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t. Classi
al physi
s is about real obje
ts, like apples falling from trees, whose motion isgoverned by Newtonian laws. In standard quantum me
hani
s only the wave fun
tion or the resultsof measurements exist, and to answer the question of how the 
lassi
al world 
an be part of thequantum world is a rather formidable task. However, this is not the 
ase for Bohmian me
hani
s,whi
h, like 
lassi
al me
hani
s, is a theory about real obje
ts. In Bohmian terms, the problem ofthe 
lassi
al limit be
omes very simple: when do the Bohmian traje
tories look Newtonian?1 Introdu
tionThe 
lassi
al world, say the world of obje
ts of familiar experien
e that obey Newtonian laws,seems far removed from the \wavy" world of quantum me
hani
s. In this paper we shallsket
h what we believe are the basi
 steps to be taken in going from the quantum world tothe 
lassi
al world.1. The �rst step is the 
ru
ial one: As is well known, and as Bell has emphasized [1℄,standard quantum me
hani
s is not a pre
ise mi
ros
opi
 theory be
ause the division between1



the mi
ros
opi
 and the ma
ros
opi
 world, whi
h is essential to the very formulation ofthat theory, is not made pre
ise by the theory [8℄. In fa
t, the following 
on
lusion seemsinevitable: quantum me
hani
s does not 
ontain the means for des
ribing the 
lassi
al worldin any approximate sense and one needs to go beyond quantum me
hani
s in order to doso. There are two natural possibilities for amending ordinary quantum me
hani
s: eitherthe wave fun
tion is not all there is, or S
hr�odinger's equation is wrong. In this paper we'llformulate the problem of the 
lassi
al limit within the framework of Bohmian me
hani
s, atheory whi
h follows the �rst path and in whi
h the observer doesn't play any 
ru
ial role.It is a theory about reality, not about the result of measurements. A very short review ofBohmian me
hani
s is given in se
tion 2 and the the relevant part of this theory, related tothe 
lassi
al limit, is dis
ussed in se
tion 4.2. To get a handle on a problem, one should �rst simplify it as mu
h as possible. The
omplex motion of a ma
ros
opi
 body 
an be drasti
ally simpli�ed by making some ratherstandard approximations and redu
ing the problem to that of a \parti
le" moving in anexternal potential. This is what we shall do in se
tion 3.3. Good textbooks on quantum me
hani
s 
ontain enlightening ideas. One of these ideas isthe so 
alled Ehrenfest theorem that we shall use in se
tion 5 in order to obtain a ne
essary
ondition for the 
lassi
ality for wave pa
kets.4. The stru
ture of Bohmian me
hani
s 
ontains the means for extending the 
ondition for
lassi
ality to more general wave fun
tions, namely wave fun
tions whi
h lo
ally look likeplane waves, as we shall see in se
tion 6. In se
tion 7 we shall then show how the problem of
lassi
al limit for general wave fun
tions 
an be redu
ed to that for lo
al plane waves.5. Simpli
ity is good, but it has its limitations: the redu
tion of the motion of the 
enter ofmass to a one body problem doesn't explain the robustness and stability of 
lassi
al behavior.This however 
an be explained by making the model a little more realisti
, say by in
ludingin an e�e
tive way the external as well as the internal environment. We shall brie
y tou
hthis point in se
tion 8.6. This step is the 
ru
ial one from a mathemati
al point of view. In se
tion 9 we shall putforward a mathemati
al 
onje
ture on the emergen
e of 
lassi
al behavior. Unfortunately we2




