ds

�
mγ(v(t))

p(t)

�µ �����
t=t(s)

= γ2(v(t))
�
m

d
dt
γ(v(t)) − v(t) ·

dp(t)
dt

� �����
t=t(s)

as γ2(v) � 0 for all v ∈ R3. Collecting the non-trivial equations (5.6) and (5.5) we can rewrite
(5.4) in a special reference frame by

d
dt

�
q(t)
p(t)

�
=




v(t) = p(t)
√

m2+p2(t)�
Fi0(t, q(t)) −

�3
j=1 v j(t)Fi j(t, q(t))

�
i=1,2,3


 .

5.2 Missing Proofs and Computations for Section 3.2

Proof of Theorem 3.12p.25. Proof of

Theorem

3.12p.25

Let f ∈ L2
w, then by definition

√
wf ∈ L2. Furthermore, C∞c is dense

in L2. Therefore, one finds a sequence (gn)n∈N in C∞c and, hence, a sequence fn := gn√
w , n ∈ N, in

C∞c ∩L2
w, since w ∈ C∞(R3,R+ \{0}) by definition ofW, such that �f−fn�L2

w
= �
√

wf−gn�L2 → 0
for n→ ∞. �

Computation 5.1. Computation 5.1Let (ϕn,(·))n∈N be a Cauchy sequence in XT,n, then ∀ � > 0 ∃ N ∈ N such
that �A jϕk,t − A jϕl,t�B ≤ �ϕk − ϕl�XT,n < � for all k, l > N, t ∈ [−T,T ], j ≤ n. Hence, each
(A jϕn,t)n∈N is a Cauchy sequence in B which converges to some ϕ j

t ∈ B. Since A is closed, we
know ϕ j

t ∈ D(An− j) and ϕ j
t = A jϕ0

t . Moreover, the convergence is uniform on [−T,T ]:

�ϕk − ϕ
0
�XT,n = sup

t∈[−T,T ]

n�

j=0

�A j(ϕk,t − ϕ
0
t )�B = sup

t∈[−T,T ]
lim
l→∞

n�

j=0

�A j(ϕk,t − ϕl,t)�B

≤ sup
t∈[−T,T ]

sup
l>N

n�

j=0

�A j(ϕk,t − ϕl,t)�B = sup
l>N
�ϕk,(·) − ϕl,(·)�XT,n < �

We still need to show that t �→ A jϕ0
t is continuous on (−T,T ). Let � > 0 and pick a k ∈ N such

that �A jϕk,t − A jϕ0
t �B < �/3. The mappings t �→ A jϕk,t are continuous on (−T,T ), so for each

j ≤ n, t ∈ (−T,T ) we find a δ > 0 such that |t − s| < δ implies �A jϕk,t − A jϕk,s�B < �/3. For
|t − s| < δ we find

�A jϕ0
t − A jϕ0

s�B ≤ �A
jϕ0

t − A jϕk,t�B + �A jϕk,t − A jϕs,k�B + �A jϕ0
s,k − A jϕ0

s�B < �

which proves the continuity of t �→ A jϕ0
t .

5.3 Missing Computation for Section 4.3.1

Computation 5.2. For ∓t > 0 and f ∈ C∞(R3)

K±t ∗ f =
�

d3y K±t (y) f (· − y) =
�
∞

0
dr
�

∂Br(0)

dσ(y)
δ(r ± t)

4πr
f (· − y)

= ∓t
�

∂B∓t(0)

dσ(y) f (· − y)
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is in C∞(R3) as a function of x and is continuous in t except at t = 0. For ±t > 0 this expression
is zero by definition. Next we compute the first derivative with respect to time ∓t > 0.

∂tK±t ∗ f = ∓
�

∂B∓t(0)

dσ(y) f (· − y) ∓ t∂t

�

∂B∓t(0)

dσ(y) f (· − y)

= ∓

�

∂B∓t(0)

dσ(y) f (· − y) ∓
t2

3

�

B∓t(0)

d3y � f (· − y)

As before we have used the Gauß-Green theorem.

∂t

�

∂B∓t(0)

d3y f (· − y) = ∂t

�

∂B1(0)

dσ(y) f (· − (∓t)y) =
�

∂B1(0)

dσ(y) (±y) · ∇ f (· − (∓t)y)

= −
1

4πt2

�

∂B∓t(0)

dσ(y)
y

t
· ∇ f (· − y) = ∓

1
4πt2

�

∂B∓t(0)

dσ(y)
y

∓t
· ∇y f (· − y)

= ∓
1

4πt2

�

B∓t(0)

d3y ∇y · ∇y f (· − y) =
t
3

�

B∓t(0)

d3y � f (· − y)

The second derivative is then given by

∂2
t K±t ∗ f = ∂t



∓

�

∂B∓t(0)

dσ(y) f (· − y) ∓
t2

3

�

B∓t(0)

d3y � f (· − y)




= ∓
t
3

�

B∓t(0)

d3y � f (· − y) + ∂t

�
1

4πt

� �

B∓t(0)

d3y � f (· − y)

+
1

4πt
∂t

�
∓t

0
dr
�

∂Br(0)

dσ(y) � f (· − y) = ∓t
�

∂B∓t(0)

dσ(y) � f (· − y)

= K±t ∗ � f = �K±t ∗ f

Computation 5.3. Here we compute the differentiation which was not performed in Theorem
4.18p.66, Equation (4.51p.68). At first we compute the derivative of t± defined in (4.47p.66). Recall
that all entities with a superscript ± depend on t±. For any k = 1, 2, 3

∂zk t
± = ±∂zk�x − z − q

±
�.

Now

∂zk�x − z − q
±
� =

x j − z j − q±j
�x − z − q±�

(−δk j − ∂zk q
±

j ) = −n±k − n±j ∂zk q
±

j

where (δi j)1≤i, j≤3 is the Kronecker delta, i.e. the identity on the space of R3x3 matrices, and we
have used Einstein’s summation convention (we sum over double indices). On the other hand
∂zk q± = v± ∂zk t±, such that we can plug all of these equations together and find

∂zk t
± =

∓n±k
1 ± n± · v±

and in return ∂zk

1
�x − z − q±�

=
n±k

�x − z − q±�2(1 ± n± · v±)
.

With these formulas at hand it is straightforward to compute the rest. Let us drop the superscript
± in order to make the following formulas more readable. We find

∂zk

1
1 ± n · v

=
±vk + n · v vk − v

2 nk ∓ n · v nk

�x − z − q�(1 ± n · v)3 +
n · a nk

(1 ± n · v)3 .
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Let us denote the three integrands on the right-hand side of Equation (4.51p.68) by 30 , 31 and
32 . Plugging in the above equations we find

30 =
n

�x − z − q�2(1 ± n · v)2 +
±v + n · v v − v

2
n ∓ n · v n

�x − z − q�2(1 ± n · v)3 +
n · a n

�x − z − q�(1 ± n · v)3 ,

31 =
−n · v v

�x − z − q�2(1 ± n · v)2 +
∓v

2
v ± (n · v)2

v

�x − z − q�2(1 ± n · v)3

+
−n · a n · v v

�x − z − q�(1 ± n · v)3 +
±n · a v ± n · v a

�x − z − q�(1 ± n · v)2

and

32 =
−a

�x − z − q�(1 ± n · v)
.

These three terms add up to the right-hand side of (4.45p.66). Furthermore, let us denote the
integrand of the right-hand side of Equation (4.52p.68) by 33 , then

33 =
−n ∧ v

�x − z − q�2(1 ± n · v)2 +
v

2
n ∧ v ± n · v n ∧ v

�x − z − q�2(1 ± n · v)3

+
−n · a n ∧ v

�x − z − q�(1 ± n · v)3 +
±n ∧ a

�x − z − q�(1 ± n · v)2

which after appropriate insertion of factors of the form n ∧ n = 0 gives the right-hand side of
(4.46p.66).

Computation 5.4. We only consider the case for � ∈ C∞c . Substitution of � by Dα� ∈ C∞c for any
multi-index α ∈ N3 yields the desired estimates for the general case for which only the constants
C25 change according to Equation (5.8). It suffices to show that for n ≤ 2 there exist positive
constants C33

(n) < ∞ such that
������

�
d3z

�(z)
�x − z − qt�

n

������ ≤
C33

(n)

1 + �x − qt�
n . (5.7)

Since � ∈ C∞c (R3,R) there exists a R < ∞ such that supp � ⊆ BR(0). So for some � > 0 we have

������

�
d3z

�(z)
�x − z − qt�

n

������ ≤ sup
y∈R3
|�(y)|




�
d3y

Bc
� (0)∩BR(x−qt)

1
�y�n
+

�
d3y

B� (0)∩BR(x−qt)

1
�y�n



=: 34 + 35

which involved a substitution in the integration variable, and we have used the notation Bc
�(0) :=

R3 \ B�(0). For x ∈ Bc
R+�(qt) the term 35 is zero and

34 ≤
sup

y∈R3 |�(y)| 4
3πR

3

(�x − qt� − R)n =:
C34

(�x − qt� − R)n . (5.8)

On the other hand for x ∈ BR+�(qt) and � < R we find

34 ≤
C34

�n
and 35 ≤ 4π

� �

0
dr r2−n =: C35

(n).

Plugging these estimates in the left-hand side of (5.7) we find
������

�
d3z

�(z)
�x − z − qt�

n

������ ≤



C34
�n +C36

(n) for x ∈ BR+�(qt)
C34

(�x−qt�−R)n otherwise.
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Clearly one finds an appropriate constant C37
(n) < ∞ such that

������

�
d3z

�(z)
�x − z − qt�

n

������ ≤
C37

(n)

1 + �x − qt�
n .

This together with (4.56p.70) gives C25 := 2(C37
(n=2) +C37

(n=1)).

5.4 Missing Lemmas and Proofs for Section 4.4.2

Lemma 5.5. Let A be the operator defined in Definitions 3.3p.19. Furthermore, for some n ≥ 1
let t �→ Akϕt be a continuous map R→ Dw(An−k) ⊂ Hw for 0 ≤ k ≤ n. Then it is true that:

Ak
� t

0
ds ϕs =

� t

0
ds Akϕs and Wr

� t

0
ds ϕs =

� t

0
ds Wrϕs

for all t, r ∈ R.

Proof. First, we show the equality on the left-hand side of the claim. Since the integrands are
continuous, we can define the integrals asHw limits N → ∞ of the Riemann sums for all t ∈ R

σk
N =

t
N

N�

j=1

Akϕ t
N j

for k ≤ n. By Lemma 3.23p.30 the operator A is closed on Dw(A) so that Ak is closed on Dw(Ak).
Since (σk

N)N∈N converge to, say, σk inHw, we get σ0 ∈ Dw(Ak) and Akσ0 = σk which is exactly
the equality on the left-hand side of the claim.

Second, we show the equality on the right-hand side. Therefore, for any r, t ∈ R we get

d
dr

W−r

� t

0
ds Wrϕs = −AW−r

� t

0
ds Wrϕs +W−r

� t

0
ds AWrϕs = 0

by the equality on the left-hand side of the claim. Hence,

W−r

� t

0
ds Wrϕs =

� t

0
ds ϕs or Wr

� t

0
ds ϕs =

� t

0
ds Wrϕs.

This proves the right-hand side of the claim and concludes the proof. �

Corollary 5.6. Let A and J be the operators defined in Definition 4.33p.73, i.e. the projection
of A and J to field space. Furthermore, for some n ≥ 1 let t �→ A

kFt be a continuous map
R→ Dw(An−k) ⊂ Fw for 0 ≤ k ≤ n. Then it is also true that:

A
k
� t

0
ds Fs =

� t

0
ds A

kFs and Wr

� t

0
ds Fs =

� t

0
ds WrFs

for all t, r ∈ R.

Proof. By Definition 3.3p.19 we have A = (0,A) on Dw(A) so that Wt = (idP,Wt) on Dw(A) for
all t ∈ R. Apply Lemma 5.5 and t �→ (0, Ft) and project to field space Fw to yield the claim. �
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Proof of Lemma 4.50p.83. Since by (i) the sequence (Fn)n∈N is uniformly bounded in the Hilbert
space H�w the Banach-Alaoglu Theorem states that it has a weakly convergent subsequence in
H�w which we denote by (Gn)n∈N. Let the convergence point be denoted by F ∈ H�w. We have to
show that under the assumptions this subsequence is also strongly convergent in L2

w. The idea is
the following: Far away from the origin (ii) makes sure that the formation of spikes is suppressed
while oscillations can be controlled by the Laplace which behave nicely by (i). So let � > 0 and
divide the integration domain for τ > 0

�F − Gn�L2
w
≤ �F − Gn�L2

w(Bτ(0)) + �F − Gn�L2
w(Bc

τ(0)).

Now by assumption (ii) we know for τ large enough it holds for all n ∈ N that

�F − Gn�L2
w(Bc

τ(0)) < �.

By Lemma 3.15p.26 the norm on L2
w(Bτ(0)) is equivalent to the one on L2(Bτ(0)) so that it suffices

to show that there is an N ∈ N such that

�F − Gn�L2(Bτ(0)) < � (5.9)

for all n > N. Before we do this let us introduce a tool to control possible oscillations. We define
for any H ∈ L1

loc the heat kernel

(e�t
H)(x) = ht ∗ G :=

1

(4πt)
3
2

�
d3y exp

�
−
�x − y�2

4t

�
H(y).

Denoting the Fourier transformation�· and using Plancherel’s Theorem we find

�(1 − e�t)H�2L2 = �(1 −�ht)�H�2L2
w
=

�
d3k ��H(k)�2

�
1 − exp(−k

2t)
�2

≤ |t| �k2�H�2L2
w
= |t| ���H�2L2

w
.

(5.10)

Hence, we expand by triangle inequality

�F − Gn�L2(Bτ(0)) ≤ �(1 − e�t)Gn�L2(Bτ(0)) + �(1 − e�t)F�L2(Bτ(0)) + �(1 − e�t)(F − Gn)�L2(Bτ(0))

=: 36 + 37 + 38 .

We start with the first term. Using the estimate (5.10) for small enough t > 0 yields

36 ≤
√

t ��Gn�L2(Bτ(0)) <
�

3
because (�Gn)n∈N is uniformly bounded in L2

w by (i). The same procedure for the second term
yield

36 ≤
√

t ��Gn�L2(Bτ(0)) ≤
√

t lim inf
n→∞

��Gn�L2(Bτ(0)) <
�

3
where we use the lower semi-continuity of the norm and again (i). By weak convergence in L2

w
we get the pointwise convergence for all x ∈ R3 that

���� Bτ(0)(x)
�
e�t(F − Gn)

�
(x)
����
R3
−−−−→
n→∞

0.

Furthermore, by Schwarz’s inequality we get the estimate
���� Bτ(0)(x)

�
e�t

Gn
�

(x)
����
R3
≤ Bτ(0)�ht�L2(Bτ(0))�Gn�L2(Bτ(0)).

Again the right-hand side is uniformly bounded by (i). Hence, by dominated convergence
(e�t

Gn)n∈N converges in L2(Bτ(0)) to e�t
F. Therefore, for an N ∈ N large enough we have

39 = �(1 − e�t)(F − Gn)�L2(Bτ(0)) ≤
�

3
.

The estimate for the three terms prove claim (5.9). Thus, we conclude that (Gn)n∈N is a strongly
convergent subsequence of (Fn)n∈N in L2

w. �



102 5.4. Missing Lemmas and Proofs for Section 4.4.2



Part II

Pair Creation





Chapter 6

Absorber Subsystems and Effective
Fields

Let us consider a universe of N charges and N fields as described in Chapter 2p.7 which are
ruled by the ML-SI equations for initial conditions, i.e. position and momenta of the charges
and initial fields Fi(x)|x0=0 at time x0 = 0 such that the absorber assumption (2.9p.9) holds. As
explained, we may borrow the argument of Wheeler and Feynman to deduce an effective force
(2.12p.10) for the ith charge, i.e.

miz̈
µ
i (τ) = ei

�

j�i

Fµνj (zi(τ))żi,ν(τ) = ei



�

j�i

�
F j,0 + F j,−

�
+

1
2
�
Fi,− − Fi,+

�



µν

(zi(τ)) żi,ν(τ).

(2.12)

Now Subsystems of

the omnipresent

absorber

medium

, the computation of the world line of the ith charge would require the knowledge of the
initial conditions of the universe. Keep in mind that the absorber medium is made out of a large
number of N charges – as we have argued we understand the absorber assumption to be arising
from a thermodynamical argument. Furthermore, one probably may not allow for big regions
of charge-free space within the absorber medium. In this sense, the absorber medium must
be omnipresent and it becomes difficult to talk about subsystems of only a few charges in the
universe as they cannot be completely isolated in general from the rest of the absorber medium.
This raises the question how we could possibly treat subsystems (e.g. an charge in the Millikan
experiment) of the universe with a small amount of charges with respect to N.

Up to now we cannot deduce a satisfactory answer by a physical argument using first principles,
but based on empiricism and induction we are able to explain the mechanism which leads to
an effective description of subsystems. The first observation is that despite the omnipresent
absorber medium there are vast regions of space in which there are apparently neither charges
nor free fields. In order to explain this observation we assume that the absorber medium is close
to an equilibrium state which is defined through the condition that for every 1 ≤ i ≤ N Definition of an

equilibrium state�

j�i

�
F j,0 + F j,−

�
≈ 0 (6.1)

near the ith world line. Again “≈” stands for equality in the thermodynamic limit N → ∞ which
for simplicity we replace by “=”. It is important to note that condition (6.1) would not render
any implications on the absorber assumption (2.9p.9) which in contrast does not need to hold near
the ith world line but only in some distance to all the N charges. Given such an equilibrium state
one charge, e.g. the electron in the receptor in one of our eyes, does not “see” any other charges
apart from the radiation reaction term. The Small deviations

from equilibrium

and the

equilibrium

assumption

small portions of charged matter and free fields we
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actually do “see” in our universe can be considered a small deviation from this equilibrium state
(based on cosmologic models one approximates the amount of matter we can see to be only
4% of all matter in our universe). So it seems natural to rather not describe the motion of the
N charges and N fields of the whole universe but to describe only the motion of these small
portions of charged matter and free fields which we deviate from this equilibrium state while we
neglect the rest. We shall call the assumption that our universe is close to an equilibrium state
defined by (6.1) the equilibrium assumption.

InEffective

description of

subsystems

order to become more concrete let us consider an experiment involving n � N charges that
deviated from equilibrium which is placed inside a Faraday cage (or is done under conditions like
in the Millikan experiment) – imagine any typical experiment in which the n charges constitute
the apparatuses like capacitors, solenoids, wires, etc. as well as the charges to be examined
(loosely speaking any charge we can “see”). Let us give these n charges labels i ∈ I for some
index set I ⊂ {1, . . . ,N} with |I| = n. Regarding the n charges as a small deviation from the
equilibrium state we may introduce an effective field

Feff
i :=

�

j�i

�
F j,0 + F j,−

�
=
�

j∈I\{i}

�
F j,0 + F j,−

�
(6.2)

so that in order to compute the world line of the charge i ∈ I by

miz̈
µ
i (τ) = ei

�

j�i

Fµνj (zi(τ))żi,ν(τ) = ei

�
Feff

i +
1
2
�
Fi,− − Fi,+

�
�µν

(zi(τ)) żi,ν(τ)

we only need to account for the I \ {i} other charges. By the assumption that only the n charges
deviate from an equilibrium state, the portions of the rest of the absorber medium, which happen
to be also in the interior of the Faraday cage, can also be neglected. In this way the equilibrium
assumption (6.1p.105) gives rise to effective equations of motion for the n degrees of freedom. A
justification of such an effective field hypothesis and its regime of validity, however, must at
some point be given by statistical mechanics.

InCreation

processes as

result of the

effective

description

order for such an effective description to hold over bigger space-time regions we have to allow
the effective field to change in time, not only because the fields on the right-hand side of (6.2)
change in time but also because the rest of the absorber medium changes in time. To understand
this better let us consider a more artificial example: Let Λi denote the space-time neighborhood
of the ith world line during some time interval [t0, t1]. We imagine a configuration of world lines
of the N charges such that the effective field fulfills the equilibrium assumption

Feff
i (x) =

�

j�i

�
F j,0 + F j,−

�
(x) = 0, for x ∈ Λi. (6.3)

There the ith charge effectively obeys the equation

miz̈
µ
i (τ) = ei

1
2
�
Fi,− − Fi,+

�µν (zi(τ)) żi,ν(τ) =
2
3

e2
i

�...z µi (τ)żνi (τ) −
...z νi (τ)żµi (τ)

�
żi,ν(τ)

in space-time region Λi which is known as the Lorentz-Dirac equation. So apart from the radia-
tion damping term, the ith charge as a spectator does not “see” any other charges when passing
through the space-time region Λi. Let furthermore �Λi denote the space-time neighborhood of
the ith world line during the later time interval [t1, t2], and imagine further that only one world
line τ �→ zk(τ) of the rest of the absorber medium deviates slightly from the world line that
would render (6.3) to hold also in �Λi. Hence, the kth world line induces a small deviation from
the equilibrium state; see Figure 6.1p.107. Instead of falling back to the ML-SI equations of N
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Figure 6.1: World lines of charges in the discussed example. At t0 the charges are in an equilib-
rium state. On the time interval [t1, t2] some external force drives the kth world line away from
its equilibrium world line�zk (dashed line). The ith charge does only “see” the disturbance (black
dashed as well as solid line) since the net forces from the gray world lines vanish (where we
assume that the disturbance has a negligible effect on the other world lines). After time t2 the
kth charge relaxes back to its equilibrium position.

charges and fields and forgetting about the equilibrium assumption, it is sensible to introduce
the retarded field �Fk,− of an imaginary world line τ �→�zk which would satisfy the condition

�

j�i, j�k

�
F j,0 + F j,−

�
(x) + �Fk,−(x) = 0, for x ∈ �Λi.

By introducing this imaginary field, the effective field hypothesis then reads

Feff
i (x) =

�

j�i

�
F j,0 + F j,−

�
(x) = Fk,0 + Fk,− − �Fk,−, for x ∈ �Λi (6.4)

in which case the ith charge effectively obeys

miz̈
µ
i (τ) = ei

�

j�i

Fµνj (zi(τ))żi,ν(τ) = ei

�
Fk,0 + Fk,− − �Fk,− +

1
2
�
Fi,− − Fi,+

�
�µν

(zi(τ)) żi,ν(τ)

in the space-time region �Λi. The three new fields are the free field of the kth charge, the retarded
field of the kth charge and another one due to an imaginary charge with opposite sign on the
world line τ �→ �zk(τ). Therefore, a good hypothesis for the effective field valid in both space-
time regions Λi ∪ �Λi has to allow for creation (and vice versa the annihilation) of fields to agree
with the actual value of the sum of retarded fields

�
j�i
�
F j,0 + F j,−

�
appearing in the fundamental

ML-SI equations (2.12p.105). Note that the left-hand side of (6.4) is a field which has the N world
lines as charge sources where the right-hand side has only the imaginary world-line τ �→ �zk(τ)
as a charge source. This, however, implies no contradiction because the equality with the right-
hand side holds only in a neighborhood of the ith world line which is distant to the j � i sources.

Such an creation or annihilation process is an artefact of the effective description of the many
degrees of freedom through a lot fewer dynamical degrees of freedom by means of the equi-
librium assumption. The fundamental theory, however, is always about N charges with their N
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fields obeying the ML-SI equations. Nothing is ever created or annihilated, only the effective
description was adapted. Moreover, the described creation process is a subjective perception of
the ith charge only (therefore Feff

i depends on the index i). Let us summarize:

1. A universe governed by the ML-SI equations which is close to an equilibrium state in
the sense of (6.1p.105) allows for the introduction of an effective external field in order to
describe subsystems of the universe.

2. Effectively only the small deviations from an equilibrium state (6.1p.105) need to be de-
scribed while the rest of the absorber medium can be neglected.

3. Under certain circumstances such an effective description of the absorber medium is
forced to involve creation, respectively, annihilation processes.

ARelaxation to an

equilibrium state

and the quantum

analogue

small disturbance as introduced by means of the deviation of the kth world line in the above
classical example from its equilibrium position would be expected to quickly relax back to an
equilibrium position. Therefore, in order to observe such a creation process one would need
to separate the kth charge from the world line τ �→ �zk(τ) significantly by external forces. The
relaxation back to an equilibrium state is more complicated in quantum theory. As an analogue
to the classical example, let us consider the quantum theoretic description of N electrons which
obey the N particle Dirac time-evolution. As it is well-known, the spectrum of the free one-
particle Dirac operator H0 = −iα ·∇+βm is (−∞,−m]∪[+m,+∞), and thus, the two components
of the spectrum give rise to a splitting of the one-particle Hilbert spaceH = L2(R3,C4), i.e. the
space of square integrable C4 valued functions on R3, into two spectral subspacesH = H−⊕H+.
The absorber medium of N electrons is then represented by a wave function in the antisymmetric
N-fold tensor product ofH .

One point needs to be clarified before we continue: For a finite number of electrons one expects
dynamical instabilities of the electrons when coupling them to an additional dynamical degree of
freedom such as the electrodynamic field. Instabilities may arise since by continuous emission
of radiation the finitely many electrons could cascade deeper and deeper to more negative energy
energy states which are unoccupied. However, for a direct electron-electron interaction, e.g. a
Coulomb pair potential, instable dynamics are not to be expected. This is also the case for
the Wheeler-Feynman-like action-at-a-distance we have in mind and which is later sketched in
Chapter 8p.159.

Although we do not yet have a fully interacting quantum theory at hand, energetic consider-
ations suggest to assume that initially at time t0 an equilibrium state, i.e. a state for which
the net interaction between the N electrons vanishes (cf. in the classical example (6.3p.106)), is
described by a N particle wave function built from tensor components inH−. Whenever we de-
viate only slightly from such an equilibrium state we may as a first approximation forget about
the electron-electron interactions. In order to model a disturbance which deviates, for exam-
ple, one electron out of its equilibrium position we introduce an external four-vector potential
A = (Aµ)µ=0,1,2,3 = (A0,−�A) being non-zero only during the time interval [t1, t2]; compare the
classical example above. Owing to the Dirac time-evolution subject to this external potential,
transitions of tensor components of the N electron wave function between the negative and the
positive spectral subspace are allowed only if the external potential is non-zero. Let us assume
that the external potential causes such a transition and that when it is switched off at time t2 a ten-
sor component of the N particle wave function is still inH+. Since the free Dirac time-evolution
forbids further transitions between the spectral subspaces, this tensor component will remain in
H+ forever, thus, leaving a defect (or hole) in the initial equilibrium state of N electrons. As in
the classical example, it is now convenient instead of falling back to describing all N electrons
to only describe the small deviation with respect to the initial equilibrium state; analogous to
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(6.4p.107). In fact, the equilibrium assumption, i.e. that the deviations from equilibrium are small,
is the only means to justify the negligence of electron-electron interaction (after all we intend to
describe an electron gas!). Such a description then naturally leads to pair creation and vice versa
to pair annihilation by the same mechanism as explained in the classical example. If we had
also introduced an interaction between the electrons analogous to the classical ML-SI equations,
a decay to the negative spectral subspace would then again be possible, however, in comparison
to the classical case the relaxation back to the initial equilibrium state is more complex. By the
Pauli exclusion principle a transition from one tensor component in H+ of the N particle wave
function back to H− only occurs if a compatible state in H− is unoccupied, and this becomes
more improbable the larger N is. Finally, as in the classical example, it is important to stress that
the number of pairs present at some time t is in general a subjective impression of the spectator
charge and has no meaning as an absolute value. Only under the assumption that the state at
time t0 as well as the state at time t2 (when the external field is again zero) are small deviations
of the same equilibrium state, the number of pairs with respect to this equilibrium state gets an
objective meaning. Then any spectator charge of the rest of the absorber medium would agree
on the same amount of pairs.

To our understanding this effective description was Dirac original idea:

Admettons que dans l’Univers tel que nous le connaissons, les états d’energie
négative soient presque tous occupés par des électrons, et que la distribution ainsi
obtenue ne soit pas accessible à notre observation à cause de son uniformité dans
toute l’etendue de l’espace. Dans ces conditions, tout état d’energie négative non
occupé représentant une rupture de cette uniformité, doit se révévler à observation
comme une sorte de lacune. Il es possible d’admettre que ces lacunes constituent
les positrons.

P.A.M. Dirac, Théorie du Positron (1934), in Selected Papers on Quantum Electrodynamics, Ed. J.
Schwinger, Dover Pub. (1958)

Since we have not found a professional translation, we try to give an unprofessional one to
the best of our knowledge: “Let us assume that in the universe as we know it the negative
energy states are almost all occupied with electrons and that the corresponding distribution [of
the electrons] is not accessible through our observation because of its uniformity in the vastness
of space. Under such conditions the whole non-occupied negative energy state representing a
disturbance of this uniformity reveals itself as a kind of hole to our observation. It is possible to
assume that these holes constitute the positrons.”

We modeled the uniformness in the classical example from above by the equilibrium assumption
(6.3p.106) while in the quantum analogue we simply omitted any interaction between the electrons.
Furthermore, as the net interaction is zero the state of the absorber medium of the N electrons
with their fields are physically inaccessible to our observation. In his book he writes earlier:

The exclusion principle will operate to prevent a positive-energy electron ordinarily
from making transitions to states of negative energy. It will be possible, however,
for such an electron to drop into an unoccupied state of negative energy. In this case
we should have an electron and positron disappearing simultaneously, their energy
being emitted in the form of radiation. The converse process would consist in the
creation of an electron and a positron from electromagnetic radiation.

P.A.M. Dirac , Theory of the positron, in: The Principles of Quantum Mechanics, Oxford (1930)
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By this reasoning the relaxation back to initial equilibrium is more complex than in the classical
case. In fact, Dirac’s theory predicted the existence and properties of positrons, pair creation and
pair annihilation, which were verified by Anderson [And33] a short time later. We summarize:

1. Under the equilibrium assumption the effective description gives rise to creation and an-
nihilation processes in classical as well as quantum theory.

2. The relaxation back to equilibrium in quantum theory is more complex than in the classical
analogue.

3. Only under the equilibrium assumption the quantum theoretic description of the Dirac sea
which neglects the electron-electron interaction makes sense as an approximation.

AsOverview of the

mathematical

results

we have addressed the modeling of the absorber medium as well as the need of an effective
description of the universe of N charges and N fields close to an equilibrium state indicates that
we need to regard a thermodynamic limit N → ∞ as it is common in statistical mechanics.
This way we also make sure that a state with finitely many pairs is really a small deviation from
equilibrium as there are always infinitely many electrons at their equilibrium positions. For
finite N this border could not be drawn so sharply. Such mathematical idealizations are typical
for thermodynamic limits in statistical mechanics, however, they should always be read as: N
extremely large but finite. This is where our mathematical work starts in Chapter 7p.111: The
main goals are the construction of an absorber medium consisting of infinitely many electrons,
the implementation of a quantum theoretic time-evolution subject to an external four-vector
potential and the computation of the induced pair creation rates. The construction of the absorber
medium is presented in Section 7.2p.116 together with the mathematical framework needed to
construct a time-evolution. We give the time-evolution in Section 7.3p.130. This part ends with
the computation of pair-creation rates in Section 7.4p.151 and with a conclusion and outlook of the
next important open questions concerning this topic.



Chapter 7

Time-Evolution of Dirac Seas in an
External Field

7.1 Chapter Overview and Results

Though Terminology:

dirac sea =
absorber

medium,

equilibrium state

= vacuum state

we have in mind an effective description of the absorber medium by means of the dis-
cussed equilibrium assumption for N → ∞ many electrons, we shall use the common terminol-
ogy and write instead of the absorber medium: Dirac sea, and furthermore, refer to a Dirac sea
in equilibrium, defined by the condition that all net interactions between the electrons vanish as
described in the introductory chapter 6p.105, as the vacuum state or vacuum vector. We want to
emphasize from the very beginning that the equilibrium condition does not single out one partic-
ular vacuum state. Even in the classical analogue many different configurations of charges and
fields satisfy (6.1p.105). Furthermore, as Dirac points out, by the vanishing of the net interactions
of the electrons due to their uniform distribution the vacuum is inaccessible to our observation.
Hence, we have to formulate the time-evolution of the Dirac sea without singling out a specific
vacuum vector. This idea stands in contrast to standard quantum field theory.

State of the Art and the Problem. In the language of quantum field theory the Dirac sea is
represented in the so-called second quantization procedure by the “vacuum vector” on which two
types of creation operators act. Those creating electrons and those creating positrons. This way
one implements Dirac’s idea that one only considers the “net description of particles: electrons
and positrons” and neglects what is going on “deep down in the sea”, assuming that nothing
physically relevant happens in there. This is close to the idea of the introductory Chapter 6p.105

that we should effectively only describe small deviations away from the equilibrium states which
we shall discuss later in detail. The Hilbert space for this infinitely many particle system is the
Fock space built by successive applications of creation operators on the vacuum.

In the case of zero external fields based on energetic considerations we argued that the vacuum
state should be formed by a wedge product of one-particle wave functions in H−. However, in
the presence of an external field the choice of H− is not obvious at all. Furthermore, Dirac’s
invention and likewise quantum field theory are plagued by a serious problem: As soon as an
electromagnetic field A = (Aµ)µ=0,1,2,3 = (A0,−�A) enters the Dirac equation, i.e. as soon as
“interaction is turned on”, one has generically transitions of negative energy wave functions to
positive energy wave functions, i.e. pair creation and pair annihilation – for a mathematical
proof of pair creation in the adiabatic regime see [PD08b, PD08a]. While pair creation and
annihilation is an observed phenomenon, it nevertheless has mathematically a devastating side
effect. Figuratively speaking, the negative energy states are “rotated” by the external field and



112 7.1. Chapter Overview and Results

thus develop components in the positive energy subspace. Thus, the Dirac sea containing in-
finitely many particles generically produces under the influence of an external field infinitely
many transitions between H− and H+ as soon as the field acts. The resulting state does not
anymore belong to the Fock space and there is no reason to hope that in general a lift of the
one-particle Dirac time-evolution to this Fock space exists.

InShale-

Stinespring

condition

explained

the mathematical language this problem is rephrased as follows. The one-particle Dirac time
evolution UA(t1, t0) : L2(R3,C4) → L2(R3,C4) from time t0 to time t1 induced by the Dirac
hamiltonian HA(t) = −iα·(∇−�A(t))+βm+A(t)0 for an external field A can be lifted (however, non
uniquely) if and only if the two non-diagonal parts UA(t1, t0)±∓ := P±UA(t1, t0)P∓ are Hilbert-
Schmidt operators (the elementary charge e is included in the four-vector field A). Here P± are
the spectral projectors to the spectral subspaces H±, and the Hilbert-Schmidt property means
that UA(t1, t0)±∓ has a kernel which is square integrable.

This condition can be intuitively understood as follows: Let us regard the time-evolution
UA(t1, t0) as a map fromH− ⊕H+ toH− ⊕H+ and write it in matrix form:

UA(t1, t0) =
�
UA
++(t1, t0) UA

+−(t1, t0)
UA
−+(t1, t0) UA

−−(t1, t0)

�
. (7.1)

The non-diagonal terms describe pair creation and annihilation. In leading order, neglecting
multiple pair creation, the squared Hilbert-Schmidt norm

�UA
+−(t1, t0)�2I2

=
�

n∈N

�UA
+−(t1, t0)ϕn�

2
H

(7.2)

may be interpreted as the probability to create a pair from the Dirac sea; here (ϕn)n∈N denotes
any orthonormal basis ofH−.

The above condition appears in quite general settings as Shale-Stinespring condition [SS65]; see
also [PS70]. It is fulfilled if and only if the magnetic part �A of the four-vector field A vanishes
so that generically the Shale-Stinespring condition does not hold and second quantization of
the Dirac equation following the usual quantization rules is impossible [Rui77, Rui77]. The
catastrophe of infinitely many particle creations happens as long as the field is acting. The
situation is better in scattering theory. Consider a scattering situation where the external field
has compact space and time support. Generically, incoming wave functions of the sea are rotated
out of the sea at intermediate times. However, “most” of them are essentially rotated back into
the sea again when the field vanishes. In other words the vacuum is “more or less” restored, so
that one expects “ingoing” states in Fock space to be transformed to “outgoing” states in Fock
space. From this, one computes transition amplitudes between “in” and “out” states, describing
e.g. pair creation. The creation of infinitely many pairs during the action of the field is often
referred to as creation of so-called “virtual pairs”. The non-diagonal of the scattering matrix
P±S AP∓ consists of Hilbert-Schmidt operators and therefore, by Shale-Stinespring, can be lifted
to Fock space [Bel75, Bel76] – however with the caveat that the lifting is only unique up to a
phase.

In physics one computes finite transition amplitudes and expectation values by a way of formal
perturbation series and renormalization. Within these series one rules out divergent terms com-
ing from the virtual pair creation by physical principles like continuity equation, Lorentz and
gauge invariance and in the end one needs in addition to renormalize the charge of the particles
[Fey49, Sch51]; see [Dys06] for an extraordinarily nice and comprehensive exposition. In the
present paper we arrive at finite transition amplitudes induced by UA without renormalization
which in our setting is replaced by an operation from the right introduced in equation (7.7p.115).

The implementation of a second quantized time-evolution in the presence of an external field
between time-varying Fock spaces has been envisaged the first time in [FS79] and one version
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was given concretely in [LM96]. For three reasons we need to reconsider the construction of the
time-evolution again:

1. We want to give a construction of the absorber medium, i.e. of the Dirac sea of infinitely
many electrons, which is obscured in the standard Fock space construction or the abstract
representation of the commutator algebras.

2. This explicit construction of the absorber medium will provide a simple picture in which
the implementation of the time-evolution can be understood, and furthermore, means to
naturally circumvent the addressed problem of the so-called virtual pair creation and its
ill-defined renormalization program.

3. This construction provides a convenient way to identify the arbitrariness of the corre-
sponding implementation of the time-evolution which has not been studied in [LM96] or
anywhere else.

Heuristics. Let us give a heuristic description of how we construct the second quantized time-
evolution of the Dirac Hamiltonian in the presence of a time-dependent, external field. Our
work in this field of quantum electrodyanmics was mainly inspired by Dirac’s original idea
[Dir34], the work of Fierz and Scharf [FS79], Scharf’s book [Sch95], and also by Pressley and
Segal’s book [PS88] as well as the work of Mickelsson [LM96, Mic98]. What is described in
this subsection will be rigorously introduced and proven in Sections 7.2p.116 and 7.3p.130. The
definitions and assertions will later be formulated in a general form.

Recall the ideas from the introductory Chapter 6p.105: A description of the time-evolution of
Dirac seas subject to only an external field makes only sense under the discussed equilibrium as-
sumption which allows to neglect all electron-electron interactions. The equilibrium assumption
furthermore gives rise to a description of states which are close to a vacuum state (i.e. equilib-
rium state) which was defined by the condition that the electron-electron interaction vanishes –
which clearly does not uniquely specify a vacuum state. Moreover, following [Dir34] we have
indicated that one could represent a vacuum state as an infinite wedge product of one-particle
wave functions in H−. The choice of H− was justified by energy considerations in the case an
absent external field. For non-zero external field this choice is neither intuitive nor canonical.
To generalize this we shall construct vacuum states as infinite wedge products corresponding
to any polarization, i.e. a closed subspace of H with infinite dimension and codimension like
H−. Let ϕ = (ϕn)n∈N be an orthonormal basis that spans a polarization V . The wedge product
of all ϕn, n ∈ N, is then supposed to represent a Dirac sea whose electrons have the one-particle
wave functions ϕn, n ∈ N. We introduce an equivalence class S = S(ϕ) of other representatives,
namely of all sequences ψ = (ψn)n∈N inH such that the N × N-matrices

(�ψn, ψm�)n,m∈N and (�ψn, ϕm�)n,m∈N, (7.3)

�·, ·� denoting the inner product on H , differing from the unity matrix only by a matrix in the
trace class and thus have a determinant. In this case we write ψ ∼ φ. We then define the
following bracket:

�ψ, χ� := det(�ψn, χm�)n,m∈N = lim
k→∞

det(�ψn, χm�)n,m=1,...,k, ψ, χ ∈ S. (7.4)

With this at hand one constructs a Hilbert space FS = FS(ϕ), where the bracket gives rise to the
inner product. We refer to FS as an infinite wedge space. By this construction, see Definition
7.17p.124 (Infinite wedge spaces), a sequence ψ ∈ S is mapped to the wedge product Λψ =
ψ1 ∧ ψ2 ∧ ψ3 ∧ . . . ∈ FS. This space comprises all Dirac seas which are only small deviations



114 7.1. Chapter Overview and Results

from the vacuum state Λϕ. However, from this construction the distinction of a vacuum state
among Dirac seas blurs. In fact, if we take any ψ ∼ ϕ we end up with S = S (ϕ) = S (ψ) and the
very same Fock space FS which we could interpret as comprising all Dirac seas which are small
deviations of the vacuum Λψ. This is because whether a Dirac sea is a vacuum state or not has
nothing to do with the polarization V or the choice of basis ϕ. A vacuum state was defined by the
condition that the net interaction between the electrons vanishes – and as we do not know how
to model the quantum interaction between electrons yet, we have to introduce vacuum states a
posteriori by hand, a point which we shall come back to when we compute pair creation with this
external field model. Figuratively speaking, the ∼ equivalence relation or better the finiteness of
the inner product only relates Dirac seas which are equal “deep down in the sea”. Which Dirac
seas relate to each other in this sense depends on the polarization V and on the choice of basis ϕ.

As addressed a fixed polarization like H− causes problems in the presence of an external field.
Therefore, the idea is to adapt the polarization according to the external field. Consider therefore
HA, the Dirac operator for a fixed, time-independent field A. The spectrum is in general not
anymore as simple as in the free case and there is no canonical way of defining a splitting into
subspaces H = HA

− ⊕ H
A
+ . The question how to split into subspaces becomes in particular

interesting when the external field is time-dependent, in which case we denote the field by the
sans serif letter A. So suppose that at time t0 the field is zero and at a later time the field
is switched on. As a first guess, one could choose UA(t, t0)H− as the polarization at time t.
This choice, however, depends not only on the field A at time t but also on the whole history
(A(s))s≤t. Consider another field �A with �A(t0) = A(t0) and �A(t) = A(t). We shall show that
the orthogonal projectors onto UA(t, t0)H− and U�A(t, t0)H− differ only by a Hilbert-Schmidt
operator. This motivates to consider only classes of polarizations instead of polarizations proper.
The equivalence relation “≈” between polarizations is given by the condition that the difference
of the corresponding orthogonal projectors is a Hilbert-Schmidt operator. In the polarization
classes associated with A(t) there exists a mathematically simple representative, namelyHA(t)

− :=
eQA(t)
H−; the operator QA(t) will quite naturally appear as the key object in the variant of the Born

series of UA that we use in Subsection 7.3.1p.130. This means that the only physical input we have
is the class of all polarizations equivalent to eQA(t)

H− while single polarizations are only man-
made and may merely serve as a coordinate within the polarization class. However, physically
relevant expressions do not depend on coordinates.

Setting now

PA(t)
± := eQA(t)

P±e−QA(t)
(7.5)

one can expect that the non-diagonal operators PA(t)
± UA(t, t0)P∓ are both Hilbert-Schmidt oper-

ators which we prove in Subsection 7.3.1p.130. Therefore, by letting the polarization class vary
appropriately with time, we obtain a time-evolution operator which fulfills the Shale-Stinespring
condition. This gives rise to consider time-varying Fock spaces in order to lift the one-particle
Dirac time-evolution; see also [FS79]. A related but different approach to obtain a time-evolution
is given in [LM96, Mic98].

We shall later refine the equivalence relation ≈ in the following sense: For two polarizations
V,W we define V ≈0 W to mean V ≈ W and that V and W have the same “relative charge”.
Intuitively the “relative charge” has the following meaning: Consider two states Λϕ and Λψ
where ϕ and ψ are orthonormal bases of V and W, respectively. Then the relative charge is the
difference of the electric charges of the physical sates represented by Λϕ and Λψ, respectively.
Mathematically the relative charge is defined in terms of Fredholm indices in Definition 7.3p.118.
The use of the Fredholm index to describe the relative charge is quite frequent in the literature;
see e.g. [PS88, LM96, HLS05]. The relation ≈0 is also an equivalence relation on the set of
polarizations, and one finds an intimate connection between this equivalence relation ≈0 on the
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set of polarizations and the equivalence relation ∼ on the set the Dirac seas: Two equivalent
Dirac seas span two equivalent polarizations and for every two polarizations W ≈0 V such that
ϕ spans V there is a Dirac sea Λψ ∈ FS(ϕ) such that ψ ∼ ϕ and ψ spans W. Consequently, every
wedge space can be associated with one polarization class with respect to ≈0. Details are given
in Section 7.2.1p.116.

On the other hand, assuming ϕ spans V , not all Dirac seas Λψ such that ψ spans W ≈0 V are
in FS(ϕ) because one can obviously find an orthonormal basis ψ of W for which (�ψn, ϕm�)n,m∈N
differs from the identity by more than a trace class operator. Because of this we below consider
operations (the operations from the right) that mediate between all wedge spaces belonging to
the same polarization class with respect to ≈0. These operations are needed to define later the
physically relevant transition amplitudes.

On any element of S the action of any unitary map U on H is then naturally defined by having
it act on each factor of the wedge product. Consequently we have a (left) operation on any FS,
namely LU : FS → FUS , such that

LU (ψ1 ∧ ψ2 ∧ ψ3 ∧ . . .) = Uψ1 ∧ Uψ2 ∧ Uψ3 ∧ . . . , ψ ∈ S, (7.6)

which then incorporates a “lift” of U as a unitary map from one wedge space to another. Now,
this can of course also be done for the one-particle time-evolution U = UA(t, t0) for fixed times
t0 and t. However, we need to find a way to relate the Dirac seas in FS to the ones in FUS by
considering the “net balance” between them. As we discussed already the physical input given
are the polarization classes at times t0 and t. We choose any orthonormal basis ϕ(t0) of HA(t0)

−

and likewise ϕ(t) ofHA(t)
− and denote their equivalence classes with respect to ∼ by S(ϕ(t0)) and

S(ϕ(t)). This way physical “in” and “out” states can be described by elements in FS(ϕ(t0)) and
FS(ϕ(t)), respectively. But in general US(ϕ(t0)) will not be equal S(ϕ(t)) so that LUψin and ψout

are likely to lie in different wedge spaces. We show that the polarization classes of FUS(ϕ(t0))
and FS(ϕ(t)) are the same. Therefore, the only difference between those two spaces may come
from our specific choice of bases ϕ(t0) and ϕ(t). In order to make them compatible we introduce
another operation (from the right): For all unitary N×N-matrices R = (Rnm)n,m∈N, we define the
operation from the right as follows. For ψ ∈ S, let ψR :=

��
n∈N ψnRnm

�
m∈N. In this way, every

unitary R gives rise to a unitary map RR : FS → FSR, such that

RRΛψ = Λ(ψR), ψ ∈ S. (7.7)

By construction the left operations and the operations from the right commute. We show that two
such unitary matrices R,R� yield FSR = FSR� if and only if R−1R� has a determinant. We show in
Subsection 7.3.1p.130 that there always exists a unitary matrix R for which US(t0)R = S(t). Now
we have all we need to compute the transition amplitudes:

|
�
ψout,RR ◦ LUψ

in
�
|
2. (7.8)

The matrix R, however, is not unique because for any R� with det R� = 1 one has US(t0)R =
US(t0)RR� = S(t) so that the arbitrariness in R� gives rise to a phase which, however, has no
effect on the transition amplitudes. The operations from the left and from the right are introduced
in Subsection 7.2.2p.125 while in Subsection 7.2.3p.127 we identify the conditions under which R
exists.

So far we have constructed Dirac seas, implemented their time-evolutions up to the arbitrariness
of a phase and gave the corresponding transition amplitudes which are finite and unique. These
transition amplitudes can now be used to compute pair creation rates if one introduces vacuum
states a posteriori as we have discussed. Along the ideas of Chapter 6p.105 we compute and
interpret the pair creation rates in Section 7.4p.151.
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What is new?Main results This work essentially adds three new results to the topic of second quantized
Dirac time-evolution:

1. With the help of the operator QA(t) we show in Theorem 7.31p.132, Subsection 7.3.1p.130, that
the set of all polarizations ≈ UA(t, t0)H− equals the set of polarizations ≈ eQA(t)

H−. Since
QA(t) is given by an explicit expression in contrary to UA(t, t0), most relevant computations
simplify significantly.

2. We show in Theorem 7.38p.145, Subsection 7.3.2p.144, that polarization classes are uniquely
identified by the magnetic components �A(t) of the field A at time t. This generalizes the
case of �A(t) = 0 regarded in [Rui77] to general �A(t) and will together with the wedge
space construction allow to identify the arbitrariness of the implementation of the time-
evolution.

3. Along the lines of Dirac’s original idea in [Dir34] we construct Fock spaces with the help
of infinite wedge products corresponding to polarization classes in Definition 7.17p.124,
Subsection 7.2.1. As suggested by Fierz and Scharf in [FS79] we show that the Dirac
time-evolution can be implemented as unitary maps between corresponding wedge spaces,
i.e. between time-varying Fock spaces, in Theorem 7.41p.150, Subsection 7.3.3p.150. We
conclude this work with a brief discussion of gauge transformations of the external field;
see Theorem 7.44p.154, Subsection 7.5p.154.

7.2 Explicit Construction of the Absorber

7.2.1 Construction

In this section we give a rigorous construction of infinite wedge products which we described
in the introduction. Throughout this work the notion Hilbert space stands for separable, infinite
dimensional, complex Hilbert space. Let H and � be Hilbert spaces with corresponding scalar
products �·, ·�. For a typical example think ofH = L2(R3,C4) and � = �2(N), the space of square
summable sequences in C. The space � will only play a role of an index space which enumerates
vectors in bases ofH . We refer toH as the one-particle Hilbert space. Furthermore, we denote
the space of so-called trace class operators on �, i.e. bounded operators T on � for which
�T�I1 := tr

√
T ∗T is finite, by I1(�), the superscript ∗ denoting the Hilbert space adjoint. We say

a bounded linear operator T on a Hilbert space � has a determinant det T := limn→∞ det(Ti, j)i, j≤n
if it differs from the identity operator id� on � only by a trace class operator, i.e. T − id� ∈ I1(�);
see [GGK90]. We also need the space of Hilbert-Schmidt operators, i.e. the space of bounded
operators T : � → H such that the Hilbert-Schmidt norm �T�I2 :=

√
tr T ∗T is finite. The space

of Hilbert-Schmidt operators is denoted by I2 = I2(�,H) and write I2(H) = I2(H ,H).

At first let us define the notions: polarizations, polarization classes and the set of Dirac seas
from the introduction.

Definition 7.1.Polarizations
and polarization

classes

1. Let Pol(H) denote the set of all closed subspaces V ⊂ H such that V and V⊥ are both
infinite dimensional. Any V ∈ Pol(H) is called a polarization ofH . For V ∈ Pol(H), let
PV : H → V denote the orthogonal projection ofH onto V.