annot provide any rigorous mathemati
al justi�
ation for it. Mathemati
al work on it wouldbe valuable sin
e this 
onje
ture goes beyond the standard mathemati
al work of semi
lassi
alanalysis (see, e.g., [13℄, [14℄) or, in more modern terms, mi
rolo
al analysis (see, e.g., [12℄).7. This is the last step in what we believe is the main stru
ture of the 
lassi
al limit:( ;X)! (P;X) ;where on the two sides of the arrow are represented the 
omplete state des
ription of Bohmianme
hani
s, in terms of wave fun
tion and position, and of 
lassi
al me
hani
s, in terms ofmomentum and position.2 Bohmian Me
hani
sIn nonrelativisti
 Bohmian me
hani
s the world is des
ribed by parti
les whi
h follow tra-je
tories determined by a law of motion. The evolution of the positions of these parti
les isguided by the wave fun
tion whi
h itself evolves a

ording to S
hr�odinger's equation. In otherwords, in Bohmian me
hani
s the 
omplete des
ription of the state of an N -parti
le systemis the pair (	; Q), where 	 = 	(q) = 	(q1; : : : ; qN) and Q = (Q1; :::; QN) are respe
tively thewave fun
tion and the a
tual 
on�guration of the system, with Qk denoting the position ofthe k-th parti
le in ordinary three-dimensional spa
e.For non relativisti
 spinless parti
les the state (	; Q) evolves a

ording to the equationsdQkdt = �hmk Imrqk	(Q)	(Q) (1)i�h�	�t = � NXk=1 �h22mkr2qk	+ U(q)	 (2)Equations (1) and (2) form a 
omplete spe
i�
ation of the theory. Agreement betweenBohmian me
hani
s and quantum me
hani
s regarding the results of any experiment is guar-anteed by what has been 
alled [5℄ the quantum equilibrium hypothesis: when a system has awave fun
tion  , its 
on�guration Q is random with probability distribution�(q) = j (q)j2: (3)While the meaning and justi�
ation of this hypothesis is a deli
ate matter, whi
h has beendis
ussed at length elsewhere [5℄ (see also [4℄ and [6℄), we wish to underline here an important3



property of (3): if the probability density for the 
on�guration satis�es �(q; t0) = j (q; t0)j2at some time t0, then the density at any time t to whi
h this is 
arried by the motion (1) isalso given by �(q; t) = j (q; t)j2. This is an extremely important property of any Bohmiansystem, expressing a 
ompatibility between the two equations of motion (1) and (2) de�ningthe dynami
s, whi
h we 
all the equivarian
e of j j2.3 Motion in an External PotentialOur goal is to study the 
lassi
al behavior of a ma
ros
opi
 body 
omposed of N parti
leswith N � 1 (one may think of an apple falling from a tree or a planet moving around thesun). It is rather 
lear that one expe
ts 
lassi
al behavior only for appropriate ma
ros
opi
fun
tions of the parti
le 
on�guration (Q1; :::; QN). The relevant ma
ros
opi
 variable, whose
lassi
al behavior we wish to investigate here, is the 
enter of mass of the bodyX = PimiQim ;where m1; : : : ;mN are the masses of the parti
les 
omposing the body and m = Pimi is thetotal mass of the body.We shall assume that the parti
les intera
t through internal for
es as well as being subje
tedto an external potential, so that the potential energy in (2) is of the formU(q) =Xi<j U(qi; qj) +Xi Vi(qi) :Let y = (y1; : : : ; yN�1) be a suitable set of 
oordinates1 relative to the 
enter of mass x =Pimiqi=m. Then under the 
hange of variables q = (x; y) S
hr�odinger's equation (2) assumesthe form i�h�	�t = �Hx +Hy +H(x;y)�	 (4)where Hx = �h22mrx2 + V (x) ; V (x) �Xi Vi(x) ;Hy is the free Hamiltonian asso
iated with the relative 
oordinates y and the operator H(x;y)des
ribes the intera
tion between the 
enter of mass and the relative 
oordinates. If Vi are1For sake of 
on
reteness one may think, e.g., of the so 
alled Ja
obi 
oordinates.4