2. For V,W ∈ Pol(H), V ≈ W means PV − PW ∈ I2(H).
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The space Pol(H) is a kind of Grassmann space of all infinite dimensional closed subspaces
with infinite dimensional complement. Obviously, the relation ≈ is an equivalence relation on
Pol(H). Its equivalence classes C ∈ Pol(H)/≈ are called polarization classes. Its basic proper-
ties are collected in the following lemma. We denote by |X→Y the restriction to the map X → Y .

Lemma 7.2. Properties of ≈For V,W ∈ Pol(H), the following are equivalent:

(a) V ≈ W

(b) PW⊥PV ∈ I2(H) and PW PV⊥ ∈ I2(H)

(c) The operators PV PW PV |V→V and PW PV PW |W→W both have determinants.

(d) The operators PV PW PV |V→V and PV⊥PW⊥PV⊥ |V⊥→V⊥ both have determinants.

(e) PW |V→W is a Fredholm operator and PW⊥ |V→W⊥ ∈ I2(V).

Proof.

(a)⇒(b): Let V,W ∈ Pol(H) fulfill PV − PW ∈ I2(H). We conclude that

PW⊥PV = (idH − PW)PV = (PV − PW)PV ∈ I2(H) and (7.9)
PW PV⊥ = PW(idH − PV ) = −PW(PV − PW) ∈ I2(H). (7.10)

(b)⇒(c): Assuming (b), we conclude

PV − PV PW PV = PV PW⊥PV = (PW⊥PV )∗(PW⊥PV ) ∈ I1(H) and (7.11)
PW − PW PV PW = PW PV⊥PW = (PW PV⊥)∗(PW PV⊥) ∈ I1(H). (7.12)

This implies (PV − PV PW PV )|V→V ∈ I1(V) and (PW − PW PV PW)|W→W ∈ I1(W) and thus
the claim (c).

(c)⇒(d): Assuming (c), we need to show that PV⊥PW⊥PV⊥ |V⊥→V⊥ has a determinant. In-
deed: As PW PV PW |W→W has a determinant, we know that

(PV⊥PW)∗(PV⊥PW) = PW PV⊥PW = PW − PW PV PW ∈ I1(H) (7.13)

and thus PV⊥PW ∈ I2(H). This implies

PV⊥ − PV⊥PW⊥PV⊥ = PV⊥PW PV⊥ = (PV⊥PW)(PV⊥PW)∗ ∈ I1(H). (7.14)

The claim (PV⊥PW⊥PV⊥ |V⊥→V⊥) ∈ idV⊥ + I1(V⊥) follows.

(d)⇒(b): Assuming (d), we know

(PW PV⊥)∗(PW PV⊥) = PV⊥PW PV⊥ = PV⊥ − PV⊥PW⊥PV⊥ ∈ I1(H) and (7.15)
(PW⊥PV )∗(PW⊥PV ) = PV PW⊥PV = PV − PV PW PV ∈ I1(H). (7.16)

This implies the claim (b).

(b)⇒(a): Assuming PW⊥PV ∈ I2(H) and PW PV⊥ ∈ I2(H), we conclude that

PV − PW = (PV − PW PV ) − (PW − PW PV )
= PW⊥PV − PW PV⊥ ∈ I2(H). (7.17)
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(b)⇒(e): We write the identity onH in matrix form

idH : V ⊕ V⊥ → W ⊕W⊥, (x, y) �→
�

PW |V→W PW |V⊥→W
PW⊥ |V→W⊥ PW⊥ |V⊥→W⊥

� �
x
y

�
. (7.18)

Assuming (b) we know that the non-diagonal operators PW⊥ |V→W⊥ and PW |V⊥→W are
Hilbert-Schmidt operators. Subtracting the non-diagonal from the identity we get a new
map

Q : V ⊕ V⊥ → W ⊕W⊥, (x, y) �→
�
PW |V→W 0

0 PW⊥ |V⊥→W⊥

� �
x
y

�
(7.19)

which is by construction a perturbation of the identity by a compact operator and, thus, a
Fredholm operator. However, this holds if and only if both PW |V→W and PW⊥ |V⊥→W⊥ are
Fredholm operators which implies (e).

(e)⇒(b): Assuming (e) we compute

0 = PV⊥ |V = PV⊥(PW + PW⊥)|V
= PV⊥ |W PW |V→W + PV⊥ |W⊥ PW⊥ |V→W⊥ (7.20)

from which follows that PV⊥ |W PW |V is a Hilbert-Schmidt operator since PV⊥ |W⊥ is a
bounded operator and by assumption we have PW⊥ |V ∈ I2(V). Furthermore, by assumption
PW |V→W is a Fredholm operator so that PV⊥ |W PW |V→W ∈ I2(V) yields PV⊥ |W ∈ I2(W).
Finally, we have PW⊥ |V = PW⊥PV |V and PV⊥ |W = PV⊥PW |W so that PW⊥PV , PV⊥PW ∈

I2(H) which implies the claim (b).

�

Note that in general PW⊥PV ∈ I2(H) is not equivalent to PW PV⊥ ∈ I2(H). As an example,
take V and W such that V ⊂ W and V has infinite codimension in W; compare with condition
(e) of the above lemma. Condition (e) appears in Chapter 7 of [PS88] where an equivalence
class C ∈ Pol(H)/≈ is endowed with the structure of a complex manifold modeled on infinite
dimensional separable Hilbert spaces. Consequently, the space Pol(H) is a complex manifold –
the Grassmann manifold ofH – which decomposes into the equivalence classes C ∈ Pol(H)/≈
as open and closed submanifolds.

Where exactly the spectrum is cut into parts by a choice of a polarization in a polarization
class will determine the relative charge between two Dirac seas. Within one polarization class
the charge may only differ by a finite number from one chosen polarization to another. Given
V,W ∈ Pol(H) with V ≈ W, we know from Lemma 7.2p.117(e) that PW |V→W and PV |W→V are
Fredholm operators. So we are led to the definition of the relative charge:

Definition 7.3.Relative charge For V,W ∈ Pol(H) with V ≈ W, we define the relative charge of V,W to be the
Fredholm index of PW |V→W:

charge(V,W) := ind(PW |V→W) = dim ker(PW |V→W) − dim ker(PW |V→W)∗

= dim ker(PW |V→W) − dim coker(PW |V→W). (7.21)

Let U(H ,H�) be the set of unitary operators U : H → H�. We collect some basic properties of
the relative charge:

Lemma 7.4.Relative charge
properties

Let C ∈ Pol(H)/≈ be a polarization class and V,W, X ∈ C. Then the following
holds:
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1. charge(V,W) = − charge(W,V)

2. charge(V,W) + charge(W, X) = charge(V, X)

3. LetH� be another Hilbert space and U ∈ U(H ,H�).
Then charge(V,W) = charge(UV,UW).

4. Let U ∈ U(H ,H) such that UC = C. Then charge(V,UV) = charge(W,UW).

Proof. (a) PW |V→W and PV |W→V are Fredholm operators with

charge(W,V) + charge(V,W) = ind(PV |W→V ) + ind(PW |V→W)
= ind(PV PW |V→V ) = ind(PV PW PV |V→V ) = 0, (7.22)

as PV PW PV |V→V is a perturbation of the identity map on V by a compact operator.

(b) As PW and PX differ only by a compact operator, we get

charge(V,W) + charge(W, X) = ind(PW |V→W) + ind(PX |W→X)
= ind(PXPW |V→X) = ind(PXPX |V→X) = charge(V, X). (7.23)

(c) This follows immediately since unitary transformations do not change the Fredholm index.

(d) We know UV ≈ V ≈ W ≈ UW by assumption. Using parts (a), (b) and (c) of the lemma,
this implies

charge(V,UV) = charge(V,W) + charge(W,UW) + charge(UW,UV)
= charge(V,W) + charge(W,UW) + charge(W,V) = charge(W,UW). (7.24)

�

With the notion of relative charge we refine the polarization classes further into classes of polar-
izations of equal relative charge:

Definition 7.5. Equal charge
classes

For V,W ∈ Pol(H), V ≈0 W means V ≈ W and charge(V,W) = 0.

By Lemma 7.4p.118 (Relative charge properties) the relation ≈0 is an equivalence relation on
Pol(H). This finer relation is better adapted for the lift of unitary one-particle operators like the
Dirac time-evolution which conserve the charge.

Next we introduce the mathematical representation of the Dirac seas (they are, however, not
the physical states yet because these objects still miss the antisymmetry and can not be linearly
combined):

Definition 7.6. Dirac seas

(a) Let Seas(H) = Seas�(H) be the set of all linear, bounded operators Φ : � → H such that
rangeΦ ∈ Pol(H) and Φ∗Φ : � → � has a determinant, i.e. Φ∗Φ ∈ id� + I1(�).

(b) Let Seas⊥(H) = Seas⊥� (H) denote the set of all linear isometries Φ : � → H in Seas�(H).

(c) For any C ∈ Pol(H)/≈0 let Ocean(C) = Ocean�(C) be the set of all Φ ∈ Seas⊥� (H) such
that rangeΦ ∈ C.
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Thus (as in geography) an ocean consists of a collection of related seas; see also Figure 7.1p.130

at the end of this section. To connect to the introduction in Subsection 7.1p.113 consider the
following example: In the case of � = �2(N) we encode this map in an orthonormal basis (ϕn)n∈N
of V such that for the canonical basis (en)n∈N in �2 one has Φen = ϕn for all n ∈ N.

The set Seas(H) can naturally be structured by the relation introduced now:

Definition 7.7.Relation
between Dirac

seas

For Φ,Ψ ∈ Seas(H), Φ ∼ Ψ means Φ∗Ψ ∈ id� + I1(�), i.e. Φ∗Ψ has a
determinant.

In the forthcoming Corollary 7.9 we show that ∼ is an equivalence relation. For its proof we
need the following lemma, which will also be frequently used later because it allows us to work
for most purposes with Dirac seas in Seas⊥(H) instead of Seas(H):

Lemma 7.8.Isometries are
good enough

For every Ψ ∈ Seas(H) there exist Υ ∈ Seas⊥(H) and R ∈ id� + I1(�) which
fulfill Ψ = ΥR, Υ∗Ψ = R ≥ 0, Υ ∼ Ψ, and R2 = Ψ∗Ψ.

Proof. Let Ψ ∈ Seas(H). The operator Ψ∗Ψ : � → � has a determinant and is hence a Fredholm
operator. In particular, ker(Ψ∗Ψ) = kerΨ is finite dimensional. Let Ψ = VR be the polar
decomposition of Ψ, with R =

√
Ψ∗Ψ and V : � → H being a partial isometry with ker V =

(range R)⊥ = kerΨ. Then V and Ψ have the same range, and this range has infinite codimension
in H . Since ker V has finite dimension, we can extend the restriction of V to (ker V)⊥ to an
isometry Υ : � → H . We get: Υ∗Ψ = V∗Ψ = V∗VR = R ≥ 0 and ΥR = VR = Ψ. Now as
R2 = Ψ∗Ψ has a determinant, its square root R has also a determinant. This implies Υ ∼ Ψ. �

Corollary 7.9. The relation ∼ is an equivalence relation on Seas(H).

Proof. By definition of Seas(H), the relation ∼ is reflexive. To show symmetry, take Φ,Ψ ∈
Seas(H) with Φ ∼ Ψ. We conclude Ψ∗Φ − id� = (Φ∗Ψ − id�)∗ ∈ I1(�) and thus Ψ ∼ Φ. To
show transitivity, let Φ,Ψ,Γ ∈ Seas(H) with Φ ∼ Ψ and Ψ ∼ Γ. By Lemma 7.8 (Isometries
are good enough), take Υ ∈ Seas⊥(H) and R ≥ 0 corresponding to Ψ. Let P : H → H
denote the orthogonal projection having the same range as Υ, and let Pc = idH − P denote the
complementary projection. In particular, one has P = ΥΥ∗. Then

Φ∗Γ = Φ∗PΓ + ΦPcΓ = (Φ∗Υ)(Γ∗Υ)∗ + Φ∗PcΓ. (7.25)

Now sinceΦ ∼ Ψwe know thatΦ∗Ψ = Φ∗ΥR has a determinant. Since R has also a determinant,
we conclude that Φ∗Υ has a determinant, too. Using Ψ ∼ Γ, the same argument shows that
Γ∗Υ has a determinant, and thus (Φ∗Υ)(Γ∗Υ)∗ has a determinant. Next we show that PcΓ is a
Hilbert-Schmidt operator. Indeed, (PcΓ)∗(PcΓ) = Γ∗PcΓ = Γ∗Γ − Γ∗PΓ = Γ∗Γ − (Γ∗Υ)(Γ∗Υ)∗ is
a difference of two operators having a determinant, since Γ∗Γ and Γ∗Υ both have determinants.
Hence, (PcΓ)∗(PcΓ) ∈ I1(�), which implies PcΓ ∈ I2(�). The same argument, applied to Φ
instead of Γ, shows that PcΦ ∈ I2(�). We conclude Φ∗PcΓ = (PcΦ)∗(PcΓ) ∈ I1(�). Using (7.25)
this yields that Φ∗Γ has a determinant since it is given as the sum of an operator that has a
determinant plus an operator which is trace class. This proves that Φ ∼ Γ. �

For Φ ∈ Seas(H), the equivalence class of Φ with respect to ∼ turns out to form an affine space.
The following definition and lemma characterize these equivalence classes. These properties
will later be used to show that the wedge spaces to be constructed (in forthcoming Definition
7.17p.124 (Infinite wedge spaces)) are separable spaces.

Definition 7.10.Dirac sea
classes

Let Φ ∈ Seas(H).

1. Let S(Φ) ⊂ Seas(H) denote the equivalence class of Φ with respect to ∼.
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2. For bounded linear operators L : � → H , we define �L�Φ := �Φ∗L�I1 + �L�I2 and vector
space

V(Φ) := {L : � → H | L is linear and bounded with �L�Φ < ∞}.

Lemma 7.11. Dirac sea class
properties

Let Φ ∈ Seas(H).

(a) It holds that S(Φ) = Φ +V(Φ).

(b) For Ψ ∈ Seas(H) with Φ ∼ Ψ, one has V(Φ) = V(Ψ), and the norms � · �Φ and � · �Ψ are
equivalent.

Proof. (a) Take Ψ ∼ Φ. By definition, Φ∗Ψ ∈ id� + I1(�) and Φ∗Φ ∈ id� + I1(�). The difference
yields Φ∗(Ψ−Φ) ∈ I1(�). Similarly, Ψ∗Ψ ∈ id� + I1(�) and Ψ∗Φ ∈ id� + I1(�). Combining all
this, we get (Ψ−Φ)∗(Ψ−Φ) ∈ I1(�), and henceΨ−Φ ∈ I2(�,H). This showsΨ−Φ ∈ V(Φ).

Conversely, take B ∈ V(Φ). We set Ψ = Φ + B. First we show that rangeΨ ∈ Pol(H),
i.e. that it is closed and has infinite dimension and codimension. In order to do this we use
the following general fact: A Fredholm operator between two Hilbert spaces maps closed,
infinite dimensional and infinite codimensional subspaces, respectively, to closed, infinite
dimensional, and infinite codimensional subspaces, respectively. Consider

�Φ : � ⊕ rangeΦ⊥ → H , (x, y) �→ Φx + y (7.26)
�Ψ : � ⊕ rangeΦ⊥ → H , (x, y) �→ Φx + Bx + y (7.27)

with the direct sum is understood as orthogonal direct sum. Since rangeΦ is in Pol(H) and
therefore closed, the map �Φ is onto. Furthermore, Φ∗Φ ∈ idH + I1(H) is a perturbation
of the identity by a compact operator and therefore a Fredholm operator. In particular, this
implies dim kerΦ = dim kerΦ∗Φ < ∞. Thus, �Φ is also a Fredholm operator. Now �Ψ
is a perturbation of �Φ by the compact operator (x, y) �→ Bx and therefore it is Fredholm
operator too. Since � ⊕ 0 is closed, infinite dimensional, infinite and codimensional, it holds
rangeΨ = �Ψ(� ⊕ 0).

Using Φ ∈ Seas(H) and the definition of V(Φ), we get Ψ∗Ψ = Φ∗Φ + Φ∗B + (Φ∗B)∗ +
B∗B ∈ (id� + I1) + I1 + I1 + I2I2 = id� + I1(�). This shows Ψ ∈ Seas(H). Furthermore,
Φ∗Ψ = Φ∗Φ + Φ∗B ∈ (id� + I1) + I1 = id� + I1(�) holds. This yields Ψ ∼ Φ.

(b) Since Φ ∼ Ψ, there is a L ∈ V(Φ) such that Φ = Ψ + L. Let M ∈ V(Ψ). Using the triangle
inequality in I1(�) and �L∗M�I1 ≤ �L�I2�M�I2 , we get

�M�Φ = �Φ∗M�I1 + �M�I2 ≤ �Ψ
∗M�I1 + �L

∗M�I1 + �M�I2

≤ (1 + �L�I2 )(�Ψ∗M�I1 + �M�I2 ) = (1 + �L�I2 )�M�Ψ. (7.28)

In the same way, we get �M�Ψ ≤ (1 + �L�I2 )�M�Φ.

�

The equivalence classes of Seas(H)/∼ and Pol(H)/≈0 go hand in hand quite naturally as the
following lemma shows.

Lemma 7.12. Connection
between ∼ and
≈0

Let C ∈ Pol(H)/≈0 and Φ ∈ Ocean(C), then we have

C = {rangeΨ | Ψ ∈ Seas⊥(H) such that Ψ ∼ Φ}.
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Proof. Let C� := {rangeΨ | Ψ ∈ Seas⊥(H) such that Ψ ∼ Φ} and V := rangeΦ.

C� ⊆ C: Let W ∈ C�, then there is a Ψ ∼ Φ such that rangeΨ = W. One has

PV PW PV |V→V = Φ(Φ∗ΨΨ∗Φ)Φ∗|V→V . (7.29)

But Φ∗Ψ,Ψ∗Φ ∈ id� + I1(�), hence, Φ∗ΨΨ∗Φ ∈ id� + I1(�) and Φ∗|V is unitary, so we
conclude that PV PW PV |V→V ∈ idV + I1(V) and has a determinant. Analogously, we get
that PW PV PW |W→W = Ψ(Ψ∗ΦΦ∗Ψ)Ψ∗ has a determinant because, again, Ψ∗|W is unitary.
Lemma 7.2p.117 (Properties of ≈) then states V ≈ W. We still need to show V ≈0 W.
Therefore, consider charge(W,V) = ind(PV |W→V ) and PV |W→V = ΦΦ

∗ΨΨ∗|W→V . Since
Φ∗Ψ ∈ id� + I1(�) and Ψ∗|W is unitary, Ψ∗PV |W→VΨ = Ψ

∗ΦΦ∗Ψ ∈ id� + I1(�) which is a
perturbation of the identity by a compact operator. Therefore, ind(PV |W→V ) = 0. Hence,
we have shown that V ≈0 W and therefore W ∈ C.

C� ⊇ C: Let W ∈ C, then W ≈ V and charge(V,W) = 0. We need to find an isometryΨ ∼ Φ
such that rangeΨ = W. We make a polar decomposition of PWΦ. By Lemma 7.2p.117(e)
we know that range PW |V is closed. There is a partial isometry U : � → range PWΦ =

range PW |V = range PWΦ ⊂ H with ker U = ker PWΦ such that PWΦ = U |PWΦ| where
|PWΦ| is given by the square root of the positive semi-definite operator (PWΦ)∗(PWΦ).
Furthermore, (PWΦ)∗(PWΦ) = Φ∗PV PW PVΦ ∈ id� + I1(�) by Lemma 7.2p.117 and, hence,
a Fredholm operator. That means also that ker

�
(PWΦ)∗(PWΦ)

�
= ker PWΦ is finite di-

mensional. Moreover, 0 = charge(V,W) = ind(PW |V→W) implies that dim ker PWΦ =

dim W/(range PW |V ) = dim W∩ (range PW |V )⊥. Thus, there is another partial isometry �U :
� → H of finite rank such that �U |ker PWΦ maps ker PWΦ unitarily onto W ∩ (range PWΦ)⊥

and �U |(ker PWΦ)⊥ = 0. We set Ψ := U + �U : � → H , and get Ψ∗Ψ = U∗U + �U∗�U = 1 and
therefore Ψ ∈ Seas⊥(H). By construction, rangeΨ = W holds. Furthermore,

U∗Φ = U∗PWΦ = U∗U |PWΦ| = |PWΦ| (7.30)

which has a determinant since |PWΦ| ≥ 0 and

|PWΦ|
2 = Φ∗PV PW PVΦ ∈ id� + I1(�) (7.31)

as PV PW PV |V→V ∈ id(V) + I1(V) by Lemma 7.2p.117. On the other hand, �U∗Φ has finite
rank since �U does. Hence, Ψ∗Φ = U∗Φ+ �U∗Φ ∈ id� + I1(�), i.e. Ψ ∼ Φ, which means that
W ∈ C�.

�

Now we begin with the construction of the infinite wedge spaces for each equivalence class of
Dirac seas S ∈ Seas(H)/∼. We follow the standard linear algebra method: First, we construct
with the elements of S a space of formal linear combinations C(S ) which we equip with a semi-
definite sesquilinear form that in turn induces a semi-norm. Completion with respect to this
semi-norm yields the infinite wedge space of S.

Construction 7.13.Formal linear
combinations

1. For any set S, let C(S) denote the set of all maps α : S → C for which {Φ ∈ S | α(Φ) � 0}
is finite. For Φ ∈ S, we define [Φ] ∈ C(S) to be the map fulfilling [Φ](Φ) = 1 and
[Φ](Ψ) = 0 for Φ � Ψ ∈ S. Thus, C(S) consists of all finite formal linear combinations
α =
�
Ψ∈S α(Ψ)[Ψ] of elements of S with coefficients in C.
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2. Now let S ∈ Seas(H)/∼ as in Definition 7.10p.120 (Dirac sea classes). We define the map
�·, ·� : S × S → C, (Φ,Ψ) → �Φ,Ψ� := det(Φ∗Ψ). Note that this is well defined since for
Φ,Ψ ∈ S the fact Φ ∼ Ψ implies that Φ∗Ψ has a determinant.

3. Taking S as before, let �·, ·� : C(S) × C(S) → C denote the sesquilinear extension of
�·, ·� : S × S → C, defined as follows: For α, β ∈ C(S),

�α, β� =
�

Φ∈S

�

Ψ∈S

α(Φ)β(Ψ) det(Φ∗Ψ). (7.32)

The bar denotes the complex conjugate. Note that the sums consist of at most finitely many
nonzero summands. In particular, we have �[Φ], [Ψ]� = �Φ,Ψ� for Φ,Ψ ∈ S.

Lemma 7.14. The sesquilinear form �·, ·� : C(S) × C(S) → C is hermitian and positive semi-
definite, i.e. �α, β� = �β, α� and �α, α� ≥ 0 hold for all α, β ∈ C(S).

Proof. For Φ,Ψ ∈ S we have

�Φ,Ψ� = det(Φ∗Ψ) = det(Ψ∗Φ) = �Ψ,Φ� (7.33)

This implies that �·, ·� : C(S) × C(S) → C is hermitian. Let α ∈ S. We get

�α, α� =
�

Φ∈S

�

Ψ∈S

α(Φ)α(Ψ) det(Φ∗Ψ). (7.34)

Let (ei)i∈N be an orthonormal basis in �. In the following we abbreviate Nm = {1, . . . ,m}.
Fredholm determinants are approximated by finite-dimensional determinants (see Section VII.3,
Theorem 3.2 in [GGK90]), therefore

det(Φ∗Ψ) = lim
m→∞

det(
�
ei,Φ

∗Ψe j
�
)i, j∈Nm . (7.35)

Let ( fk)k∈N be an orthonormal basis ofH . For every i, j ∈ N, we get

�
ei,Φ

∗Ψe j
�
= lim

n→∞

n�

k=1

�Φei, fk�
�

fk,Ψe j
�
, (7.36)

and, hence, for every m ∈ N

det(
�
ei,Φ

∗Ψe j
�
)i, j∈Nm = lim

n→∞
det




n�

k=1

�Φei, fk�
�

fk,Ψe j
�



i, j∈Nm

= lim
n→∞

�

I⊆Nn
|I|=m

det(�Φei, fk�) k∈I
,i∈Nm

det(
�

fk,Ψe j
�
) k∈I,

j∈Nm

(7.37)

Substituting this in (7.34) and (7.35) we conclude

�α, α� = lim
m→∞

lim
n→∞

�

Φ∈S

�

Ψ∈S

�

I⊆Nn
|I|=m

α(Φ)α(Ψ)det(� fk,Φei�) k∈I,
i∈Nm

det(
�

fk,Ψe j
�
) k∈I,

j∈Nm

= lim
m→∞

lim
n→∞

�

I⊆Nn
|I|=m

�������

�

Φ∈S

α(Φ) det(� fk,Φei�) k∈I,
i∈Nm

�������

2

≥ 0. (7.38)

�

Definition 7.15. Let � · � : C(S) → R, α �→ �α� =
√
�α, α� denote the semi-norm associated to

�·, ·�, and NS = {α ∈ C(S) | �α, α� = 0} denote the null space of C(S) with respect to � · �.
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This null space NS is quite large. The following lemma identifies a few elements of this null
space and is also the key ingredient to Corollary 7.18p.124 (Null space) and therewith to Lemma
7.23p.127 (Uniqueness up to a phase) of the subsection.

Lemma 7.16. For Φ ∈ S and R ∈ id� + I1(�), one has ΦR ∈ S and [ΦR] − (det R)[Φ] ∈ NS.

Proof. First, we observe that (range(ΦR))⊥ ⊇ (rangeΦ)⊥ is infinite-dimensional. Since Φ∗Φ ∈
id� + I1(�) and R ∈ id� + I1(�), we have Φ∗(ΦR) ∈ id� + I1(�) and (ΦR)∗(ΦR) = R∗(Φ∗Φ)R ∈
id� + I1(�). This shows ΦR ∈ Seas(H) and Φ ∼ ΦR, and thus ΦR ∈ S. We calculate:

�[ΦR] − (det R)[Φ]�2 = det((ΦR)∗(ΦR)) − (det R) det((ΦR)∗Φ)

− det R det(Φ∗ΦR) + | det R|2 det(Φ∗Φ)

=2| det R|2 det(Φ∗Φ) − 2| det R|2 det(Φ∗Φ) = 0. (7.39)

�

Now we have everything needed to define the most important objects in this work: The infinite
wedge spaces. These spaces shall make up the playground for the second quantized Dirac time-
evolution:

Definition 7.17.Infinite wedge
spaces

Let FS be the completion of C(S) with respect to the semi-norm � · �. We
refer to FS as infinite wedge space over S. Let ι : C(S) → FS denote the canonical map. The
sesquilinear form �·, ·� : C(S) × C(S) → C induces a scalar product �·, ·� : FS × FS → C. Let
Λ : S → FS denote the canonical map ΛΦ = ι([Φ]), Φ ∈ S.

Note that ι[NS] = {0}. Hence, the null space is automatically factored out during the completion
procedure. In fact, the null space of the canonical map ι : C(S) → FS equals ker ι = NS. Thus
we can rewrite Lemma 7.16 in the following way:

Corollary 7.18.Null space For Φ ∈ S and R ∈ id� + I1(�), one has Λ(ΦR) = (det R)ΛΦ.

Combining the above Corollary 7.18 with Lemma 7.8p.120 (Isometries are good enough), we
get the following: For every Φ ∈ S there are Υ ∈ S ∩ Seas⊥(H) and R ∈ id� + I1(�) with
r = det R ∈ R+0 such that ΛΦ = rΛΥ. As a consequence, {ΛΨ | Ψ ∈ S ∩ Seas⊥(H)} spans
a dense subspace of FS. The scalar product �·, ·� gives FS the structure of a separable Hilbert
space:

Lemma 7.19.Separability The inner product space (FS, �·, ·�) is separable.

Proof. It suffices to show that there exists a countable dense subset of ΛS with respect to the
norm � · �FS in FS. Choose Φ ∈ S. By Lemma 7.11p.121 (Dirac sea class properties) we then know
thatS = Φ+V(Φ). Now the set of operators of finite rank is dense and separable in (V(Φ), �·�Φ).
Hence, we can choose a countable, dense subset D in (V(Φ), � · �Φ). We show now that Λ(Φ+D)
is dense in ΛS with respect to the norm � · �FS . Let Ψ = Φ + L ∈ S with L ∈ V(Φ). We find
a sequence (Ln)n∈N in D with �Ln − L�Φ → 0 for n → ∞ and define Ψn := Φ + Ln. One then
obtains the following estimate for all large n:

�ΛΨ − ΛΨn�
2
FS
= �ΛΨ − ΛΨn,ΛΨ − ΛΨn�FS

= det(Ψ∗Ψ) − det(Ψ∗Ψn) − det(Ψ∗nΨ) + det(Ψ∗nΨn)
≤ C38(Ψ)

�
�Ψ∗(Ψ − Ψn)�I1 + �Ψ

∗
n(Ψ − Ψn)�I1

�
(7.40)
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by local Lipschitz continuity of the Fredholm determinant with respect to the norm in I1(�); see
[Sim05, Theorem 3.4 p. 34]. The constant C38(Ψ) < ∞ depends only on Ψ. Next the triangle
inequality applied to the second term gives

. . . ≤ C38(Ψ)
�
2�Ψ∗(Ψ − Ψn)�I1 + �(Ψ − Ψn)∗(Ψ − Ψn)�I1

�

≤ 2C38(Ψ)�Ψ − Ψn�Ψ = 2C38(Ψ)�L − Ln�Ψ

≤ C39(Ψ,Φ)�L − Ln�Φ
n→∞
−−−−→ 0 (7.41)

for some constant C39(Ψ,Φ) < ∞ depending only on Ψ and Φ since the norms � · �Ψ and � · �Φ
are equivalent by Lemma 7.11p.121 (Dirac sea class properties). This shows that Λ(Φ + D) is a
countable, dense subset of Λ(S). �

The following diagram summarizes the setup:

Nature

chooses

��
H

� take

splittings
�� Pol(H)

[·]≈0 �� Pol(H)/≈0
� �������������� C

take bases

��
��
��
��

Human chooses �� S�

Λ construction

��

Ocean�(C)/∼∈�� �� �� �� �� �� Ocean�(C)[·]∼��

FS

Note that, by Lemma 7.12p.121 (Connection between ∼ and ≈0), FS carries the whole information
of the polarization class C ∈ Pol(H)/≈0. However, it depends on a choice of basis. In this sense
we say that the wedge space FS belongs to polarization class C.

7.2.2 Operations from the Left and from the Right

Having constructed the infinite wedge spaces FS for each S ∈ Seas(H)/∼ we now introduce
two types of operations on them which are the tools needed in the next subsection. In the
following letH�, �� be also two Hilbert spaces.

Construction 7.20. The left
operation

1. The following operation from the left is well-defined:

U(H ,H�) × Seas�(H)→ Seas�(H�), (U,Φ) �→ UΦ.

2. This operation from the left is compatible with the equivalence relation ∼ in the following
sense: For U ∈ U(H ,H�) and Φ,Ψ ∈ Seas�(H), one has Φ ∼ Ψ if and only if UΦ ∼ UΨ
in Seas�(H�). Thus, the action of U on Seas�(H) from the left induces also an operation
from the left on equivalence classes modulo ∼ as follows. For S ∈ Seas�(H)/∼ and
U ∈ U(H ,H�),

US = {UΦ | Φ ∈ S} ∈ Seas�(H�)/∼.
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3. For U ∈ U(H ,H�) and S ∈ Seas�(H)/∼, the induced operation LU : C(S) → C(US ),
given by

LU



�

Φ∈S

α(Φ)[Φ]


 =
�

Φ∈S

α(Φ)[UΦ],

is an isometry with respect to the hermitian forms �·, ·� on C(S) and on C(US ). In particular
one has LU[NS] ⊆ NUS .

4. For every U ∈ U(H ,H�), the operation from the leftLU : C(S) → C(US ) induces a unitary
map LU : FS → FUS , characterized by LU(ΛΦ) = Λ(UΦ) for Φ ∈ S. This operation is
functorial in the following sense. Let H�� be another Hilbert space. For U ∈ U(H ,H�),
V ∈ U(H�,H��) and S ∈ Seas�(H)/∼, one has LULV = LUV : FS → FUVS and
LidH = idFS .

In complete analogy to the operation from the left, we introduce next an operation from the right.
Let �� be another Hilbert space, and let GL−(��, �) denote the set of all bounded invertible linear
operators R : �� → � with the property R∗R ∈ id�� + I1(��). Note that GL−(�) := GL−(�, �) is a
group with respect to composition.

Construction 7.21.Operation from
the Right

1. The following operation from the right is well-defined:

Seas�(H) × GL−(��, �)→ Seas��(H), (Φ,R) �→ ΦR.

2. This operation from the right is compatible with the equivalence relations ∼: For Φ,Ψ ∈
Seas�(H) and R ∈ GL−(��, �), one hasΦ ∼ Ψ if and only ifΦR ∼ ΨR in Seas��(H). Thus,
the operation of R from the right induces also an operation from the right on equivalence
classes modulo ∼ as follows: For S ∈ Seas�(H)/∼ and R ∈ GL−(��, �),

SR = {ΦR | Φ ∈ S} ∈ Seas��(H)/∼.

3. For S ∈ Seas�(H)/∼ and R ∈ GL−(��, �) the induced operation from the right RR :
C(S) → C(SR) given by

RR



�

Φ∈S

α(Φ)[Φ]


 =
�

Φ∈S

α(Φ)[ΦR],

is an isometry up to scaling with respect to the hermitian forms �·, ·� on C(S) and on C(SR).
More precisely, one has for all α, β ∈ C(S):

�RRα,RRβ� = det(R∗R) �α, β� .

In particular one has RR[NS] ⊆ NSR.

4. For every R ∈ GL−(��, �), the operation RR : C(S) → C(SR) induces a bounded linear
map, again called RR : FS → FSR, characterized by RR(ΛΦ) = Λ(ΦR) for Φ ∈ S. Up to
scaling, this map is unitary. More precisely, for Φ,Ψ ∈ FS, one has

�RRΦ,RRΨ� = det(R∗R) �Φ,Ψ� .

The operation RR is contra-variantly functorial in the following sense. Let ��� be another
Hilbert space. For Q ∈ GL−(���, ��), R ∈ GL−(��, �) and S ∈ Seas(H , �)/∼, one has
RQRR = RRQ : FS → FSRQ and Rid� = idFS .
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The associativity of composition (UΦ)R = U(ΦR) immediately yields:

Lemma 7.22. Left and right
operations
commute

The operations from the left and from the right commute: For U ∈ U(H ,H�),
R ∈ GL−(��, �), and S ∈ Seas�(H)/∼, one has LURR = RRLU : FS → FUSR.

We conclude this subsection with a last lemma that states an important property of the infinite
wedge spaces. Essentially, it says that for any R ∈ GL−(l) such that R has a determinant, we
have FS = FSR. We introduce SL(�) to denote the set of all operators R ∈ id� + I1(�) with the
property det R = 1.

Lemma 7.23. Uniqueness up
to a phase

1. For all R ∈ GL−(�) and S ∈ Seas�(H)/∼, one has S = SR if and only if R has a
determinant. In this case, RR(Ψ) = (det R)Ψ holds for all Ψ ∈ FS. As a special case, if
R ∈ SL(�), then RR : FS → FS is the identity map.

2. For all Q,R ∈ GL−(��, �) and S ∈ Seas�(H)/∼, we have SR = S Q if and only if Q−1R ∈
GL−(��) has a determinant. In this case, one has for all Ψ ∈ FS:

RRΨ = det(Q−1R)RQΨ

Proof. (a) Given R ∈ GL−(�) and S ∈ Seas�(H)/∼, take any Φ ∈ S. Then, as Φ∗Φ has a
determinant,Φ∗ΦR has a determinant if and only if R has a determinant. This is equivalent
to Φ ∼ ΦR and to S = SR. In this case, Lemma 7.18p.124 (Null space) implies RRΨ =

(det R)Ψ for all Ψ ∈ FS.

(b) Let Φ ∈ S ∩ Seas⊥� (H). Then SR = S Q holds if and only if ΦR ∼ ΦQ, i.e. if and only
if Q∗R = (ΦQ)∗ΦR has a determinant. Since Q∗Q has a determinant and is invertible, this
is equivalent to Q−1R ∈ id�� + I1(��). Using part (a), for any Ψ ∈ FS, we have in this case:
RRΨ = RQ−1RRQΨ = det(Q−1R)RQΨ.

�

REMARK 7.24. The difference between the two operations is that for a Φ in Seas�(H) the left
operation in general changes the range of Φ while the right operation does not. The operation
from the left will later be used to implement the lift of unitary one-particle operators like the
Dirac time-evolution on H . The right operation will be used to adjust the vacuum state; this
will be discussed in detail when interpreting the pair creation rates in Subsection 7.4p.151.

7.2.3 Lift Condition

Given two Hilbert spaces H and H� and two polarization classes C ∈ Pol(H)/≈0 and C� ∈
Pol(H)/≈0, we now identify conditions under which a unitary operator U : H → H� can be
lifted to a unitary map between two wedge spaces.

By Lemma 7.2p.117 (Properties of ≈) it is clear how any unitary U : H → H� acts on polarization
classes, and we shall not prove the following simple lemma:

Lemma 7.25. Action of U on
polarization
classes

The natural operation

U(H ,H�) × Pol(H)→ Pol(H�), (U,V) �→ UV = {Uv | v ∈ V}

is compatible with the equivalence relations ≈ in the following sense: For U ∈ U(H ,H�) and
V,W ∈ Pol(H), one has V ≈ W if and only if UV ≈ UW. As a consequence, this operation
from the left induces a natural operation on polarization classes U(H ,H�) × (Pol(H)/≈) →
Pol(H�)/≈, (U, [V]≈) �→ [UV]≈.
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We use the knowledge about the action of U ∈ U(H ,H�) on the polarization classes to give
U(H ,H�) a finer structure, the restricted set of unitary operators:

Definition 7.26.Restricted set of
unitary

operators

Given the polarization classes C ∈ Pol(H)/≈0 and C� ∈ Pol(H�)/≈0 we
define

U0
res(H ,C;H�,C�) : = {U ∈ U(H ,H�) | for all V ∈ C holds UV ∈ C�}

= {U ∈ U(H ,H�) | there exists V ∈ C such that UV ∈ C�}.

As a special case, we yield a group U0
res(H ,C) := U0

res(H ,C;H ,C).

Note that for a third Hilbert space H�� with a polarization class C�� ∈ Pol(H��)/≈0, one has
U0

res(H�,C�;H��,C��)U0
res(H ,C;H�,C�) = U0

res(H ,C;H��,C��). In fact, one could now define
Uc

res(H ,C;H�,C�) for unitary operations that change the relative charge of two polarizations by
c ∈ Z.

Now we have all what is needed to prove the main result of this section: The following theorem
is our version of the classical Shale-Stinespring theorem [SS65], and hence not completely new.

Theorem 7.27.Lift condition For given polarization classes C ∈ Pol(H)/≈0 and C� ∈ Pol(H�)/≈0, let
S ∈ Ocean�(C)/∼ and S� ∈ Ocean�(C�)/∼. Then, for any unitary map U : H → H�, the
following are equivalent:

1. There is R ∈ U(�) such that USR = S�, and hence RRLU maps FS to FS� .

(a’) There is R ∈ GL−(�) such that UΦR ∼ Φ�.

(b) U ∈ U0
res(H ,C;H�,C�).

Proof.

(a)⇒ (b) : Take R ∈ U(�) such that US(Φ)R = S(Φ�). In particular, UΦR ∼ Φ�, and
hence Φ�∗UΦR ∈ id� + I1(�). This implies

(Φ�∗UΦR)∗Φ�∗UΦR ∈ id� + I1(�). (7.42)

Because UΦR : � → UV is unitary and Φ�Φ�∗ = PV� , we conclude that PUV PV�PUV =

PUVΦ
�Φ�∗PUV |UV→UV has a determinant. Similarly,

Φ�∗PUVΦ
∗ = Φ�∗UΦR(Φ�∗UΦR)∗ ∈ id� + I1(�) (7.43)

implies that PV�PUV PV� |V�→V� has also a determinant. Together this yields UV ≈ V � by
Lemma 7.2p.117 (Properties of ≈).
Furthermore, because of UΦR ∼ Φ�, we know that Φ�∗UΦR is a Fredholm operator with
index 0. Since ΦR : � → V and Φ� : � → V � are unitary, PV� |UV→V� is also a Fredholm
operator with index 0, i.e. charge(UV,V �) = 0. This shows UV ≈0 V �, and the claim
U ∈ U0

res(H ,C;H�,C�) follows.

(b)⇒ (a�): We abbreviate A = PV� |UV→V� . The assumption U ∈ U0
res(H ,C;H�,C�) im-

plies A∗A ∈ idUV + I1(UV), and A is a Fredholm operator with index ind A = 0. Us-
ing that Φ : � → V and Φ� : � → V � are unitary maps, we rewrite this in the form
(Φ�∗UΦ)∗Φ�∗UΦ ∈ id� + I1(�), and Φ�∗UΦ is a Fredholm operator with ind(Φ�∗UΦ) = 0.
We now use a polar decomposition of Φ�∗UΦ in the form Φ�∗UΦ = BQ, where B : � → �
is positive semi-definite and Q : � → � is unitary. Note that we can take Q to be unitary,
not only a partial isometry, as Φ�∗UΦ has the Fredholm index 0. Taking R = Q−1, we get
Φ�∗UΦR = B. Now B2 = B∗B has a determinant because Q∗B∗BQ = (Φ�∗UΦ)∗Φ�∗UΦ
has a determinant. Since B ≥ 0, this implies that B has also a determinant. We conclude
UΦR ∼ Φ�.
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(a�)⇒ (a): We take R ∈ GL−(�) with UΦR ∼ Φ�. By polar decomposition, we write
R in the form R = R�Q, where R� : � → � is unitary and Q : � → � is invert-
ible, positive definite, and has a determinant. As Φ�∗UΦR = Φ�∗UΦR�Q and Q both
have determinants, Φ�∗UΦR� has also a determinant. This shows UΦR� ∼ Φ� and hence
S(UΦR�) = US(Φ)R� = S(Φ�). In particular, RRLU maps FS(Φ) to FUS(Φ)R� = FS(Φ�).

�

For U = idH we immediately get:

Corollary 7.28. Orbits in OceanLet C ∈ Pol(H)/≈0 and S ∈ Ocean(C)/∼ then we have

Ocean(C)/∼ = {SR | R ∈ U(�)}.

This is the counterpart to Lemma 7.12p.121 (Connection between ∼ and ≈0) which stated that for
every polarization class C there is a whole “ocean of seas” Ocean(C)/∼ which belongs to it. For
every S ∈ Ocean(C)/∼ we constructed a wedge space FS. Now the corollary above states that
all these wedge spaces {FS | S ∈ Ocean(C)/∼} are related to each other by unitary operations
from the right; this is illustrated in Figure 7.1p.130.

Furthermore, together with Lemma 7.23p.127 (Uniqueness up to a phase) one gets:

Corollary 7.29. Uniqueness of
the lift up to a
phase

For U ∈ U0
res(H ,C;H�,C�) let R ∈ U(�) be as in Theorem 7.27p.128 (Lift

condition). Then the elements of the set

{RQRRLU | Q ∈ U(�) ∩ (id� + I1(�))} = {eiϕ
RRLU | ϕ ∈ R}

are the only unitary maps from FS to FS� in the set {RTLU | T ∈ U(�)}.

In this sense we refer to the lift LURR as being unique up to a phase. A typical situation is
this: Consider, for example, the one-particle Dirac time-evolution U : H → H and assume
that U ∈ U0

res(H ,C;H ,C�) for two given polarization classes C,C� ∈ Pol(H)/≈0. We choose
Φ,Φ� ∈ Seas⊥(H) such that rangeΦ ∈ C and rangeΦ� ∈ C�. By Lemma 7.12p.121 (Connection
between ∼ and ≈0) it follows that S = S(Φ)∼ ∈ Ocean(C)/∼ and S� = S(Φ) ∈ Ocean(C�)/∼
from which we built our wedge spaces FS and FS� which elements represent the “in” and “out”
states, respectively. Theorem 7.27p.128 (Lift condition) and Corollary 7.29 (Uniqueness of the lift
up to a phase) assure for the S,S� that there is an R ∈ U(�) such that

FS
LU �� FUS

RR ��FUSR = FS� eiϕ
��

ϕ ∈ R.

We have illustrated this situation in Figure 7.1p.130.

In Subsection 7.3.1p.130 we show that the one-particle Dirac time-evolution UA(t1, t0) for times
t0 and t1 in any external, smooth and compactly supported field A is in U0

res(H ,C;H ,C�) for
specific C,C� ∈ Pol(H)/≈0. We will show in Subsection 7.3.2p.144 that C and C� are uniquely
identified by the magnetic components of A at the times t0 and t, respectively. In this sense, for
U = UA there exists a natural lift RRLU which is unique up to a phase. This will be summarized
in Subsection 7.3.3p.150.
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Figure 7.1: A sketch of the time-evolution.

7.3 The Time-Evolution of Dirac Seas

We now come to the one-particle Dirac time-evolution in an external four-vector field A ∈

C∞c (R4,R4), i.e. the set of infinitely often differentiable R4 valued functions on R4 with compact
support. Recall the discussion at the end of Subsection 7.2.3p.127: In order to apply Theorem
7.27p.128 (Lift condition) to the one-particle Dirac time-evolution UA(t1, t0) for fixed t0, t1 ∈ R
and in this way to obtain a lift to unitary maps from one wedge space to another (the second
quantized time-evolution) we need to show that UA(t1, t0) ∈ U0

res(H ,C(t0);H ,C(t1)) for appro-
priate C(t0),C(t1) ∈ Pol(H)/≈0. To ensure this condition holds is the main content of this last
section.

This section is structured as follows: In the first subsection we show that for any t0, t1 ∈ R there
always exist C(t0),C(t1) ∈ Pol(H)/≈0, depending only on A(t0) and A(t1), respectively, such
that UA(t1, t0) ∈ U0

res
�
H ,C(t0);H ,C(t1)

�
. In the second subsection we identify the polarization

classes C(t) uniquely by the magnetic components of A(t) for all t ∈ R. The third subsection
combines these results with Section 7.2p.116 and shows the existence of the second quantized
Dirac time-evolution for the external field problem in quantum electrodyanmics. Finally, the
fourth subsection then concludes with the analysis of second quantized gauge transformations
as unitary maps between varying Fock spaces.

7.3.1 One-Particle Time-Evolution

Throughout this section we work withH = L2(R3,C4), with R3 being interpreted as momentum
space. The free Dirac equation in momentum representation is given by

i
d
dt
ψ0(t) = H0ψ0(t) (7.44)
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for ψ0(t) ∈ domain(H0) ⊂ H where

H0(p) = α · p + βm =
3�

µ=1

αµpµ + βm, p ∈ R3 (7.45)

and the C4×4 Dirac matrices β and αµ, µ = 1, 2, 3, fulfill

β2 = 1

(αµ)2 = 1

{αµ, β} := αµβ + βαµ = 0
{αµ, αν} := αµαν + αναµ = 2δµν.

(7.46)

Which specific representation of this matrix algebra with hermitian matrices is used does not
affect any of the following arguments. For convenience we introduce also

α0 = 1.

H0(p) is a self-adjoint multiplication operator which therefore gives rise to a one-parameter
group of operators

U0(t1, t0) := exp(−iH0(t1 − t0)) (7.47)

on H for all t0, t1 ∈ R. For every solution ψ0(t) of the free Dirac equation (7.44p.130) one has
ψ0(t1) = U0(t1, t0)ψ0(t0). The matrix H0(p) has double eigenvalues ±E(p), where E(p) =�
|p|2 + m2 > 0, p ∈ R3. Therefore, the spectrum of the free Dirac operator is σ(H0) =

(−∞,−m] ∪ [+m,+∞) and the corresponding free spectral projectors P± are multiplication op-
erators with the matrices

P±(p) =
1
2

�
1 ±

H0(p)
E(p)

�
. (7.48)

We defineH± := P±H for whichH = H−⊕H+. For any linear operator L onH and signs σ, τ ∈
{+,−} we write Lστ = PσLPτ. Furthermore, Lev = L++ + L−− denotes the even (diagonal) part,
and Lodd = L+− + L−+ for the odd (non-diagonal) part of L. If L has an integral kernel (q, p) �→
L(p, q) it follows by equation (7.48) that the kernel of Lστ is given by (p, q) �→ Lστ(p, q) =
Pσ(p)L(p, q)Pτ(q).

Now let A = (Aµ)µ=0,1,2,3 ∈ C
∞
c (R4,R4) be a smooth, compactly supported, external four-vector

field. We denote its time slice at time t ∈ R by A(t) = (R3 � x �→ (Aµ(t, x))µ=0,1,2,3). The Dirac
equation with the external field A in momentum representation is then given by

i
d
dt
ψ(t) = HA(t)ψ(t) =

�
H0 + iZA(t)

�
ψ(t) (7.49)

where for A = (Aµ)µ=0,1,2,3 = (A0,−�A) ∈ C∞c (R3,R4), the operator ZA onH is defined as follows:

iZA =

3�

µ=0

αµ�Aµ. (7.50)

Here we understand �Aµ, µ = 0, 1, 2, 3, as convolution operators

(�Aµψ)(p) =
�

R3

�Aµ(p − q)ψ(q) dq, p ∈ R3. (7.51)

for ψ ∈ H and �Aµ being the Fourier transform of Aµ given by

�Aµ(p) =
1

(2π)3

�

R3
e−ipxAµ(x) dx. (7.52)
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Therefore, in momentum representation, ZA is an integral operator with integral kernel

(p, q) �→ ZA(p − q) = −i
3�

µ=0

αµ�Aµ(p − q), p, q ∈ R3. (7.53)

The Dirac equation with external field A gives also rise to a family of unitary operators
(UA(t1, t0))t0,t1∈R onH which fulfill

∂

∂t1
UA(t1, t0) = −iHA(t1)UA(t1, t0), (7.54)

∂

∂t0
UA(t1, t0) = iUA(t1, t0)HA(t0) (7.55)

on the appropriate domains, such that for every solution ψ(t) of equation (7.49p.131) one has
ψ(t1) = UA(t1, t0)ψ(t0); see [Tha93].

In order to present the main result of this section in a short form we introduce:

Definition 7.30.Induced
polarization

classes

For A ∈ C∞c (R3,R4), we define the integral operator QA : H → H by its
integral kernel, also denoted by QA:

R3
× R3

� (p, q) �→ QA(p, q) :=
ZA
+−(p, q) − ZA

−+(p, q)
i(E(p) + E(q))

(7.56)

with ZA
±∓(p, q) := P±(p)ZA(p − q)P∓(q).

Furthermore, we define the polarization class C(0) := [H−]≈0 belonging to the negative spectral
spaceH− of the free Dirac operator H0, and therewith the polarization classes

C(A) := eQA
C(0) = {eQA

V | V ∈ C(0)}. (7.57)

The operators QA are bounded and skew-adjoint. They will appear naturally in the iterative
scheme that we use to control the time-evolution, and their origin will become clear as we go
along (Lemma 7.35p.137).