slowly varying on the size of the body, H(x;y) 
an be treated as a small perturbation, and, in�rst approximation, negle
ted. Thus, if 	 =  (x)�(y) at some time, the time evolution ofthe 
enter of mass de
ouples from that of the relative 
oordinates and we end up with a verysimple one parti
le problem: the wave fun
tion  of the 
enter of mass evolves a

ording toone-parti
le S
hr�odinger's equationi�h� �t = �h22mrx2 + V (x) (5)and its position X evolves a

ording todXdt = �hmImrx (X) (X) : (6)From now on, whenever no ambiguity will arise, we shall treat the 
enter of mass as a \parti
le"and we shall refer to X and  as the position and the wave fun
tion of su
h a parti
le.4 The Classi
al Limit in Bohmian Me
hani
sIn order to investigate the 
onditions under whi
h X evolves 
lassi
ally it is useful to writethe wave fun
tion  =  (x) in the polar form (x) = R(x)e i�hS(x); (7)From S
hr�odinger's equation (5) one obtains, following Bohm [2℄, the 
ontinuity equation forR2, �R2�t + div ��rxSm �R2� = 0; (8)and the modi�ed Hamilton-Ja
obi equation for S�S�t + (rxS)22m + V � �h22mrx2RR = 0: (9)Note that equation (9) is the usual 
lassi
al Hamilton-Ja
obi equation with an additionalterm VQ � � �h22mrx2RR ; (10)
alled the quantum potential. Sin
e rxSm is the right hand side of (6), one then sees thatthe (size of the) quantum potential provides a rough measure of the deviation of Bohmianevolution from its 
lassi
al approximation. 5



Analogously, 
onsider the modi�ed Newton equation asso
iated with (9), and obtained bydi�erentiating both sides of equation (6) with respe
t to time,md2Xd t2 = F + FQ; (11)where F = �rxV (X) and FQ = �rxVQ(X) are respe
tively the 
lassi
al for
e and the\quantum" for
e. Equation (11) shows that all the deviations from 
lassi
ality are embodiedin the quantum for
e FQ.Thus, the formulation of the 
lassi
al limit in Bohmian me
hani
s turns out to be rathersimple: 
lassi
al behavior emerges whenever the parti
le traje
tory X = X(t), satisfying (11),approximately satis�es the 
lassi
al Newton equation, i.e.,md2Xd t2 ' F : (12)The problem is to determine the physi
al 
onditions ensuring (12). Usually, physi
ists 
onsider
lassi
al behavior as ensured by the limit �h! 0, meaning by this�h� A0; (13)where A0 is some 
hara
teristi
 a
tion of the 
orresponding 
lassi
al motion (see, e.g.,[13℄,[15℄,[3℄)). Condition (13) is often regarded as equivalent to another standard 
onditionof 
lassi
ality whi
h involves the length s
ales of the motion (see, e.g., [11℄): if the de Brogliewave length � is small with respe
t to the 
hara
teristi
 dimension L determined by the s
aleof variation of the potential V , the behavior of the system should be 
lose to the 
lassi
albehavior in the same potential V . This is very reminis
ent of how geometri
al opti
s 
an bededu
ed from wave opti
s. We regard this 
ondition, i.e.,�� L; (14)as the most natural 
ondition of 
lassi
ality sin
e it relates in a 
ompletely transparent waya property of the state, namely its de Broglie wave length �, and a property of the dynami
s,namely the s
ale of variation of the potential L. In the remainder of this paper we shall arguethat (14) is indeed a ne
essary and suÆ
ient 
ondition for (12).5 Wave Pa
ketsTo explain the physi
al 
ontent of (14) and its impli
ations we shall 
onsider �rst the 
asefor whi
h the wave fun
tion has a well-de�ned de Broglie wave length: we shall assume that6