We now state the main result of this section, using the notation of Section 7.2p.116.

Theorem 7.31.Dirac
time-evolution

with external
field

For all A ∈ C∞c (R4,R4) and for all t1, t0 ∈ R it is true that

UA(t1, t0) ∈ U0
res
�
H ,C(A(t0)); H ,C(A(t1))

�
.

We do not focus on finding the weakest regularity conditions on the external four-vector potential
A under which this theorem holds, although much weaker conditions will suffice. Actually,
the theorem and also its proof remain valid for four-vector potentials A in the following class
A ⊃ C∞c (R4,R4):

Definition 7.32.Class of external
four-vector
potentials

LetA be the class of four-vector potentials A = (Aµ)µ=0,1,2,3 : R4 → R4 such
that for all µ = 0, 1, 2, 3, m = 0, 1, 2 and p = 1, 2 the integral

�

R

�����
dm

dtm
�Aµ(t)

�����
p

dt (7.58)

exists and is finite. Here�Aµ(t) denotes the Fourier transform of a time slice Aµ(t) with respect to
the spatial coordinates.
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This class of four-vector potentials has also been considered by Scharf in his analysis of the
second-quantized scattering operator in an external potential (Theorem 5.1 in [Sch95]). We
remark that the classA does not contain the Coulomb potential, not even when one truncates it
at large times.

Since Skeleton of the

proof of

Theorem 7.31

quite some computation is involved in the proof of the above theorem, we split it up into
a series of small lemmas, to separate technicalities from ideas. Here is the skeleton of the proof:

Theorem 7.31
(Dirac time-evolution

with external field)
Lemma 7.33p.134

(Gronwall argument)
��

Lemma 7.36p.138

(I2 estimates)

��
��

Lemma 7.34p.137

(Born series)

��

Lemma 7.35p.137

(Partial integration)

��

Lemma 7.37p.143

(Integral estimates)

��

The key ideas are worked out in Lemma 7.33p.134 (Gronwall argument). The other lemmas have
a more technical character.

In the following, when dealing with a given external vector potential A ∈ A, we abbreviate
U(t1, t0) = UA(t1, t0), H(t) = HA(t), Z(t) = ZA(t), and Q(t) = QA(t). We start with putting things
together:

Proof of Theorem 7.31p.132. Dirac

time-evolution

with external

field

By Lemma 7.2p.117(b), we need only to show that for some V ∈
C(A(t0)) and some W ∈ C(A(t1)) it is true that

PV⊥U(t1, t0)PW , PVU(t1, t0)PW⊥ ∈ I2(H). (7.59)

Let us choose V = eQ(t0)H− ∈ C(A(t0)) and W = eQ(t1)H− ∈ C(A(t1)). Then, claim (7.59) is
equivalent to

eQ(t1)P±e−Q(t1)U(t1, t0)eQ(t0)P∓e−Q(t0)
∈ I2(H). (7.60)

Since eQ(t1) and e−Q(t0) are both unitary operators, this claim is equivalent to

P±e−Q(t1)U(t1, t0)eQ(t0)P∓ ∈ I2(H). (7.61)

Now Q(t) is a bounded operator, and Lemma 7.36p.138 (I2 estimates) states that Q2(t) ∈ I2(H) for
any time t ∈ R. Therefore, by expanding e±Q(t) in its series, we find that

e±Q(t)
− (idH ± Q(t)) ∈ I2(H). (7.62)

Hence it suffices to prove

P±(idH − Q(t1))U(t1, t0)(idH + Q(t0))P∓ ∈ I2(H). (7.63)

This is just the claim (7.66p.134) of Lemma 7.33p.134 (Gronwall Argument) and concludes the proof.
�

The following stenographic notation will be very convenient: For families of operators A =
(A(t1, t0))t1≥t0 and B = (B(t1, t0))t1≥t0 , indexed by time intervals [t0, t1] ⊂ R, we set

AB =
�� t1

t0
A(t1, t)B(t, t0) dt

�

t1≥t0
,
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whenever this is well-defined. Furthermore, if C = (C(t))t∈R and D = (D(t))t∈R denote families
of operators indexed by time points, we use the abbreviations AC = (A(t1, t0)C(t0))t1≥t0 , CA =
(C(t1)A(t1, t0))t1≥t0 , and CD = (C(t)D(t))t∈R. Recall that � · � denotes the operator norm on
bounded operators onH . We set

�A�∞ := sup
s,t∈R: s≥t

�A(s, t)�,

�C�1 :=
�

R
�C(t)� dt,

�A�I2,∞ := sup
s,t∈R: s≥t

�A(s, t)�I2 ,

�C�I2,∞ := sup
t∈R
�C(t)�I2 ,

(7.64)

whenever these quantities exist. Recall Definition 7.30p.132 (Induced polarization classes) of the
operators Q(t) = QA(t), and let (Q�(t) : H → H)t∈R denote their time derivative, defined by
using the time derivative of the corresponding kernels

(p, q) �→ Q�(t, p, q) :=
∂

∂t
QA(t)(p, q), p, q ∈ R3, t ∈ R. (7.65)

We now state and prove the lemmas in the above diagram.

Lemma 7.33.Gronwall
argument

For all t0, t1 ∈ R, the following holds:

P±(idH − Q(t1))U(t1, t0)(idH + Q(t0))P∓ ∈ I2(H) (7.66)

Proof. Without loss of generality and to simplify the notation, we treat only the case t1 ≥ t0. Let

R := (idH − Q)U(idH + Q). (7.67)

The strategy is to expand R in a series and to check the Hilbert-Schmidt properties of the non-
diagonal part term by term. Lemma 7.34p.137 (Fixed point form of the Dirac equation) states that
the Dirac time-evolution U fulfills the fixed-point equation U = U0 +U0ZU (equation (7.91p.137)
below); recall that U0 is the free Dirac time-evolution introduced in (7.47p.131). Iterating this
fixed point equation once yields

U = U0 + U0ZU0 + U0ZU0ZU.

Before going into the details, let us explain informally some ideas behind the subsequent proof.
The first-order term U0ZU0 appears over and over again. Therefore, one may expect that its
properties will be inherited by all other orders within the perturbation series. We therefore take a
closer look at this term in Lemma 7.35p.137 (Partial integration). Equation (7.94p.137) in this lemma
states

U0ZU0 = QU0
− U0Q − U0Q�U0 + U0ZevU0.

One finds that the non-diagonal part (U0ZU0)odd does in general not consist of Hilbert-Schmidt
operators because of the first two terms QU0−U0Q on the right hand side, which are the bound-
ary terms of the partial integration. However, we show now that the transformation induced by Q
remedies these terms such that the non-diagonal part of R consists of Hilbert-Schmidt operators.

Substituting the formula (7.94p.137), cited above, into the fixed point equation U = U0 + U0ZU,
we get

U = U0 + QU0
− U0Q − U0Q�U0 + U0ZevU0

+ QU0ZU − U0QZU − U0Q�U0ZU + U0ZevU0ZU

= U0 + QU − U0Q − U0Q�U + U0ZevU − U0QZU. (7.68)

We rewrite this as

(idH − Q)U = U0(idH − Q) + U0(−Q� + Zev − QZ)U. (7.69)
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Multiplying (7.69) with idH + Q from the right and using the equation

U(idH + Q) = (idH + Q)R + Q2U(idH + Q) = U(idH + Q),

which follows from the Definition (7.67) of R, we get

R = U0(idH − Q2) + U0(−Q� + Zev − QZ)U(idH + Q)

= U0(−Q� + Zev − QZ)(idH + Q)R

+ U0(idH − Q2) + U0(−Q� + Zev − QZ)Q2U(idH + Q). (7.70)

We view (7.70) also as a fixed point equation for R. In order to control the Hilbert-Schmidt
norm of the non-diagonals of R, we solve this fixed point equation for R by iteration. Using the
abbreviation

F := (−Q� + Zev − QZ)(idH + Q), (7.71)

G := −U0Q2 + U0(−Q� + Zev − QZ)Q2U(idH + Q), (7.72)

we rewrite (7.70) as R = U0FR + U0 +G and define recursively for n ∈ N0:

R(0) := 0, R(n+1) := U0FR(n) + U0 +G. (7.73)

Although our main interest is to control the Hilbert-Schmidt norm �R(t1, t0)odd�I2 , we need also
some control of the R(n) in the operator norm. We show first that �R(n) − R�∞ → 0 as n → ∞.
We have for all n ∈ N0

R(n+1)
− R = U0F(R(n)

− R), (7.74)

which implies

R(n)
− R = (U0F)n(R(0)

− R) = −(U0F)nR. (7.75)

Now for s ≥ t, we know �U0(s, t)F(t)� = �F(t)�, because U0(s, t) is unitary. Let t1 ≥ t0. Using
the abbreviation

I(t1, t0) := {(s1, . . . , sn) ∈ Rn
| t1 > sn > . . . > s1 > t0}, (7.76)

we get

�[R(n)
− R](t1, t0)� = �[(U0F)nR](t1, t0)�

≤

�

I(t0,t1)
�F(sn)��F(sn−1)� . . . �F(s1)��R(s1, t0)� ds1 . . . dsn

≤
�F�n1

n!
�R�∞

n→∞
−→ 0; (7.77)

we use here the bounds �F�1 < ∞ and �R�∞ < ∞ from (7.100p.138) in Lemma 7.36p.138, below.
Note that the convergence in (7.77) is uniform in the time variables t0 and t1. This proves the
claim

�R(n)
− R�∞

n→∞
−→ 0. (7.78)

As a consequence, we find

sup
n∈N0

�R(n)
�∞ ≤ sup

n∈N0

�R(n)
− R�∞ + �R�∞ < ∞. (7.79)

Now we split F into its diagonal and non-diagonal parts: F = Fev + Fodd, where

Fev = Zev − QZodd − QQ� − QZevQ, (7.80)
Fodd = ZevQ − QZev − Q� − QZoddQ; (7.81)
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recall that Q is odd: Q = Qodd. We calculate for n ≥ 1:

R(n+1) = U0FR(n) + U0 +G

= U0FevR(n) + U0FoddR(n) + U0 +G

= U0FevR(n) + U0FoddU0FR(n−1) + U0FoddG + U0FoddU0 + U0 +G. (7.82)

Estimating the Hilbert-Schmidt norm for the non-diagonals in each summand on the right hand
side in (7.82p.136) now gives:

�R(n+1)(t1, t0)odd�I2 ≤

� t1

t0
�[U0Fev](t1, t)��R(n)(t, t0)odd�I2 dt

+

� t1

t0
�[U0FoddU0](t1, t)�I2�[FR(n−1)](t, t0)� dt

+

� t1

t0
�[U0Fodd](t1, t)��G(t, t0)�I2 dt

+ �[U0FoddU0](t1, t0)�I2 + �G(t1, t0)�I2

≤

� t1

t0
�Fev(t)��R(n)(t, t0)odd�I2 dt +C40, (7.83)

where we have abbreviated

C40 :=�U0FoddU0
�I2,∞�F�1 sup

n∈N
�R(n−1)

�∞ + �Fodd�1�G�I2,∞

+ �U0FoddU0
�I2,∞ + �G�I2,∞. (7.84)

Lemma 7.36p.138 (I2 estimates) states that U0FoddU0 and G consist of Hilbert-Schmidt operators,
with �U0FoddU0�I2,∞ < ∞ and �G�I2,∞ < ∞. Furthermore, it also states that �F�1 < ∞, which
implies also �Fev�1 < ∞ and �Fodd�1 < ∞. Combining these facts with the bound (7.79p.135), it
follows that

C40 < ∞. (7.85)

We claim that the following bound holds for all n ≥ 1:

�R(n)(t1, t0)odd�I2 ≤ C40 exp
�� t1

t0
�Fev(t)� dt

�
. (7.86)

We prove it by induction. For n = 1, we have R(1) = U0 + G. Using U0
odd = 0 and t1 ≥ t0, we

conclude
�R(1)(t1, t0)odd�I2 ≤ �G�I2,∞ ≤ C40 ≤ C40 exp

�� t1

t0
�Fev(t)� dt

�
. (7.87)

For the induction step n� n + 1, we calculate, using the estimate (7.83) in the first step and the
induction hypothesis in the second step:

�R(n+1)(t1, t0)odd�I2 ≤

� t1

t0
�Fev(t)��R(n)(t, t0)odd�I2 dt +C40

≤ C40

� t1

t0
�Fev(t)� exp

�� t

t0
�Fev(s)� ds

�
dt +C40

= C40 exp
�� t1

t0
�Fev(t)� dt

�
. (7.88)

Finally, we get �R(n)
odd�I2,∞ ≤ C40e�Fev�1 < ∞, which is a uniform bound in n. We now use

following general fact, which follows from Fatou’s lemma: If (Ln)n∈N is a sequence of Hilbert-
Schmidt operators converging to a bounded operator L with respect to the operator norm, then
the following bound holds:

�L�I2 ≤ lim inf
n→∞

�Ln�I2 . (7.89)
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An application of this fact to the sequence (R(n)
odd(t1, t0))n∈N, using the uniform convergence stated

in (7.78p.135), yields the result:

sup
t1≥t0
�[(idH − Q(t1))U(t1, t0)(idH + Q(t0))]odd�I2 = �Rodd�I2,∞ ≤ C40e�Fev�1 < ∞. (7.90)

This proves the claim (7.66p.134). �

For our purposes, the following fixed point form (7.91) of the Dirac equation is technically more
convenient to handle than the Dirac equation in its differential form (7.49p.131), as the fixed point
equation gives rise to iterative approximation methods and deals only with bounded operators.
We could have used it as our starting point.

Lemma 7.34. Fixed point form
of the Dirac
equation

The one-particle Dirac time-evolution U fulfills the fixed point equation

U = U0 + U0ZU. (7.91)

As the fixed-point form (7.91) of the Dirac equation is well-known, we only sketch its proof:

Proof. Using the Dirac equation in the form (7.54p.132-7.55p.132), we get for t0, t1 ∈ R on an
appropriate domain:

∂

∂t
[U0(t1, t)U(t, t0)] = −iU0(t1, t)[HA(t)

− H0]U(t, t0) = U0(t1, t)Z(t)U(t, t0). (7.92)

Note that although HA(t) and H0 are unbounded operators, their difference iZ(t) is a bounded
operator. Integrating (7.92), and using U(t, t) = idH = U0(t, t), we get

U(t1, t0) = U0(t1, t0) +
� t1

t0
U0(t1, t)Z(t)U(t, t0) dt. (7.93)

This equation recast in our stenographic notation is the fixed point equation (7.91) for U. �

Lemma 7.35. Partial
integration

The following integration-by-parts formula holds true:

U0ZU0 = QU0
− U0Q − U0Q�U0 + U0ZevU0. (7.94)

Proof. We split Z = Zev + Zodd into even and odd pieces:

U0ZU0 = U0ZoddU0 + U0ZevU0 (7.95)

Now U0ZoddU0 = U0Z+−U0+U0Z−+U0 consists of integral operators with the following integral
kernels: The component U0Z+−U0 has the integral kernel

(p, q) �→
� t1

t0
e−i(t1−t)H0(p)P+(p)ZA(t)(p − q)P−(q)e−i(t−t0)H0(q) dt

=

� t1

t0
e−i(t1−t)E(p)P+(p)ZA(t)(p − q)P−(q)e+i(t−t0)E(q) dt

= e−it1E(p)P+(p)
� t1

t0
eit(E(p)+E(q))ZA(t)(p − q) dt P−(q)e−it0E(q). (7.96)

Recall that the function E : R3 → R is defined by E(p) = +
�

m2 + p2. The crucial point is that
the frequencies E(p) and E(q) have equal signs; they do not partially cancel each other, giving
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rise to a highly oscillatory integral at high momenta. Note that this works only for the odd part
of Z. Integrating by parts, the right hand side in (7.96) equals

. . . =
P+(p)ZA(t)(p − q)P−(q)

i(E(p) + E(q))
ei(t1−t0)E(q)

− e−i(t1−t0)E(p) P+(p)ZA(t)(p − q)P−(q)
i(E(p) + E(q))

− e−it1E(p)P+(p)
� t1

t0

eit(E(p)+E(q))

i(E(p) + E(q))
∂

∂t
ZA(t)(p − q) dt P−(q)e−it0E(q). (7.97)

Similarly, the integral kernel of the −+ component U0Z−+U0 can be rewritten by an integration
by parts as

P−(p)ZA(t)(p − q)P+(q)
−i(E(p) + E(q))

e−i(t1−t0)E(q)
− ei(t1−t0)E(p) P−(p)ZA(t)(p − q)P+(q)

−i(E(p) + E(q))

−eit1E(p)P−(p)
� t1

t0

e−it(E(p)+E(q))

−i(E(p) + E(q))
∂

∂t
ZA(t)(p − q) dt P+(q)eit0E(q). (7.98)

The sum of (7.97) and (7.98) is just the integral kernel of QU0 + U0Q − U0Q�U0. Substituting
this into (7.95p.137) proves the claim (7.94p.137). �

For measurable functions f : R3 → C and g : R3×R3 → C, we use the notation � f (p)�2,p := � f �2
and �g(p, q)�2,(p,q) := �g�2. The same notation is used for matrix-valued functions f and g.
Recall that the class A ⊃ C∞c (R4,R4) of vector potentials was introduced in Definition 7.32p.132

(Class of external four-vector potentials).

Lemma 7.36.I2 estimates Assume that the external vector potential A belongs to the class A. Then the
operators U0ZevQU0, U0QZevU0, U0Q�U0, Q2, Q�Q and QZQ, constructed with this poten-
tial A, are Hilbert-Schmidt operators. Furthermore, their Hilbert-Schmidt norm is uniformly
bounded in the time variables. Finally, the family of operators F = (−Q� + Zev − QZ)(idH + Q),
G = −U0Q2 + U0(−Q� + Zev − QZ)Q2U(idH + Q) and R = (idH − Q)U(idH + Q), introduced
in (7.71p.135), (7.72p.135), and (7.67p.134), respectively, fulfill the following bounds in the Hilbert-
Schmidt norm:

�U0FoddU0
�I2,∞ < ∞ and �G�I2,∞ < ∞, (7.99)

and the following bounds in the operator norm:

�F�1 < ∞ and �R�∞ < ∞. (7.100)

Proof. Preliminarily, we estimate for any A ∈ A, µ = 0, 1, 2, 3, m = 0, 1, and n = 1, 2, using
the fundamental theorem of calculus and averaging the starting point s uniformly over the unit
interval:

sup
t∈R

�����
dm

dtm
�Aµ(t)

�����
n
= sup

t∈R

������

� 1

0

�
dm

dsm
�Aµ(s) +

� t

s

dm+1

dum+1
�Aµ(u) du

�
ds
������

n

≤

�

R

�����
dm

dtm
�Aµ(t)

�����
n

dt +
�

R

������
dm+1

dtm+1
�Aµ(t)

������
n

dt < ∞.
(7.101)

At first let us examine the operators U0ZevQU0, U0QZevU0, U0Q�U0. All of these operators
have in common that the operator Q or its derivative are sandwiched between two free time-
evolution operators U0. The kernel of Q, equation (7.56p.132), appeared the first time after a
partial integration in the time variable, Lemma 7.94p.137 (Partial Integration), which gave rise to
the factor [i(E(p)+E(q))]−1. The idea is that with another partial integration in the time variable,
we will gain another such factor, giving enough decay to see the Hilbert-Schmidt property of the
kernel.
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In order to treat a part of the cases simultaneously, let V denote ZevQ, QZev, or Q�. Note that in
each of these cases, for t ∈ R, V(t) : H → H is an odd integral operator. We denote its integral
kernel by (p, q) �→ V(t, p, q). For any t0, t1 ∈ R, we have

�(U0VU0)(t1, t0)�2 ≤ �(U0V+−U0)(t1, t0)�2 + �(U0V−+U0)(t1, t0)�2, (7.102)

�(U0V±∓U0)(t1, t0)�2 =
������

� t1

t0
dt e∓iE(p)(t1−t)V±∓(t, p, q)e±iE(q)(t−t0)

������
2,(p,q)

. (7.103)

Using a partial integration, the last expression (7.103) is estimated as follows.

. . . =

������

� t1

t0
dt
�

d
dt

e∓i[E(p)+E(q)]t

∓i[E(p) + E(q)]

�
V±∓(t, p, q)e∓iE(p)t1e±iE(q)t0

������
2,(p,q)

≤ 2 sup
t∈R

�����
V±∓(t, p, q)
E(p) + E(q)

�����
2,(p,q)

+

�

R
dt
�����

V �±∓(t, p, q)
E(p) + E(q)

�����
2,(p,q)

=: f [V±∓] + g[V �±∓]. (7.104)

The first summand comes from the two boundary terms for t = t0 and t = t1. In the following,
we show that f [V±∓] and g[V �±∓] are finite. Then, U0ZevQU0,U0QZevU0,U0Q�U0 are in I2 with
a Hilbert-Schmidt norm uniformly bounded in the time variable.

Case V = ZevQ: The 2-norm of the kernel of V±∓(t) is estimated as follows:

|V±∓(t, p, q)| =
�����

�

R3
dk

Z±±(t, p, k)Z±∓(t, k, q)
E(k) + E(q)

�����

=

��������

�

R3
dk

3�

µ,ν=0

P±(p)αµP±(k)ανP∓(q)�Aµ(t, p − k)�Aν(t, k − q)
E(k) + E(q)

��������

≤

3�

µ,ν=0

�

R3
dk |P±(p)αµP±(k)ανP∓(q)|

|�Aµ(t, p − k)�Aν(t, k − q)|
E(k) + E(q)

≤ C41

3�

µ,ν=0

�

R3
dk
|�Aµ(t, p − k)�Aν(t, k − q)|

E(k) + E(q)
(7.105)

with the constant

C41 :=
3�

µ,ν=0

sup
p,k,q∈R3

|P±(p)αµP±(k)ανP∓(q)| < ∞; (7.106)

note that supp∈R3 |P±(p)| < ∞ holds, because P± are orthogonal projections. An analogous
argument for V � yields

|V �±∓(t, p, q)| =
�����

�

R3
dk

Z�±±(t, p, k)Z±∓(t, k, q) + Z±±(t, p, k)Z�±∓(t, k, q)
E(k) + E(q)

�����

≤ C41

3�

µ,ν=0

�

R3
dk
|�A�µ(t, p − k)�Aν(t, k − q)| + |�Aµ(t, p − k)�A�ν(t, k − q)|

E(k) + E(q)
. (7.107)

With the bound (7.105), we compute

f [V±∓] = 2 sup
t∈R

�����
V±∓(t, p, q)
E(p) + E(q)

�����
2,(p,q)

≤ 2C41

3�

µ,ν=0

sup
t∈R

�������

�

R3
dk

|�Aµ(t, p − k)�Aν(t, k − q)|
[E(p) + E(q)][E(k) + E(q)]

�������
2,(p,q)

. (7.108)
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Lemma 7.37p.143(iip.143) (Integral estimates), applied to the present situation, states that the norm
in the last expression is bounded by C42�

�Aµ(t, ·)�1��Aν(t, ·)�2 with a finite constant C42. Applying
this yields

f [V±∓] ≤ 2C41C42

3�

µ,ν=0

sup
t∈R
��Aµ(t, ·)�1��Aν(t, ·)�2. (7.109)

The fact A ∈ A and inequality (7.101p.138) ensure that this expression is finite.

The second summand on the right hand side of (7.104p.139) is estimated with the help of the bound
(7.107p.139) as follows:

g[V �±∓] =
�

R
dt
�����

V �±∓(t, p, q)
E(p) + E(q)

�����
2,(p,q)

≤ C41

3�

µ,ν=0

�

R
dt

�������

�

R3
dk

|�A�µ(t, p − k)�Aν(t, k − q)|
[E(p) + E(q)][E(k) + E(q)]

�������
2,(p,q)

+C41

3�

µ,ν=0

�

R
dt

�������

�

R3
dk

|�Aµ(t, p − k)�A�ν(t, k − q)|
[E(p) + E(q)][E(k) + E(q)]

�������
2,(p,q)

. (7.110)

Again by Lemma 7.37p.143(ii) (Integral estimate) we then find

g[V �±∓(t)] ≤ C41C42

3�

µ,ν=0

�

R
dt
�
��A�µ(t)�1��Aν(t)�2 + ��Aµ(t)�1��A�ν(t)�2

�
, (7.111)

while the fact A ∈ A together with its consequence (7.101p.138) ensure the finiteness of this
expression. Summarizing, we have shown that �U0ZevQU0�I2,∞ < ∞.

Case V = QZev: We reduce this case to the case V = ZevQ, which we treated already. For any
linear operator A on H , �A�I2 = �A∗�I2 holds. Using this and recalling that Z is self-adjoint and
Q is skew-adjoint, we compute

�U0QZevU0
�I2,∞ = � − (U0ZevQU0)∗�I2,∞ = �U

0ZevQU0
�I2,∞, (7.112)

which we have already shown to be finite.

Case V = Q�: In this case we get

|V±∓(t, p, q)| =
|Z�±∓(t, p, q)|
E(p) + E(q)

≤

3�

µ=0

|P±(p)αµP∓(q)|
|�A�µ(t, p − q)|
E(p) + E(q)

≤ C43

3�

µ=0

|�A�µ(t, p − q)|
E(p) + E(q)

(7.113)

with the finite constant

C43 :=
3�

µ=0

sup
p,q∈R3

|P±(p)αµP∓(q)|, (7.114)

A similar bound holds for the derivative

|V �±∓(t, p, q)| ≤ C43

3�

µ=0

|�A��µ (t, p − q)|
E(p) + E(q)

. (7.115)
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Lemma 7.37p.143(i) (Integral estimates), applied to the present situation, states the following
bound: �������

�A�µ(t, p − q)
[E(p) + E(q)]2

�������
2,(p,q)

≤ C42�
�A�µ(t)�2. (7.116)

Using this yields the following estimate:

f [V±∓(t)] = 2 sup
t∈R

�����
V±∓(t, p, q)
E(p) + E(q)

�����
2,(p,q)

≤ 2C43

3�

µ=0

sup
t∈R

�������

�A�µ(t, p − q)
[E(p) + E(q)]2

�������
2,(p,q)

≤ 2C43C42

3�

µ=0

sup
t∈R
��A�µ(t)�2. (7.117)

The fact that A ∈ A and inequality (7.101p.138) ensures the finiteness of this expression. Further-
more, we estimate

g[V �±∓(t)] =
�

R
dt
�����

V �±∓(t, p, q)
E(p) + E(q)

�����
2,(p,q)

≤ C43

3�

µ=0

�

R
dt

�������

�A��µ (t, p − q)
[E(p) + E(q)]2

�������
2,(p,q)

(7.118)

Again Lemma 7.37p.143(i) (Integral estimates) gives that the last expression is bounded as follows:

. . . ≤ C43C42

3�

µ=0

�

R
dt ��A��µ (t)�2 (7.119)

which is also finite since A ∈ A. Summarizing, we have shown �U0Q�U0�I2,∞ < ∞.

Next we examine the operators Q2, Q�Q and QZQ. All of them have in common that Q or its
derivatives appear twice, and therefore we have two of such factors [E(p)+E(q)]−1 in the kernel
of these operators. We shall see that these factors give enough decay to ensure the finiteness of
the Hilbert-Schmidt norms of these operators.

Cases Q2 and Q�Q: We denote the nth derivative with respect to time t by a superscript (n).
For n = 0, 1 we estimate

sup
t∈R
�Q(n)(t)Q(t)�2

≤ sup
t∈R

3�

µ,ν=0

�

±

�������

�

R3
dk |P±(p)αµP∓(k)ανP±(q)|

|�A(n)
µ (t, p − k)�Aν(t, k − q)|

[E(p) + E(k)][E(k) + E(q)]

�������
2,(p,q)

≤ C44

3�

µ,ν=0

sup
t∈R

�������

�

R3
dk
|�A(n)
µ (t, p − k)�Aν(t, k − q)|

[E(p) + E(k)][E(k) + E(q)]

�������
2,(p,q)

(7.120)

with the finite constant

C44 :=
3�

µ,ν=0

�

±

sup
p,k,q∈R3

|P±(p)αµP∓(k)ανP±(q)|. (7.121)

Lemma 7.37p.143(iii) (Integral estimates) provides the upper bound C42�
�A(n)
µ (t)�1��Aν(t)�2 for the

norm of the integral on the right hand side of (7.120). Thus, the right hand side of (7.120) is
bounded by:

. . . ≤ C42C44

3�

µ,ν=0

sup
t∈R
��A(n)
µ (t)�1��Aν(t)�2, (7.122)
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which is finite because of A ∈ A and inequality (7.101p.138). Hence, we have shown �Q2�I2,∞ < ∞
and �Q�Q�I2,∞ < ∞.

Case QZQ: In this case we find

�Q(t)ZQ(t)�2

=

��������

�

σ,τ∈{−,+}

�

R3
dk
�

R3
d j Q−σ,σ(t, p, k)Zσ,τ(t, k, j)Qτ,−τ(t, j, q)

��������
2,(p,q)

≤ 4 sup
σ,τ∈{−,+}

3�

λ,µ,ν=0

�����

�

R3
dk
�

R3
d j |P−σ(p)αλPσ(k)αµPτ( j)ανP−τ(q)|×

×
|�Aλ(t, p − k)�Aµ(t, k − j)�Aν(t, j − q)|

[E(p) + E(k)][E( j) + E(q)]

�����
2,(p,q)

≤ C45

�������

�

R3
dk
�

R3
d j
|�Aλ(t, p − k)�Aµ(t, k − j)�Aν(t, j − q)|

[E(p) + E(k)][E( j) + E(q)]

�������
2,(p,q)

(7.123)

with the finite constant

C45 := 4 sup
σ,τ∈{−,+}

3�

λ,µ,ν=0

sup
p,k, j,q∈R3

|P−σ(p)αλPσ(k)αµPτ( j)ανP−τ(q)|. (7.124)

By Lemma 7.37p.143(iv) (Integral estimates) we find the following bound for the right hand side
in (7.123):

. . . ≤ C45C42

3�

λ,µ,ν=0

sup
t∈R
�Aλ(t)�1�Aµ(t)�2�Aν(t)�2 (7.125)

which is finite because A ∈ A and inequality (7.101p.138). This proves the claim �QZQ�I2,∞ < ∞.

Finally, we prove the claims (7.99p.138) and (7.100p.138). As a consequence of A ∈ A and the
bound (7.101p.138), using the definition of the operators Z(t), Q(t), and Q�(t) by their integral
kernels given in the equations (7.53p.132), (7.56p.132), and (7.65p.134), we observe the following
operator norm bounds:

�L�1 < ∞ and �L�∞ < ∞ for L ∈ {Z,Zev,Q,Q�}; (7.126)

recall the definition (7.64p.134) of the norms used here. Furthermore, we know �U�∞ = 1, since
the one-particle Dirac time-evolution U consists of unitary operators. Combining these facts
proves the claim (7.100p.138). To prove the first claim in (7.99p.138), we calculate:

U0FoddU0 = U0ZevQU0
− U0QZevU0

− U0Q�U0
− U0QZoddQU0; (7.127)

see also equation (7.81p.135) Using the bounds in the Hilbert-Schmidt norm proven before, this
implies the claim �U0FoddU0�I2,∞ < ∞. Finally, using �U0�∞ = 1, �Q2�I2,∞ < ∞, �U�∞ = 1,
and the bounds (7.126), the second claim �G�I2,∞ < ∞ in (7.99p.138) follows also. This finishes
the proof of the lemma. �

We now state and prove the integral estimates that were used in the previous proof. Recall that
the function E : R3 → R is defined by E(p) =

�
|p|2 + m2.
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Lemma 7.37. Integral
estimates

For C42 := �E−2�2 < ∞, the following bounds hold for all A1, A3 ∈ L1(R3,C) and
A2 ∈ L2(R3,C):

������
A2(p − q)

[E(p) + E(q)]2

������
2,(p,q)

≤ C42�A2�2 (i)

�����

�

R3
dk

A1(p − k)A2(k − q)
[E(p) + E(q)][E(k) + E(q)]

�����
2,(p,q)

≤ C42�A1�1�A2�2 (ii)
�����

�

R3
dk

A1(p − k)A2(k − q)
[E(p) + E(k)][E(k) + E(q)]

�����
2,(p,q)

≤ C42�A1�1�A2�2 (iii)
�����

�

R3
dk
�

R3
d j

A1(p − j)A2( j − k)A3(k − q)
[E(p) + E( j)][E(k) + E(q)]

�����
2,(p,q)

≤ C42�A1�1�A2�2�A3�1 (iv)

Proof. Inequality (i): Substituting r := p − q and using E(p) + E(q) ≥ E(p), one finds
������

A2(p − q)
[E(p) + E(q)]2

������
2,(p,q)

≤

������
A2(r)
E(p)2

������
2,(p,r)

=
���E−2
���

2 �A2�2. (7.128)

Inequality (ii): Let B = {χ ∈ L2(R3 × R3,C) | �χ�2 ≤ 1} denote the unit ball in L2(R3 × R3,C).
Using a dual representation of the norm � · �2, we get

�����

�

R3
dk

A1(p − k)A2(k − q)
[E(p) + E(q)][E(k) + E(q)]

�����
2,(p,q)

≤

������

�

R3
dk
|A1(p − k)A2(k − q)|

E(q)2

������
2,(p,q)

≤ sup
χ∈B

�

R3
dp
�

R3
dq
�

R3
dk
������
A1(p − k)A2(k − q)

E(q)2 χ(p, q)
������ . (7.129)

Substituting j := p − k, we bound the right hand side in (7.129) as follows:

. . . = sup
χ∈B

�

R3
dp
�

R3
dq
�

R3
d j
������
A1( j)A2(p − j − q)

E(q)2 χ(p, q)
������

≤ �A1�1 sup
χ∈B

sup
j∈R3

�

R3
dp
�

R3
dq
������
A2(p − j − q)

E(q)2 χ(p, q)
������ . (7.130)

Substituting r := p − j − q and changing the order of integration turns this into

. . . = �A1�1 sup
χ∈B

sup
j∈R3

�

R3
dq
�

R3
dr
������
A2(r)
E(q)2χ(r + q + j, q)

������ . (7.131)

By the Cauchy-Schwarz inequality, we bound the last expression as follows:

. . . ≤ �A1�1 sup
χ∈B

sup
j∈R3

������
A2(r)
E(q)2]

������
2,(q,r)

�χ(r + q + j, q)�2,(q,r)

=
���E−2
���

2 �A1�1�A2�2. (7.132)

Inequality (iii): Similarly, we estimate
�����

�

R3
dk

A1(p − k)A2(k − q)
[E(p) + E(k)][E(k) + E(q)]

�����
2,(p,q)

≤

�����

�

R3
dk
|A1(p − k)A2(k − q)|

E(k)2

�����
2,(p,q)

≤ sup
χ∈B

�

R3
dp
�

R3
dq
�

R3
dk
�����
A1(p − k)A2(k − q)

E(k)2 χ(p, q)
����� . (7.133)

Although these terms looks similar to (7.129), there seems to be no substitution which enables
us to use the result (7.129) directly.
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Interchanging the order of integration and substituting first j := p − k and then r = k − q, the
right hand side in (7.133) equals

. . . = sup
χ∈B

�

R3
dq
�

R3
dk
�

R3
d j
�����
A1( j)A2(k − q)

E(k)2 χ( j + k, q)
�����

≤ �A1�1 sup
χ∈B

sup
j∈R

�

R3
dq
�

R3
dk
�����
A2(k − q)

E(k)2 χ( j + k, q)
�����

= �A1�1 sup
χ∈B

sup
j∈R

�

R3
dk
�

R3
dr
�����
A2(r)
E(k)2χ( j + k, k − r)

�����

≤ �A1�1 sup
χ∈B

sup
j∈R3

�����
A2(r)
E(k)2]

�����
2,(r,k)

�χ( j + k, k − r)�2,(r,k)

=
���E−2
���

2 �A1�1�A2�2. (7.134)

Inequality (iv): Again, we get
�����

�

R3
dk
�

R3
d j

A1(p − j)A2( j − k)A3(k − q)
[E(p) + E( j)][E(k) + E(q)]

�����
2,(p,q)

≤

�����

�

R3
dk
�

R3
d j
|A1(p − j)A2( j − k)A3(k − q)|

E( j)E(k)

�����
2,(p,q)

= sup
χ∈B

�

R3
dp
�

R3
dq
�

R3
dk
�

R3
d j
�����
A1(p − j)A2( j − k)A3(k − q)

E( j)E(k)
χ(p, q)

����� . (7.135)

Interchanging the integration and substituting r := p − j and s := k − q, this equals

. . . = sup
χ∈B

�

R3
dk
�

R3
d j
�

R3
dr
�

R3
ds
�����
A1(r)A2( j − k)A3(s)

E( j)E(k)
χ(r + j, k − s)

����� . (7.136)

We apply Hölder’s inequality twice to bound (7.136) as follows:

. . . ≤ �A1�1�A3�1 sup
χ∈B

sup
r,s∈R3

�

R3
dk
�

R3
d j
�����
A2( j − k)
E( j)E(k)

χ(r + j, k − s)
����� (7.137)

Using the Cauchy-Schwarz inequality and then the substitution u := j − k, this term is bounded
from above by

. . . ≤ �A1�1�A3�1

�����
A2( j − k)
E( j)E(k)

�����
2,( j,k)

≤ �A1�1�A3�1

�����
A2(u)

E(u + k)E(k)

�����
2,(u,k)

≤ �A1�1�A2�2�A3�1 sup
u∈R3

�����
1

E(u + k)E(k)

�����
2,k

≤ �A1�1�A2�2�A3�1
���E−2
���

2 . (7.138)

In the last step, we have once more used the Cauchy-Schwarz inequality. �

7.3.2 Identification of Polarization Classes

In this subsection we show that there is a one-to-one correspondence of the magnetic compo-
nents �A of the four-vector field A = (Aµ)µ=0,1,2,3 = (A0,−�A) onto the set of physically relevant
polarization classes C(A), introduced in Definition 7.30p.132 (Induced polarization classes).
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Theorem 7.38. Identification of
the polarization
classes

For A, A� ∈ C∞c (R3,R4), the following are equivalent:

(a) C(A) = C(A�)

(b) �A = �A�

On this ground the following notation makes sense:

Definition 7.39. Physical
polarization
classes

For A = (Aµ)µ=0,1,2,3 = (A0,−�A) in C∞c (R3,R4), we define

C(�A) := C(A).

For this subsection it is convenient to use the four-vector notation of special relativity. To avoid
confusion, in this section, three-vectors are labeled with an arrow. Define the Lorentz metric
(gµν)µ,ν=0,1,2,3 = diag(1,−1,−1,−1). Raising and lowering of Lorentz indices is performed with
respect to this metric. The inner product of two four-vectors a = (aµ)µ=0,1,2,3 = (a0, �a) and
b = (bν)ν=0,1,2,3 = (b0, �b) is given by

a · b := aµbµ =
3�

µ,ν=0

aµgµνbν = a0b0 − �a · �b (7.139)

where the · on the right hand side above is the Euclidian inner product on R3. Raising and
lowering of Lorentz indices is performed with respect to this metric. Within this four-vector
notation it is more convenient to write the Dirac C4×4 matrices (7.46p.131) as

(γµ)µ=0,1,2,3 = βα
µ (7.140)

which then fulfill

{γµ, γν} = 2gµν. (7.141)

Recall that the Fourier transform �A of a vector potential A = (Aµ)µ=0,1,2,3 = (A0,−�A) in
C∞c (R3,R4) was introduced in equation (7.52p.131). Using Feynman’s dagger /A = γµAµ, the
integral kernel Z = ZA, introduced in equation (7.53p.132), reads

Z(�p, �q) = −ieγ0�/A(�p − �q), �p, �q ∈ R3. (7.142)

Abbreviating again E(�p) =
�
|�p|2 + m2, we define two momentum four-vectors p+, p− for �p ∈ R3

by

p+ = (p+µ)µ=0,1,2,3 = (E(�p),−�p), (7.143)
p− = (p−µ)µ=0,1,2,3 = (−E(�p),−�p) (7.144)

such that the corresponding projection operators introduced in (7.48p.131) then read

P±(�p) =
1

2p±0
(/p± + m)γ0. (7.145)

Proof of Theorem 7.38. Proof of

Theorem 7.38

Note that eQA and eQA� are unitary maps onH , because QA and QA� are
skew-adjoint.

Let V = eQA
H− and W = eQA�

H−. By definition, V ∈ C(A) and W ∈ C(A�) hold. We need to
show that V ≈0 W holds if and only if �A = �A�.
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Now PV = eQA P−e−QA holds. Just as in (7.62p.133), we know that e±QA
− (idH ± QA) are Hilbert-

Schmidt operators. As a consequence, PV differs from (idH+QA)P−(idH−QA) only by a Hilbert-
Schmidt operator. Using that QA is odd, we know QAP−QA = [(QA)2]++. Because (QA)2 is a
Hilbert-Schmidt operator by Lemma 7.36p.138 (I2 estimates), it follows that QAP−QA ∈ I2(H).
We conclude that PV − idH −QAP− + P−QA ∈ I2(H). The same argument, applied to A�, shows
that PW − idH − QA�P− + P−QA� ∈ I2(H). Taking the difference, this implies

PV − PW ∈ (QA
− QA�)P− − P−(QA

− QA�) + I2(H)

= QA−A�P− − P−QA−A� + I2(H) = QA−A�
+− − QA−A�

−+ + I2(H); (7.146)

recall that QA is linear in the argument A. Using once more that QA−A� is odd, this yields the
following equivalences:

V ≈ W ⇔ PV − PW ∈ I2(H)⇔ QA−A�
+− − QA−A�

−+ ∈ I2(H)⇔ QA−A�
∈ I2(H) (7.147)

Now Lemma 7.40 (Hilbert-Schmidt Condition for Q) below, applied to A−A�, states that QA−A� ∈

I2(H) is equivalent to �A = �A�. Summarizing, we have shown that V ≈ W holds if and only if
�A = �A�.

In order to show that in this case V ≈0 W holds also, it remains to show charge(V,W) = 0. Now
because eQA

|H−→V and e−QA�
|W→H− are unitary maps, we get

charge(V,W) = ind(PW |V→W) = ind
�
e−QA�

PWeQA
����
H−→H−

�

= ind
�

P−e−QA�

eQA
����
H−→H−

�
= ind

�
(e−QA�

eQA
)−−
����
H−→H−

�
. (7.148)

Because QA is skew-adjoint and its square (QA)2 is a Hilbert-Schmidt operator, eQA is a compact
perturbation of the identity idH . The same argument shows that e−QA� is also a compact pertur-
bation of the identity. Hence, (e−QA� eQA)−−|H−→H− is a compact perturbation of idH− and thus
has Fredholm index 0. This shows that charge(V,W) = 0 and finishes the proof. �

The lemma used in the proof of Theorem 7.38p.145 (Identification of the polarization classes) is:

Lemma 7.40.Hilbert-Schmidt
condition for Q

For A = (Aµ)µ=0,1,2,3 = (A0,−�A) in C∞c (R3,R4), the following are equivalent:

1. QA ∈ I2(H),

2. �A = 0.

Proof. We calculate the squared Hilbert-Schmidt norm �QA�2I2
of QA. Using the abbreviations

QA
+−(�p, �q) = P+(�p)QA(�p, �q)P−(�q) and QA

−+(�p, �q) = P−(�p)QA(�p, �q)P+(�q), we get

�QA
�

2
I2
=

�

R3

�

R3
tr[QA(�p, �q)QA(�p, �q)∗] dp dq

=

�

R3

�

R3

�
tr[QA

+−(�p, �q)QA
+−(�p, �q)∗] + tr[QA

−+(�p, �q)QA
−+(�p, �q)∗]

�
dp dq. (7.149)

Inserting the Definition (7.56p.132) of QA, using that [γ0 /A(�p − �q)]∗ = γ0 /A(�q − �p) and that P+(p)
and P−(q) are orthogonal projections having the representation (7.145p.145), we express the first
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summand as follows:

tr[QA
+−(�p, �q)QA

+−(�p, �q)∗]

=
e2

4p+0q−0(p+0 − q−0)2 tr
�
[(/p+ + m)γ0][γ0�/A(�p − �q)][(/q− + m)γ0]

· [(/q− + m)γ0]∗[γ0�/A(�p − �q)]∗[(/p+ + m)γ0]∗
�

=
e2

4p+0q−0(p+0 − q−0)2 tr
�
(/p+ + m)�/A(�p − �q)(/q− + m)�/A(�q − �p)

�
(7.150)

Now we use the following formulas for traces of products of γ-matrices:

tr(γµγν) = 4gµν, (7.151)
tr(γµγνγκ) = 0, (7.152)

tr(γµγνγκγλ) = 4(gµνgκλ + gµλgκν − gµκgνλ). (7.153)

We obtain

0 ≤ tr[QA
+−(�p, �q)QA

+−(�p, �q)∗]

=
e2

4p+0q−0(p+0 − q−0)2 tr
�
(/p+ + m)�/A(�p − �q)(/q− + m)�/A(�q − �p)

�

=
e2

p+0q−0(p+0 − q−0)2

�
(m2
− p+ · q−)�A(�p − �q) · �A(�q − �p)

+ (p+ · �A(�p − �q))(q− · �A(�q − �p)) + (p+ · �A(�q − �p))(q− · �A(�p − �q))
�
. (7.154)

The second summand on the right hand side in (7.149p.146) can be calculated in a similar way by
exchanging the indices “+” and “−”:

0 ≤ tr[QA
−+(�p, �q)QA

−+(�p, �q)∗]

=
e2

p−0q+0(p−0 − q+0)2

�
(m2
− p− · q+)�A(�p − �q) · �A(�q − �p)

+ (p− · �A(�p − �q))(q+ · �A(�q − �p)) + (p− · �A(�q − �p))(q+ · �A(�p − �q))
�

= tr[QA
+−(�q, �p)QA

+−(�q, �p)∗]. (7.155)

Thus, the two summands in (7.149p.146) are the same up to exchanging �p and �q. In particular, this
yields

�QA
�

2
I2
= 2
�

R3

�

R3
tr[QA

+−(�p, �q)QA
+−(�p, �q)∗] dp dq

=

�

R3

�

R3

2e2

p+0q−0(p+0 − q−0)2

�
(m2
− p+ · q−)�A(�p − �q) · �A(�q − �p)

+ (p+ · �A(�p − �q))(q− · �A(�q − �p)) + (p+ · �A(�q − �p))(q− · �A(�p − �q))
�

dp dq. (7.156)

Let us now use this to prove that �A = 0 implies QA ∈ I2(H). In the case �A = 0, formula (7.156)
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boils down to

�QA
�

2
I2
= 2e2

�

R3

�

R3

E(�p)E(�q) − �p · �q − m2

E(�p)E(�q)(E(�p) + E(�q))2 |
�A0(�p − �q)|2 dp dq

= 2e2
�

R3

�

R3

E(�p)E(�p − �k) − �p · (�p − �k) − m2

E(�p)E(�p − �k)(E(�p) + E(�p − �k))2
|�A0(�k)|2 dp dk

= 2e2
�

R3

�

R3

E(�p)(E(�p − �k) − E(�p)) + �p · �k

E(�p)E(�p − �k)(E(�p) + E(�p − �k))2
|�A0(�k)|2 dp dk

≤ 2e2
�

R3

�

R3

E(�p − �k) − E(�p) + �p · �k/E(�p)

E(�p − �k)E(�p)2
|�A0(�k)|2 dp dk, (7.157)

where we have used E(�p)2 − |�p|2 = m2. We expand E(�p − �k) around �k = 0: For t ∈ R, one has

∂

∂t
E(�p − t�k) = −

�k · (�p − t�k)

E(�p − t�k)
, (7.158)

∂2

∂t2 E(�p − t�k) =
|�k|2

E(�p − t�k)
−

[�k · (�p − t�k)]2

E(�p − t�k)3
. (7.159)

Using

0 ≤ [�k · (�p − t�k)]2
≤ |�k|2|�p − t�k|2 ≤ |�k|2E(�p − t�k)2 (7.160)

we conclude

0 ≤
∂2

∂t2 E(�p − t�k) ≤
|�k|2

E(�p − t�k)
. (7.161)

By Taylor’s formula, we get for some t�p,�k ∈ [0, 1]:

0 ≤ E(�p − �k) − E(�p) +
�p · �k
E(�p)

≤
|�k|2

2E(�p − t�p,�k�k)
. (7.162)

Now using the variable �qt := �p − t�k with 0 ≤ t ≤ 1, we estimate

E(�p)2 = E(�qt + t�k)2 = |�qt + t�k|2 + m2
≤ 2|�qt|

2 + 2t2
|�k|2 + m2

≤
2

m2 (|�qt|
2 + m2)(t2

|�k|2 + m2) ≤
2

m2 E(�qt)2E(�k)2. (7.163)

This yields for 0 ≤ t ≤ 1:

1

E(�p − t�k)
≤

√
2

m
E(�k)
E(�p)

. (7.164)

Substituting the bounds (7.162) and (7.164) for t = 1 and for t = t�p,�k in (7.157), we conclude

�QA
�

2
I2
≤

2e2

m2

�

R3

dp
E(�p)4

�

R3
|�k|2E(�k)2

|�A0(�k)|2 dk < ∞. (7.165)

Thus �A = 0 implies �QA�I2 < ∞.

We now prove that �A � 0 implies �QA�I2 = ∞. We split A = (Aµ)µ=0,1,2,3 = (A0,−�A) into
A = (A0, �0) + (0,−�A). Abbreviating QA0 = Q(A0,�0) and Q�A := Q(0,−�A), we conclude

QA = QA0 + Q�A. (7.166)
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As we have just shown, the first summand QA0 is a Hilbert-Schmidt operator. Hence, QA is a
Hilbert-Schmidt operator if and only if Q�A is a Hilbert-Schmidt operator. Thus it remains to
show that �A � 0 implies �Q�A�I2 = ∞.

Equation (7.156p.147) in the special case of a vanishing 0-component of the vector potential can
be rewritten as follows:

�Q�A�2I2
=

�

R3

�

R3

2e2

E(�p)E(�q)(E(�p) + E(�q))2

�
(m2 + E(�p)E(�q) + �p · �q)|��A(�p − �q)|2

− (�p ·��A(�p − �q))(�q ·��A(�q − �p)) − (�p ·��A(�q − �p))(�q ·��A(�p − �q))
�

dp dq (7.167)

Using (7.155p.147), we see that the integrand in this integral is positive. We substitute �k := �p − �q.
For any measurable set S ⊆ R3 × R3, we get a lower bound by restricting the integration to S :

�Q�A�2I2
≥

�

S

2e2

E(�p)E(�p − �k)(E(�p) + E(�p − �k))2

�
(m2 + E(�p)E(�p − �k)

+ �p · (�p − �k))|��A(�k)|2 − (�p ·��A(�k))((�p − �k) ·��A(−�k))

− (�p ·��A(−�k))((�p − �k) ·��A(�k))
�

dp dk. (7.168)

The following considerations serve to find an appropriate choice of the set S . By the assumption
�A � 0 we can take �l ∈ R3 such that ��A(�l) � 0. For every �a ∈ C3 \ {0}, there exists a unit vector
�b ∈ R3, |�b| = 1, such that |�b · �a| ≤ |�a|/

√
2. One can see this as follows. We define �c = �a if

|Re�a| ≥ | Im�a|, and �c = i�a otherwise. In particular, |�c| = |�a| and

2| Im�c|2 ≤ |Re�a|2 + | Im�a|2 = |�a|2. (7.169)

Take any unit vector �b ∈ R3 orthogonal to Re�c. Using (7.169), we get

|�b · �a| = |�b · �c| = |�b · Im�c| ≤ |�b|| Im�c| = | Im�c| ≤
|�a|
√

2
. (7.170)

We apply this to �a = ��A(�l), taking a unit vector �b ∈ R3 with |�b · ��A(�l)| ≤ |��A(�l)|/
√

2. Take any
fixed number C46 such that 1/

√
2 < C46 < 1; then |�b · ��A(�l)| < C46|

�b||��A(�l)| holds because of
|�b| = 1 and |��A(�l)| > 0. Now ��A is a continuous function. Therefore, there is a compact ball
B̄r(�l) = {�k ∈ R3 | |�k − �l| ≤ r}, centered at �l with some radius r > 0, such that

C47 := inf
�k∈B̄r(�l)

|
��A(�k)| > 0 (7.171)

is true and |�b · ��A(�k)| < C46|
�b||��A(�k)| holds for all �k ∈ B̄r(�l). By compactness of the ball, using

continuity of the function R3 × R3 � (�p,�k) �→ |�p ·��A(�k)| −C46|�p||
��A(�k)|, the set

S 1 := {�p ∈ R3
| for all �k ∈ B̄r(�l) holds |�p ·��A(�k)| < C46|�p||

��A(�k)|} (7.172)

is an open subset of R3. The set S 1 is nonempty because of �b ∈ S 1. Furthermore, S 1 is a
homogeneous set in the following sense: For all �p ∈ R3 and all λ ∈ R \ {0}, �p ∈ S 1 is equivalent
to λ�p ∈ S 1. Note that |�p ·��A(�k)| = |�p ·��A(−�k)| holds, as ��A(−�k) and ��A(�k) are complex conjugate to
each other.

We set S = S 1 × B̄r(�l). For the following considerations, note that |E(�p − �k) − E(�p)| ≤ |�k|,
|�p| ≤ E(�p), and (�p · ��A(�k))(�p · ��A(−�k)) = |�p · ��A(�k)|2 hold for all �p,�k ∈ R3, and that ��A is bounded
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on the ball B̄r(�l). Using this, one sees that there is a constant C48 > 0, depending only on the
potential��A and on the choice of the compact ball B̄r(�l), such that for all �p ∈ R3 and all �k ∈ B̄r(�l),
one has

����
�
(m2 + E(�p)E(�p − �k) + �p · (�p − �k))|��A(�k)|2

− (�p ·��A(�k))((�p − �k) ·��A(−�k)) − (�p ·��A(−�k))((�p − �k) ·��A(�k))
�

−
�
2E(�p)2

|
��A(�k)|2 − 2|�p ·��A(�k)|2

����� ≤ C48E(�p). (7.173)

Furthermore, there is another constant C49 > 0, depending only on the choice of the compact
ball B̄r(�l), such that for all �p ∈ R3 and all �k ∈ B̄r(�l), one has

E(�p − �k)(E(�p) + E(�p − �k))2
≤ C49E(�p)3. (7.174)

Substituting the bounds (7.173), (7.174), the choice (7.172p.149) of S 1, and the lower bound
(7.171p.149) of |��A| on B̄r(�l) in the lower bound (7.168p.149) of �Q�A�2I2

, we obtain

�Q�A�2I2
≥

�

S

2e2

C49E(�p)4

�
2E(�p)2

|
��A(�k)|2 − 2|�p ·��A(�k)|2 −C48E(�p)

�
dp dk

≥

�

S

2e2

C49E(�p)4

�
2(1 −C46)E(�p)2

|
��A(�k)|2 −C48E(�p)

�
dp dk

≥ |B̄r(�l)|
�

S 1

2e2

C49E(�p)4

�
2(1 −C46)C47

2E(�p)2
−C48E(�p)

�
dp = ∞. (7.175)

We have used that 1−C46 > 0, and that S 1 is a nonempty, open homogeneous subset of R3. Thus
the lemma is proven. �

7.3.3 The Second Quantized Time-Evolution

Let us summarize. For a given vector potential A ∈ C∞c (R4,R4) and any time t ∈ R, let C(�A(t)) ∈
Pol(H)/≈0 be the polarization class belonging to time t as introduced in Definitions 7.30p.132

(Induced polarization classes) and 7.39p.145 (Physical polarization classes). Combining Theorem
7.38p.145 (Identification of the polarization classes), Theorem 7.31p.132 (Dirac time-evolution with
external field), Theorem 7.27p.128 (Lift condition), and Corollary 7.29p.129 (Uniqueness of the lift
up to a phase), we have proven the following theorem.

Theorem 7.41.Second
quantized Dirac

time-evolution

Let A = (Aµ)µ=0,1,2,3 = (A0,−�A) ∈ C∞c (R4,R4) be an external vector potential,
t1, t0 ∈ R be two time points, U = UA(t1, t0) be the one-particle Dirac time-evolution, � be a
(separable, infinite dimensional) Hilbert space, and Φ ∈ Ocean�(C(0)). Set

S(t) := [eQA(t)
Φ]∼ ∈ Ocean�(C(�A(t)))/∼ (7.176)

for t ∈ R. Then, one has
U ∈ U0

res
�
H ,C(�A(t0));H ,C(�A(t1))

�
. (7.177)

As a consequence, there is R ∈ U(�) such that

RRLU : FS(t0) → FS(t1) (7.178)

is a unitary map between the wedge spaces FS(t0) and FS(t1). This second-quantized Dirac time-
evolution is unique up to a phase in the following sense. For any two such choices R1,R2 ∈ U(�)
with RR1LU ,RR2LU : FS(t0) → FS(t1), the operator R−1

1 R2 has a determinant det(R−1
1 R2) = eiϕ

for some ϕ ∈ R, and
RR2LU = eiϕ

RR1LU (7.179)

holds.
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An application of this theorem is the computation of transition amplitudes. Consider given
ΛΨin ∈ FS(t0) and ΛΨout ∈ FS(t1), which represent “in” and “out” states at times t0 and t1,
respectively. The transition amplitude is according to the above theorem given by

P




ΛΨOUT

X A ������
�������

ΛΨIN

��������


 :=
����
�
ΛΨout,RR1LUΛΨ

in
�����

2
= |eiϕ

|
2
����
�
ΛΨout,RR2LUΛΨ

in
�����

2

=
����
�
ΛΨout,RR2LUΛΨ

in
�����

2

which is therefore independent on our specific choice of the matrix R.

7.4 Pair Creation Probabilities

So far we have constructed Dirac seas and implemented their time-evolution between time-
varying Fock spaces in a way that allows to compute well-defined and unique transition ampli-
tudes. However, describing the Dirac sea of infinitely many electrons under the negligence of
all electron-electron interactions is in general a crude approximation, and the only way to make
sense of such an external field model is by the equilibrium assumption discussed in 6p.105. For this
we need to introduce Dirac seas which shall represent the equilibrium (i.e. vacuum) states. Since
we do not model quantum interaction between the electrons, we do not have means to distinguish
a vacuum state, using the condition that all electron-electron interaction vanishes. Therefore, in a
model of pair creation we rather have to introduce this state a posteriori. The line of reasoning is
the following: Coming from a hypothetically fully-interacting quantum electrodynamic theory,
one looks for states for which the net-electron-electron interaction for each electron evens out to
zero. These states are the vacuum states. Negligence of the electron-electron interaction is then
justified if we only describe vacuum states and small deviations from those vacuum states – e.g.
states with a small number of pairs with respect to N (in the limit N → ∞ which we consider
here one can read “small” to mean finite).

We define the following model for the computation of pair creation rates for an external field
that is only non-zero only within the time interval (t0, t1):

1. In the absence of an external field the vacuum state, i.e. a state for which the net-electron-
electron interactions vanish, can be modeled by an infinite wedge product of one-particle
wave functions in V ∈ C(0) = [H−]≈0 . We choose any basis (ϕn)n∈N of V and define
Φ : �2 → H , Φen := ϕn for the canonical basis (en)n∈N of �2. The state

ΛΦ = ϕ1 ∧ ϕ2 ∧ . . . (7.180)

then represents a vacuum state. Built this way, Φ is some sea in Ocean(C(0)).

2. Again in the absence of an external field all states in the wedge space FS for S = [Φ]∼
are considered small deviations from the equilibrium state ΛΦ. We interpret a basis of FS
as follows: If we take the vacuum state ΛΦ and replace n ∈ N of the one-particle wave
functions in the wedge product by one-particle wave functions in V⊥ (observing the Pauli
exclusion principle), the corresponding state represents a disturbance of the equilibrium
by the presence of n pairs. For example, for χ, ξ ∈ V⊥ the state

ϕ1 ∧ χ ∧ ϕ3 ∧ ϕ4 ∧ ξ ∧ ϕ6 ∧ ϕ7 ∧ . . .

would describe the presence of two pairs: One having electron wave function χ and
positron wave function Cϕ2 where C denotes the charge conjugation. And another one
with electron wave function ξ and positron wave function Cϕ5.
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Note, however, that the choice of V along with the assumption that the vacuum state is given by
a state that has product structure has to be compatible with the physical situation one wants to
describe. For the situation above, where A was zero before time t0 and after time t1, energetic
considerations suggest that for these times the equilibrium state occupies V = H−. In the pres-
ence of a non-zero but static external field A for these times (e.g. for pair creation processes near
an ion) one of course would have to choose V to lie in the correct polarization class C(�A(t0)) or
C(�A(t1)), respectively; cf. the Furry picture [FS79]. However, in more general situations only a
fully interacting theory can give an a priori inside of how to model the vacuum (since the vac-
uum was introduced as an equilibrium state one still expects non-uniqueness as there are many
micro-states fulfilling the equilibrium property that all net-electron-electron vanishes).

With these model assumptions let us come back to the example given at the end of the introduc-
tory Chapter 6p.105 and compute the probability for the creation of one pair with electron wave
function χ ∈ V⊥ and positron wave function Cξ for ξ ∈ V out of a vacuum induced by the
external potential A:

χ

A ������

e− ��������

e+
�������

Cξ

At times smaller t0 and times larger t1 the external field is zero, and we assume that at these
times the electrons are relaxed to an equilibrium state, or at most to a small perturbation of this
equilibrium. According to model assumption 1, we can model the equilibrium state by ΛΦ for
an appropriate choice of polarization V ∈ C(0) as well as a basis (ϕn)n∈N of V such thatΦen = ϕn
for all n ∈ N. Let S := S(Φ) so that ΛΦ ∈ FS. Since we want to model the electron-positron
pair state in FS we have to make sure that we chose V and its basis in such a way that χ ∈ V⊥

and ξ ∈ V while one basis element is equal ξ, say for example ϕ1 = ξ. According to model
assumption 2, we may model the outgoing state by ΛΨout ∈ FS for a Ψout ∈ Ocean(C(0)) with
Ψout : �2 → H , Ψoute1 := χ and Ψouten := ϕn for n > 1, i.e. written symbolically

ΛΨout = χ ∧ ϕ2 ∧ ϕ3 ∧ . . . .

In the notation of Subsection 7.3.3p.150 we then have: C(�A(t0)) = C(0) = C(�A(t1)) since A(t0) =
0 = A(t1). Therefore, the one-particle time-evolution UA(t1, t0) is in U0

res(H ,C(0);H ,C(0)). By
Theorem 7.41p.150 () we know that there is an R ∈ U(�2) being unique up to a phase such that
the transition amplitude for the considered process is given by the square modulus of the inner
product in FS:

P




χ

A ������

e− ��������

e+
�������

Cξ


 := |�ΛΨout,RRLUA(t1,t0)ΛΦ�|

2.

The matrix R of Theorem 7.41p.150 is explicitly given by the polar decomposition of Φ∗UΦ = BR
for B = |Φ∗UA(t0, t1)Φ|; cf. Proof of Theorem 7.27p.128 (Lift condition). Note that R defined
in this way is the time-evolution of the sea PVUA(t0, t1)PV , since Φ : �2 → V is a unitary
transformation and PV = ΦΦ

∗. So one should read the transition probability above as follows:
We want to compute the transition amplitude of one vacuum state at time t0 evolving into the
definite state ΛΨout at time t1, i.e. one electron has wave function χ, another has wave function
ϕ2, another has the wave function ϕ3 and so on. Since this state is only a small deviation from
the vacuum, we can guess what the vacuum state is at time t1, namely ΛΦ. If we evolve this
state backwards to t0 by the unitary part of PVUA(t0, t1)PV , we find the vacuum state at time t0
and call this state

ΛΨin = RRΛΦ
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The transition amplitude is then given by

|�ΛΨout,LUA(t1,t0)ΛΨ
out
�|

2 = |�ΛΨout,RRLUA(t1,t0)ΛΦ�|
2

where the equality holds because the above guess is unique up to a phase. The guess together
with the backward time-evolution of the vacuum state is encoded in the matrix R. Mathemati-
cally the role of R can be understand best when writing the inner product in matrix notation:

�ΛΨout,RRLUA(t1,t0)ΛΦ� = det




�χ,U+−ξ� �χ,U+−ϕ2� �χ,U+−ϕ3� . . .
�ϕ2,U−−ξ� �ϕ2,U−−ϕ2� �ϕ2,U−−ϕ3� . . .
�ϕ3,U−−ξ� �ϕ3,U−−ϕ2� �ϕ3,U−−ϕ3� . . .

...
...

...
. . .



· R (7.181)

where we use the notation U = UA(t1, t0), U+− = PV⊥UPV and U−− = PVUPV . The Fredholm
determinant is only well-defined if the matrix is a trace class perturbation of the identity matrix
which for general U−− and without the matrix R will not be the case. This is due to the fact that
the one-particle wave functions of the vacuum, i.e. ϕn for n ∈ N, are also time-evolved. The
matrix R undoes this time-evolution of the one-particle wave functions in V .

We emphasize again that there is no absolute number of pairs as the phenomena of pair creation is
only an artefact arising from the adaption of the effective description of a many particle system.
The best we can do is to define the absolute value of the difference of the number of pairs
between two Dirac seas:

Definition 7.42. Relative number
of pairs

Let S ∈ Seas(H)/∼ then we define the relative number of pairs

# : S × S → N0, (Φ,Ψ) �→ #(Φ,Ψ) := dim kerΦ∗Ψ.

Physically one should read #(Φ,Ψ) in the following way: If ΛΦ is a vacuum state, then with
respect to it ΛΨ has #(Φ,Ψ) pairs. In the example above the relative number of pairs of Ψout

with respect to a vacuum ΨIN is #(ΨIN ,Ψout) = 1. In particular, the relative number of pairs is
symmetric and invariant under the operations from the right:

Lemma 7.43. Let S ∈ Seas(H)/∼ and Φ,Ψ ∈ S:

(i) #(Φ,Ψ) is well-defined and finite.

(ii) #(Φ,Ψ) = #(Ψ,Φ).

(iii) For R ∈ U(�) we have #(Φ,Ψ) = #(ΨR,ΦR).

Proof. (i) Since Φ ∼ Ψ we know Φ∗Ψ ∈ id(�)+ I1(�) which means that it is a Fredholm operator
with Fredholm index ind(Φ∗Ψ) = 0. Hence, the dimension of its kernel is finite.

(ii) #(Φ,Ψ) = dim kerΦ∗Ψ = dim kerΦ∗Ψ + ind(Φ∗Ψ) = dim kerΨ∗Φ = #(Ψ,Φ).

(iii) holds because the dimension is invariant under unitary transformations. �

In particular, property (iii) is important as it implies that if we had chosen a different equivalence
classes S� instead of S = S(Ψin) this would then have had no effect on the relative number of
pairs since by Lemma 7.28p.129 (Orbits in Ocean) we know that there is an R ∈ U(�) such that
S� = SR. In order to yield expectation values of the relative number of pairs, one could lift the
map # to wedge spaces in the usual manner.
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7.5 Gauge Transformations

As an addendum we briefly discuss gauge transformations. Let �A ∈ C∞c (R3,R3) be a vector
potential and �A∼ = �A + ∇Y be a gauge transform of it with Y ∈ C∞c (R3,R). Let eiY : H → H
the multiplication operator with eiY . We prove:

Theorem 7.44.Gauge
transformations

The gauge transformation eiY fulfills:

eiY
∈ U0

res
�
H ,C(�A);H ,C(�A∼)

�
(7.182)

Although the statement of this theorem does not involve time, we prove it using the time-
evolution from Subsection 7.3.1p.130. A “direct” proof, avoiding time-evolution and using similar
techniques as in Subsection 7.3.1p.130, is possible. However, the approach presented here avoids
additional analytical considerations.

Proof. We switch the gauge transformation on between the times 0 and 1, using a smooth
function f : R → [0, 1] with f (t) = 0 and f (t) = 1 for t in a neighborhood of 0 and 1,
respectively. We define Y : R4 � (t, �x) �→ f (t)Y(�x) ∈ R. Take the static vector potential
A : R4 � (t, �x) �→ (0,−�A(�x)) ∈ R4 and its gauge-transformed version A

∼ = (A∼µ )µ=0,1,2,3 =

(Aµ − ∂µY)µ=0,1,2,3 = (A0 − ∂0Y,−�A − ∇Y). In other words,

A
∼(t, �x) = (− f �(t)Y(�x),−�A(�x) − f (t)∇Y(�x)). (7.183)

(It is no problem that the vector potentials used here do in general not have compact support in
time, because we use only times t ∈ [0, 1].) Note that at time t = 0, the gauge transformation is
turned off: A(0) = A

∼(0) = (0,−�A), and at time t = 1 it is completely turned on: A(1) = (0,−�A)
and A

∼(1) = (0,−�A∼). The one-particle Dirac time-evolutions UA and UA
� are also related by a

gauge transformation as follows:

eiY(t1)UA(t1, t0) = UA
∼

(t1, t0)eiY(t0), t1, t0 ∈ [0, 1]. (7.184)

In particular, this includes eiYUA(1, 0) = UA
∼(1, 0). By Theorem 7.31p.132 (Dirac time-evolution

with external field), we have the following:

UA(0, 1) ∈ U0
res
�
H ,C(�A);H ,C(�A)

�
(7.185)

UA
∼

(1, 0) ∈ U0
res
�
H ,C(�A);H ,C(�A∼)

�
(7.186)

This implies the following:

eiY = UA
∼

(1, 0)UA(0, 1) ∈ U0
res
�
H ,C(�A);H ,C(�A∼)

�
(7.187)

Thus the claim is proven. �

We infer that in general the gauge transformation eiY changes the polarization class. Using
varying wedge spaces, it can be second quantized as follows. Let S ∈ Ocean(C(�A)) and S∼ ∈
Ocean(C(�A∼)). By Theorem 7.27p.128 (Lift condition), there exists R ∈ U(�) such that we have
the following second-quantized gauge transformation from FS to FS∼ :

FS

RRLeiY ��

LeiY �� F(eiYS)

RR
��
FS∼
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7.6 Conclusion and Outlook

There are two apparent near-term goals:

First, as we have shown the construction of the second quantized Dirac time-evolution is unique
only up to a phase which depends on external field A. This phase carries physical information
which can be seen in the following argument: Let UA(t1, t0) be the one-particle Dirac time-
evolution onH for an external potential which is non-zero only in (t1, t0). Then one can express
the usual charge current by

jµ(x) = −iU(t0, t1)
δ

δAµ(x)
U(t1, t0)

which is a distribution-valued operator on H . Furthermore, let �UA(t1, t0) : FS → FS� be one
possible lift of the one-particle time-evolution between the wedge spaces FS and FS� . One
would then expect to be able to define the charge current in a similar way:

Jµ(x) = −i�U(t0, t1)
δ

δAµ(x)
�U(t1, t0).

However, the lift is only unique up to a phase. Therefore, a different lift ŪA(t1, t0)
= �UA(t1, t0)eiϕA(t1,t0) would yield a different current

J̄µ(x) =
δ

δAµ(x)
ϕA(t1, t0) + Jµ(x).

The question is how we can get our hands on the functional derivative of the phase. Due to
Scharf [Sch95] one idea is the following: In analogy to the one-particle case, we would expect
that a disturbance of the external field at space-time point y outside the backward light-cone of
x would not change the current at x and

δ

δAν(y)
Jµ(x) = 0, for such y.

For such x and y we can determine δ2

δAν(y)δAµ(x)ϕA(t1, t0). Using the symmetry in x and y we can
thus determine the second functional derivative of ϕA(t1, t0) everywhere except for x = y. If we
continue this distribution in a sensible way to be defined for all x and y, an integration of the
space of fields would yield the desired term δ

δAµ(x)ϕA(t1, t0). The question is how much freedom
of choice is left in the continuation when physical input like gauge and Lorentz invariance, the
continuity equation and the condition that the vacuum expectation value of the charge current
subject to a zero external potential is zero. It is conjectured that this freedom is the manifestation
of the charge renormalization.

Second, it seems natural to generalize the second quantized Dirac time-evolution between equal
time hyper-surfaces to a time-evolution between smooth space-like hypersurfaces. For this, one
would need to construct wedge spaces corresponding to these space-like hyper surfaces. The
idea for the construction is the following. Let ψ : R4 → C4 be a spinor field on Minkowski
spaceM that solves the Dirac equation subject to an external potential A, i.e.

(i/∂ − m)ψ(x) = e/A(x)ψ(x).

Any solution gives rise to the divergence free one-particle charge current jµ(x) = ψ(x)γµψ(x) so
that Stoke’s Theorem yields for two space-like hypersurfaces Σ1,Σ2

�

Σ1

dσ(x)ψ̄(x)nµ(x)γµψ(x) =
�

Σ2

dσ(x)ψ̄(x)nµ(x)γµψ(x)
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where we denoted the surface measure on the space-like hypersurfaces by dσ(x) and the surface
normal four-vectors by nµ(x). This gives rise to a candidate of a Hilbert space of wave functions
on the space-like hypersurface Σ, namely the space of ψ : Σ→ C4 with the inner product

�ψ, φ� :=
�

Σ1

dσ(x)ψ(x)nµ(x)γµφ(x).

We now have a similar construction as in Subsection 7.2.1p.116 in mind to yield an infinite wedge
space for Σ. The only work involved in doing this is the definition of the polarization classes
which so far depend on the equal time hyper-surfaces and, hence, need to be generalized. Note
that via this construction one could also replace the metric tensor by a metric tensor field on M
to account for general relativistic effects.

The long-term goal is of course the introduction of electron-electron interaction.



Part III

Outlook





Chapter 8

Electrodynamic Absorber Theory

After presenting the mathematical results we want to conclude this work by given an informal
outlook on our perspective of an electrodynamic theory for point-like charges which should be
divergence free and capable of describing the phenomena of radiation reaction as well as of pair
creation. Let us briefly review the Chapters 2p.7 and 7p.111:

We introduced the classical electrodynamic absorber theory as a theory about N charges and
N fields which obey the ML-SI equations (2.1p.8) and (2.8p.9) as described in Chapter 2p.7. By
an argument due to Wheeler and Feynman we retrieved the mechanism of radiation reaction
under the condition that the absorber assumption (2.9p.9) holds, and we found that for special
initial values (2.15p.12) this theory is equivalent to Wheeler-Feynman electrodynamics. For rigid
charges we have shown that the initial value problem of the ML-SI dynamics is well-posed in
Chapter 3p.15. As there seems to be no obstruction in taking the point particle limit apart from
the crossing of trajectories the dynamical theory is expected to be divergence free for almost all
initial values. In Chapter 7p.111 we further discussed how subsystems of the absorber medium for
large N can be treated. For a system of N electrons which is initially in an equilibrium state
so that the net interaction between the electrons vanishes (6.3p.106) the effective description of a
subsystem of the absorber medium gives rise to creation and annihilation processes of fields as in
(6.4p.107) whenever this equilibrium state is disturbed. We further developed a quantum theoretic
description of such a situation for N electrons where, because of the equilibrium assumption,
we neglected the interactions between the electrons completely. Following the idea of Dirac
the effective description of this equilibrium state of the N electrons gives rise to pair creation
and annihilation. In this sense, both phenomena, radiation reaction and pair creation, emerge
from the same physical assumption, namely that an absorber medium or Dirac sea with many
particles, i.e. with large N, is present.

The next thing missing is a quantum mechanical analogue of the ML-SI equations. In the fol-
lowing last section we address this issue and give an outlook on possible implications of this
electrodynamic absorber theory.

8.1 Short Review of Steps Towards an Absorber Quantum Electro-
dynamics

The most interesting case are ML-SI equations for the special initial values (2.15p.12) whence they
are equivalent to Wheeler-Feynman electrodynamics. First, because Wheeler-Feynman electro-
dynamics is a theory only about world lines without the need of fields, and second, because of
the state-dependent advanced and delayed terms in the equation of motion. Since we have no
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Hamiltonian (as it is generically the case for the ML-SI equations), we cannot rely on some
correspondence principle in order to find a “quantization” and therefore we rather let us guide
by classical field theory.

TheAction integral

for a Dirac field

Dirac equation subject to a given external potential A can be deduced from a variational
principle: Consider the action

S [ψ, ψ] :=
�

d4x
�
ψ(x)
�
i/∂ − m

�
ψ(x) − eψ(x) /A(x)ψ(x)

�

for /∂ = γµ∂µ and /A(x) = γµAµ(x). Any extremum needs to fulfill

d
d�

S [ψ, ψ + � f ]|�=0 = 0 and
d
d�

S [ψ + � f , ψ]|�=0 = 0 (8.1)

for all test functions f ∈ C∞c (R4,R4). One finds that at the extremum the fields ψ and ψ obey the
equations

(i/∂ − m)ψ(x) = e /A(x)ψ(x) and −i∂µψ(x)γµ − ψ(x)m = eψ(x) /A(x)

which for ψ(x) = ψ∗(x)γ0 are the Dirac equations for an external potential A. The goal of
this section is to generalize this action principle step by step to yield a classical field theory of
Dirac fields which interact with each other by an action-at-a-distance principle like in Wheeler-
Feynman electrodynamics.

TheGeneralization

of the action to

N Dirac fields

first generalization is to allow for N fields which yields the action

S [ψk, ψk; 1 ≤ k ≤ N] :=
N�

k=1

�
d4x
�
ψk(x)

�
i/∂ − m

�
ψk(x) − eψk(x) /A(x)ψk(x)

�

and the field equations

(i/∂ − m)ψk(x) = e /A(x)ψk(x) and −i∂µψk(x)γµ − ψk(x)m = eψk(x) /A(x). (8.2)

The N Dirac fields can be interpreted as a Hartree-Fock approximation of the N particle wave
function which we describe later. Next we need to introduce an interaction between the fields.
Note that every solution to the equations (8.2) gives rise to a four-vector current

jµl (x) := eψl(x)γµψl(x) (8.3)

which fulfills the continuity equation ∂µ jµl (x) = 0. For every such current we introduce a poten-
tial Aµl defined by

Aµl (x) =
�

d4y �(x − y) jµl (y)

where we choose �(x) = δ(xµxµ), i.e. the time-symmetric Green’s function of the d’Alembert
operator. Hence, these potentials fulfill the electrodynamic wave equation �Aµl (x) = −4π jµl (x).
Using this input we define the action integralGeneralization

of N Dirac fields

with Wheeler-

Feynman type

interaction
S [ψk, ψk; 1 ≤ k ≤ N] :=

N�

k=1

�
d4x


ψk(x)

�
i/∂ − m

�
ψk(x) −

e
2

�

l�k

ψk(x) /Al(x)ψk(x)




=

N�

k=1

�
d4x


ψk(x)

�
i/∂ − m

�
ψk(x) −

e2

2

�

l�k

�
d4y �(x − y) ψl(x)γµψl(x) ψk(x)γµψk(x)


 .

(8.4)
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As already observed by Fokker when formulating classical Wheeler-Feynman electrodynamics
in terms of an action integral [Fok29], it is important to note that only the choice of the time-
symmetric Green’s function �(x) = δ(xµxµ) allows to derive an extremum via the computation
of (8.1) which yields the equations

(i/∂ − m)ψk(x) = e2
�

l�k

�
d4y �(x − y)ψl(x)γµψl(x)γµψk(x) (8.5)

together with their conjugated form for ψk(x) for 1 ≤ k ≤ N.

Before Corresponding

absorber

assumption and

its

consequences

we continue let us appreciate what we have got so far. Equations (8.5) give rise to an
relativistically interacting theory of N Dirac fields. The interaction is, as in the case of Wheeler-
Feynman electrodynamics, of the action-at-a-distance type, i.e. the only interactions that occur
are between points of the supports of two fields ψl and ψk for l � k which have Minkowski
distance zero. As in the case of ML-SI or Wheeler-Feynman electrodynamics we can again
formulate the analogue of the absorber assumption: At some space-time point x in some distance
to the supports of the N Dirac fields we demand that the net interaction with some test charge
vanishes which would be fulfilled for

N�

k=1

Aµk (x) = 0. (8.6)

Borrowing the argument of Wheeler and Feynman as in Chapter 2p.7 we can deduce from this
that for all x in Minkowski space

N�

k=1

(Aµk,−(x) − Aµk,+(x)) = 0 (8.7)

for the advanced and retarded fields Aµk,− which are given by

Aµk,±(x) =
�

d4y�±(x − y) jµk (y) and Aµk = Aµk,+ + Aµk,−

where �±(x) = δ(�x�±t)
4π�x� represent the advanced and retarded Green’s functions of the d’Alembert

operator, cf. (4.10p.61). Using (8.7) we find that the effective equation on the kth Dirac field is
given by Dirac-Barut

equation

(i/∂ − m)ψk(x) =
e
2

[ /Ak,−(x) − /Ak,+(x)]ψk(x) + e
�

l�k

/Al,−(x)ψk(x). (8.8)

In analogy to the classical ML-SI equations we may interpret the first term on the right-hand side
as radiation reaction felt by the kth Dirac field while the second term constitutes the retarded
interaction with all l � k Dirac fields. As in Chapter 7p.111 let us further assume that the system
of N Dirac fields is in equilibrium in the sense that the sum

�
l�k Aµl,−(x) vanishes. The equations

for the kth field then read

(i/∂ − m)ψk(x) =
e2

2

�
d4y
�
�
−(x − y) − �+(x − y)

�
ψk(y)γµψk(y) γµψk(x). (8.9)

This equation exhibits the following nice features: First, the right-hand side gives rise to a radia-
tion reaction term analogous to the one we have found in the ML-SI and, respectively, Wheeler-
Feynman, equations. Second, note that in contrast to �±(x) the distribution �−(x− y)−�+(x− y)
is a smooth function so that no extra regularity of ψ is needed to evaluate the integral on the
right-hand side. In other words, no ultraviolet divergence is expected. Third, this equation was
studied intensely by Asim O. Barut et. al. in a series of 19 (or even more) papers. In particular,
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he computed the energy corrections in a H-atom (an similar systems like muonium and positron-
ium) due to spontaneous emission, vacuum fluctuations, anomalous magnetic moment and Lamb
shift by means of equations (8.9) only which are in great agreement with experimental results;
cf. the overview article [Bar88]. And fourth, as we have shown, this equation can be deduced
from the action-at-a-distance integral (8.4p.160) and Wheeler and Feynman’s absorber assumption
(8.7) – for some strange reason this connection was never mentioned in Barut’s works although
he was very well familiar with Wheeler-Feynman electrodynamics [Bar80] and most probably
aware it.

Nevertheless,Generalization

to N particle

wave functions

the action integral (8.4p.160) gives only rise to a Hatree-Fock description of the
time-evolution in terms of product wave functions. To find an action integral for N particle
Dirac fields and thus allowing for non-local, quantum mechanical interactions, there are several
ways to proceed from here. One of them shall be explained in the following. Recall that the
charge currents are divergence free which gives rise to the following property: Let Σ1,Σ2 be two
space-like hypersurfaces and let M denote the volume of Minkowski space between these two
hypersurface. By Stoke’s theorem we get

0 =
�

M
d4x ∂µ jµk (x) =

�

∂M
dσ(x)nµ(x) jµ(x) =

�

Σ2

dσ(x)nµ(x) jµ(x) −
�

Σ1

dσ(x)nµ(x) jµ(x)

where we denoted the surface measure on the space-like hypersurfaces by dσ(x) and the surface
normal four-vectors by nµ(x). This means in particular that

�ψk�
2
Σ :=
�

Σ

dσ(x)ψk(x)/n(x)ψk(x) (8.10)

is invariant under the choice of the space-like hypersurface Σ. For a fixed foliation of Minkowski
space-time by space-like hypersurfaces let us further denote the unique space-like hypersurface
which includes the space-time event x by Σ(x). Using the notation X = (x1, . . . , xN),

�

Σ

dσk(X) =
�

Σ

dσ(x1)
�

Σ

σ(x2) . . .
�

Σ

σ(xk−1)
�

Σ

σ(xk+1) . . .
�

Σ

σ(xN) (8.11)

and

(i/∂ − m)k(X) := /n(x1)/n(x2) . . . /n(xk−1)(i/∂k − m)/n(xk+1) . . . /n(xN)

as well as

γµk (X) := /n(x1)/n(x2) . . . /n(xk−1)γµ/n(xk+1) . . . /n(xN)

we can define an action integral for N particle Dirac fields Ψ(X) and Ψ(X) by

S [Ψ,Ψ] :=
N�

k=1

�
d4xk

�

Σ(xk)
dσk(X)

�
Ψ(X)(i/∂ − m)kΨ(X)+

−
e2

2

�

l�k

�
d4yl

�

Σ(yl)
dσl(Y) �(xk − yl) Ψ(Y)γµk (Y)Ψ(Y) Ψ(X)γk,µ(X)Ψ(X)

�
. (8.12)

If we replace Ψ(X) by the product of functions
�N

k=1 ψk(xk) for normalization �ψk�Σ = 1 for an
arbitrary space-like hypersurface Σ, we retrieve the action integral (8.4p.160). Hence, it seems that
(8.12) is a natural generalization of the previous action integral (8.4p.160). The computation of its
extremum via

d
d�

S [Ψ,Ψ + � f ]|�=0 = 0 and
d
d�

S [Ψ + � f ,Ψ]|�=0 = 0
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yields for any 1 ≤ k ≤ N and Minkowski point xk the equation

�
(i/∂ − m)k(X)Ψ(X)

�
Σ(xk) = e2

�

l�k

�
d4yl

�

Σ(yl)
dσl(Y) �(xk − yl)Ψ(Y)γµl (Y)Ψ(Y)

�
γk,µ(X)Ψ(X)

�
Σ(xk)

(8.13)

together with its conjugate form for Ψ where the subscript Σ(xk) denotes that the equations need
to hold only for X on the space-like hypersurface Σ(xk). Defining the kth charge current by

jµk (xk)|Σ(xk) := e
�

Σ(xk)
dσk(X) Ψ(X)γµk (X)Ψ(X) (8.14)

and therewith the kth retarded and advanced potential by

Aµk,±(x) =
�

d4y �±(x − y) jµk (y) (8.15)

we Corresponding

absorber

assumption and

its

consequences

yield the following generalization of the absorber assumption (8.6p.161): For all x in some
distance to the supports of the tensor components of Ψ we demand that the net interaction with
a test charge at x vanishes, i.e. that

N�

k=1

�
Aµk,+(x) + Aµk,−(x)

�
= 0.

Thus, we again get an effective equation which is the generalization of (8.8p.161) and reads

�
(i/∂ − m)kΨ(X)

�
Σ(xk) = e



1
2

�
Aµk,−(xk) − Aµk,+(xk)

�
+
�

l�k

Aµl,−(xk)



�
γk,µ(X)Ψ(X)

�
Σ(xk)
.

For the special case of equilibrium in the sense that the net interaction
�

l�k Aµl,−(xk) vanishes we
find

�
(i/∂ − m)kΨ(X)

�
Σ(xk) =

e2

2

�
d4yk

�

Σ(yk)
dσk(Y)

�
�
−(xk − yk) − �+(xk − yk)

�

× Ψ(Y)γµk (Y)Ψ(Y)
�
γk,µ(X)Ψ(X)

�
Σ(xk)
.

(8.16)

Whenever the N particle Dirac fieldsΨ can be written as
�N

k=1 ψk(xk) we retrieve again the Dirac-
Barut equation (8.9p.161) by integrating the left- and right-hand side with respect to

�
Σ(xk) dσk(X)

using (8.11p.162) and the normalization �ψk�Σ = 1 for any space-like hypersurface Σ. In this way
we can regard (8.16) as a natural generalization of (8.9p.161).

The Second

quantization

last issue that needs to be addressed in this section is that the interaction in (8.13) is nonlinear
in the Dirac field Ψ. This is due to the fact that we are still on the level of a classical field theory.
The “quantization” needed here is to linearize the charge current. With (8.10p.162) we can define a
one-particle Hilbert spaceHΣ := L2(Σ,C4, dσ) consisting of functions ϕ : Σ→ C4 which have a
finite norm �ϕ�Σ for any space-like hypersurface Σ. By forming the N-fold antisymmetric tensor
product we yield the N particle Hilbert spaceHN

Σ
with an inner product

�Ψ,Φ�Σ :=
�

Σ

dσ(x1) . . .
�

Σ

dσ(xN)Ψ(X)/n(x1) . . . /n(x2)Φ(X)

for any Ψ,Φ ∈ HN
Σ

. Let (ϕn)n∈N be a orthonormal basis in HΣ. Denoting the antisymmetric N-
fold tensor product by ϕα = ϕα1 . . . ∧ ϕαN for multi-indices α ∈ I := {(α1, . . . , αN) ∈ NN | αi <
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α j, i < j} the family (ϕα)α∈I forms an orthonormal basis of HN
Σ

. In Dirac’s bra-ket notation we
can represent any |Ψ� ∈ HN

Σ
by

|Ψ�Σ =
�

α∈I

�
ϕα|Ψ
�
Σ

���ϕα
�
Σ

and Ψ(X)|Σ(xk) = �X|Ψ�Σ(xk) :=
�

α∈I

�
ϕα|Ψ
�
Σ(xk) ϕ

α(X)Σ(xk).

With this notation we can define a charge current operator for all Minkowski points xk in analogy
to (8.14) by

Jµk (xk)|Σ(xk) := e
�

α,β∈I

���ϕα
�
Σ(xk)

�

Σ(xk)
dσk(X) ϕα(X)γµk (X)ϕβ(X)

�
ϕα
���
Σ(xk) .

By replacing jµ with Jµ in the formulas for the potentials (8.15p.163) we yield a linear version of
equations (8.13p.163). The connection to the nonlinear equation is that (8.14p.163) is the expectation
value of Jµk (xk)|Σ(xk), i.e. it holds that

jµk (xk)|Σ(xk) =
�
Ψ

�����J
µ
k (xk)|Σ(xk)

�����Ψ
�

Σ(xk)
.

Furthermore, for a product state ϕσ with σ ∈ I we get
�
ϕσ
�����J
µ
k (xk)|Σ(xk)

�����ϕ
σ
�

Σ(xk)
=

�

Σ(xk)
dσk(X) ϕσ(X)γµk (X)ϕσ(X)

which boils down to the form (8.3p.160) if we neglect the antisymmetry.

If it is possible to give the linearized version of equation (8.13p.163) a mathematical meaning,
we would consider this equation to be a candidate for a wave equation for Wheeler-Feynman
electrodynamics. Together with a Bohmian velocity law [DMZ99] on the same foliation x �→
Σ(x) one could hope to yield a fundamental theory of electrodynamics for point-like charge
which is divergence free and whose effective description (maybe in a thermodynamic limit N →
∞) explains pair creation and annihilation. The role of the preferred foliation and the dependence
of the theory thereon, however, is completely unclear. For example it is also conceivable to not
assume a fixed foliation of space-time but to choose x �→ Σ(x) as the light-cone of x.
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Further Implications. As concluding remarks to these admittedly wild speculations we want
to point out some features of such a theory with regards to physics: First, a not perfectly fulfilled
absorber assumption (as well as the free fields for the ML-SI case) could account for the cosmic
microwave background. Second, the assumption of an absorber medium in equilibrium such
that net interactions vanish would predict the presence of dark matter – dark because the net
interaction vanishes so that a spectator charge would not “see” any light, i.e. electrodynamic in-
teraction. The reaction to disturbances of this equilibrium state manifests itself as pair creation or
annihilation and gives rise to what is commonly called vacuum fluctuations. The condition that
in equilibrium net interactions vanish can be formulated in a Lorentz invariant way. However,
for a uniformly accelerated spectator charge this equilibrium condition changes which leads to
effective pair creation or annihilation. This mechanism could account for the Unruh effect. The
nicest feature is that this theory explains pair creation/annihilation as an artifact of our effective
description. Nothing is ever created or annihilated. At all times there are N ∈ N charges. In this
spirit we conclude with the words of Parmenides:

There is a solitary word still left to say of a way: ’exists’; very many signs are on this
road: that Being is ungenerated and imperishable, whole, unique, immovable, and
complete. It was not once nor will it be, since it is now altogether, one, continuous.
For, what origin could you search out for it? How and whence did it grow? Not
from non-Being shall I allow You to say or to think, for it is not possible to say or to
think that it is not. What need would have made it grow, beginning from non-Being,
later or sooner?

On Nature, Parmenides of Elea (ca. 5th century BCE). Translation taken from Leonardo Tarán:
Parmenides, Princeton 1965.
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Notation

M Minkowski space R × R3 with metric tensor g = diag(1,−1,−1,−1),
page 7

Ox→y(g(x)) Standard Big-Oh notation meaning f (x) = Ox→y(g(x)) iff limx→y
f (x)
g(x)

is a constant , page 169

Bounds Set of continuous and non-decreasing functions which are used as
bounds for estimates, page 169

C(S) The space of formalC-linear combinations of elements ofS, page 122

Cn(V,W),C∞(V,W) n times continuous differentiable, respectively infinitely differentiable,
functions V → W, page 169

Cn
c(V,W) n times continuous differentiable, respectively infinitely differentiable,

functions V → W with compact support, page 169

D Set of charge-current densities, page 60

F 1 Space of initial condition for the strong Maxwell solutions, page 60

Fw Space of Maxwell fields, page 19

Hw Phase space for the ML±SI equations, page 19

P Newtonian phase space R6N , page 19

T 1
� ,T� Set of strictly time-like once continuously differentiable charge tra-

jectories, respectively the N-fold cartesian product thereof, page 60

T 1
∨ ,T∨ Set of time-like once continuously differentiable charge trajectories,

respectively the N-fold cartesian product thereof, page 60

W,Wk,W∞ Spaces of weight functions, page 18

H One-particle Hilbert space, page 116

S(Φ) The equivalence class w.r.t. ∼, page 120

U(H ,H�) Set of unitary maps U : H → H�, page 118

V(Φ) For all Φ ∈ Seas(H) we have S(Φ) = Φ +V(Φ), page 121

det T The Fredholm determinant of T , page 116

� Index Hilbert space, page 116

�2(N) The space of square summable sequences in C, page 116
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GL−(��, �) The set of all bounded invertible linear operators R : �� → � with the
property R∗R ∈ id�� + I1(��), page 126

I2 = I2(�,H) The space of Hilbert-Schmidt operators T : � → H , page 116

id� Identity operator on some space �, page 116

ind T Fredholm index of T , page 118

Seas
⊥(H) = Seas⊥� (H) Only Dirac seas out of Seas(H) which also are isometries, page 119

LU Left operation FS → FUS induced by U, page 126

∇ Gradient, page 169

∇· Divergence, page 15

∇∧ Curl, page 15

� · �I2 Hilbert-Schmidt norm, page 116

� · �Φ The norm � · �Φ := � · �I1 + � · �I2 , page 121

� · �I1 Trace class norm, page 116

|X→Y Restriction to the map X → Y , page 117

Ocean(C) = Ocean�(C) The set of all Φ ∈ Seas⊥� (H) such that rangeΦ ∈ C, page 119

z Complex conjugate of z, page 123

∂t Partial derivative with respect to t, page 15

∂xi Derivative with respect to xi, page 169

Φ ∼ Ψ ⇔ Ψ∗Φ ∈ 1 + I1(�), page 120

Pol(H) The set of all polarizations V ⊂ H , page 116

RR The operation from the right FS → FSR induced by R, page 126

Seas(H) = Seas�(H) All possible Dirac seas, e.g. bounded operators Φ : � → H such that
rangeΦ ∈ Pol(H) and detΦ∗Φ exists., page 119

�·, ·� Scalar products in respective Hilbert spaces, page 116

SL(�) The set of all operators R ∈ id� + I1(�) with the property det R = 1,
page 127

� D’Alembert operator, page 169

I1 = I1(�) Space of trace class operators on �, page 116

� Laplace operator, page 169

U0
res(H ,C) := U0

res(H ,C;H ,C), page 128

U0
res(H ,C;H�,C�) The set of operators U ∈ U(H ,H�) such that for all V ∈ C one has

UV ∈ C�, page 128

Dα Multi-index differentiation operators, page 169
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H0 Free Dirac hamiltonian, page 108

H#
w Weighted Sobolev spaces w.r.t. operator #, page 25

HA(t) Dirac hamiltonian with external field A, page 112

L2
w Hilbert space of weighted square integrable functions, page 18

L∞(V,W) Functions V → W with a finite essential supremum, page 169

Lp(V,W) Functions V → W whose absolute value to the power of p is inte-
grable, page 169

Lp
loc(V,W) Functions V → W whose absolute value to the power of p is inte-

grable on any compact set, page 169

ML[ϕ0](t, t0) Maxwell-Lorentz time-evolution of initial value ϕ0 from time t0 to
time t, page 41

PV : H → V Orthogonal projector ofH on the subspace V , page 116

t �→ M�,m[F0, (q, p)](t, t0) Maxwell time-evolution of with initial F0 from time t0 to time t,
page 65

T ∗ The Hilbert space adjoint of the operator T , page 116

V ≈ W ⇔ PV − PW ∈ I2(H) for V,W ∈ Pol(H), page 116

V ≈0 W ⇔ V ≈ W and ind(V,W) = 0 for V,W ∈ Pol(H), page 119

x = (x0, x) ∈ M space-time point x with time coordinate x0 ∈ R and space coordinate
x ∈ R3, page 8

General Notation. We Function spacesstick to the standard notation of spaces of functions V → W for normed
spaces V,W: We call functions integrable if their Riemann or Lebesgue integral is well-defined
and finite. For n ∈ N let Lp(V,W) denote the space of functions whose pth power is integrable,
L∞(V,W) the space of functions with a finite essential supremum. For 1 ≤ p ≤ ∞ we write
Lp

loc(V,W) when the integrability condition, respectively the finiteness of the essential supremum,
shall only be fulfilled on compact subsets of V . For any n ∈ N ∪ {0} let Cn(V,W),C∞(V,W) be
the space of n times continuously differentiable functions, C∞(V,W) := { f ∈ Cn(V,W) ∀ n ∈ N}.
Furthermore, for 0 ≤ n ≤ ∞ let Cn

c(V,W) denote Cn(V,W) functions with compact support. If
there is no ambiguity we sometimes omit the V and/or W in the notation of the function spaces.
Limits and derivatives in V are always taken with respect to the norm in V unless we specify the
sense otherwise, e.g. the point-wise sense.

In Derivativesaddition to the introduced differential operators we denote the partial derivative with respect
to xi by ∂xi , the d’Alembert operator by � = ∂2

t − �, the Laplace by � = ∇ · ∇ and the gradient
by ∇. Multi-index differentiation operators are denoted by Dα = ∂α1

x1 ∂
α2
x2 ∂
α3
x3 for a multi-index

α = (α1, α2, α3) where ∂0 is understood as no differentiation.

Throughout Big-Oh notationwe use the standard Big-Oh notation, i.e. f (x) = Ox→y(g(x)) iff limx→y
f (x)
g(x) is a

constant. For f ∈ L2 we mean by Dα f ∈ L2 that there exists a g ∈ L2 which fulfills g = Dα f in
the distribution sense.

We Estimatesdenote the set of functions Rn → R for any n ∈ R which are continuous and non-decreasing
by Bounds. This set is used to provide upper bounds for estimates which depend on certain
parameters.
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InContinuation of

equations or

inequalities over

several lines

various places we use “. . .” in the first line of equations or inequalities which means: place-
holder for the right-hand side of the last equations written.
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Wenn etwas IST, ist es ewig,
denn aus NICHTS kann nur NICHTS entstehen.

Wenn es ewig ist, ist es auch unendlich,
da es weder Anfang hat noch Ende.

Wenn es ewig ist und unendlich, ist es auch eines,
denn wäre es zwei, dann müsste das eine das andere begrenzen.

Wenn es ewig ist und unendlich und eines, ist es auch gleichartig,
denn wenn es nicht gleichartig wäre, unterschieden sich seine Teile
voneinander und es wäre also vielfältig.

Wenn es ewig ist, unendlich, eines und gleichartig, ist es auch bewegungslos,
da es außerhalb seiner selbst keinen Ort gibt wohin es sich bewegen könnte.

Wenn es ewig ist, unendlich, eines, gleichartig und bewegungslos kann es weder
Leiden noch Schmerz empfinden, da es immer sich selbst gleich bleiben muss.

Luciano De Crescenzos Zusammenfassung des Textfragments
“Über die Natur oder über das Seiende” von Melissons von Samos

(ca. Mitte des 5. Jahrhunderts v.u.Z.)



Electrodynamic Absorber Theory
A Mathematical Study

This work deals with questions that arise in classical and quantum electrodynamics 
when describing the phenomena of radiation reaction and pair creation. The two guid-
ing ideas are the absorber idea of Wheeler and Feynman (i.e. all emitted radiation will 
be again be absorbed by matter) and the electron sea idea of Dirac. 

In the !rst part classical dynamics are studied which allow for a description of radia-
tion reaction without the need of renormalization. The starting point are the coupled 
Maxwell and Lorentz equations without self-interaction. Based on the notion of 
absorber medium, it is shown how the so-called Lorentz-Dirac equation for radiation 
reaction emerges and the intimate connection to the famous Wheeler-Feynman 
action at a distance electrodynamics is explained. Based on this, the mathematical 
problem of the existence of solutions to the Wheeler-Feynman theory, which is given 
by a functional di"erential equation, is rigorously analyzed. 

In the second part the phenomenon of pair creation is discussed from a thermody-
namic perspective in which the Dirac sea satis!es the absorber condition. Taking 
Dirac's original idea seriously, the vacuum is to be regarded as an equilibrium state in 
which all net-electron-electron interactions vanish. Small departures of this equilib-
rium can be e"ectively described by introducing pair creation. For the mathematical 
discussion these seas are considered to consist of in!nitely many electrons (in the 
thermodynamical limit). The mathematical implementation of the quantum mechani-
cal time-evolution for such in!nitely many electron seas subject to prescribed exter-
nal four-vector !elds is then carried out in detail. The main result is that the probability 
amplitudes induced by this time-evolution are well-de!ned and unique. 

In a last part we give a perspective on the quantization of Wheeler-Feynman-like inter-
action. Based on the proposed equations, a derivation of the Dirac-Barut equation is 
given, which seems to predict QED corrections in accordance with the experiment.
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