 is a wave pa
ket with diameter �, with mean wave ve
tor k and asso
iated wave length� = 2�=jkj.As we shall see, the analysis of this situation will allow us to �nd a pre
ise 
hara
terizationof the s
ale L of variation of the potential. Our analysis will be rather standard|it is basi
allythe Ehrenfest's Theorem|and 
an be found in good textbooks (see, e.g., [10℄). We reprodu
eit here both for the sake of 
ompleteness and be
ause we believe that it attains, withinthe Bohmian framework, a deeper and mu
h more general signi�
an
e than within standardformulations of quantum me
hani
s.From the equivarian
e of (3) we have that the mean parti
le position at time t is given byhXi = Z xj t(x)j2dx :From (5) it follows that m d2dt2 hXi = � Z rxV (x)j t(x)j2dx :By expanding F (x) = �rxV (x) in Taylor series around hXi one obtainsm d2dt2 hXi = F (hXi) + 12Xj;k �j;k �2F�xj�xk (hXi) + :::; (15)where �j;k = hXjXki � hXjihXkiis of order �2, where � is the diameter of the pa
ket. Therefore, the mean parti
le positionshould satisfy the 
lassi
al Newton equation whenever�2 ����� �3V�xi�xj�xk ������ ������V�xi ����� ; (16)i.e., � � s���� V 0V 000 ���� (17)where V 0 and V 000 denote respe
tively suitable estimates of the �rst and third derivatives (e.g.,by taking a sup over the partial derivatives).The minimum value of the diameter of the pa
ket � is of order �. Hen
e (17) be
omes�� s���� V 0V 000 ���� (18)7



This last equation gives a ne
essary 
ondition for the 
lassi
ality of the parti
le motion and, by
omparing it with (14), a pre
ise de�nition of the notion of s
ale of variation of the potential,namely, L = L(V ) = s���� V 0V 000 ���� : (19)In the following we shall argue that (14), with L given by (19), is indeed also suÆ
ientfor 
lassi
al behavior of Bohmian traje
tories. For wave pa
kets this follows easily fromthe equivarian
e of j j2: over the lapse of time for whi
h the spreading of the pa
ket 
anbe negle
ted, the overwhelming majority2 of traje
tories X = X(t) will sti
k around theirmean value hXi and follow its 
lassi
al time evolution. Thus we expe
t (12) to hold for theoverwhelming majority of traje
tories.6 Lo
al Plane WavesSuppose now that  is not a pa
ket but a wave fun
tion that lo
ally looks like a pa
ket. Bythis we mean, referring to the polar representation (7), that the amplitude R(x) and the lo
alwave ve
tor k = k(x) � rxS(x)=�h (20)are slowly varying over distan
es of order �(x) � h=jrxS(x)j, the lo
al de Broglie wave length.We may 
all su
h a  a \lo
al plane wave".At any given time the lo
al plane wave 
an be thought as 
omposed of a sum of wavepa
kets: Consider a partition of physi
al spa
e into a union of disjoint sets �i 
hosen in su
ha way that the lo
al wave ve
tor k(x) doesn't vary appre
iably inside of ea
h of them anddenote by ki the almost 
onstant value k(x) for x 2 �i. Let ��i be the 
hara
teristi
 fun
tionof the set �i (��i(x) = 1 if x 2 �i and 0 otherwise). Sin
e Pi ��i = 1, we have (x) =Xi ��i(x) (x) =Xi  i(x): (21)Note that this de
omposition is somewhat arbitrary: provided that k(x) is almost 
onstantin �i, the extent of these sets 
an be of the order of many wave lengths down to a minimal2With respe
t to the equivariant measure j j2. 8



size �i ' j�ij1=3 of the same order of �i.3At any time, the position X of the parti
le will be in the support of one of the pa
ketsforming the de
omposition (21), say in the support of  i. If the 
ondition (17) holds for �i,we may then pro
eed as in the previous se
tion: the minimal size of the pa
ket  i 
an betaken of order �i = �(x) and the 
ondition of 
lassi
ality is again (18) for � = �(x).Note that this straightforward redu
tion of the 
lassi
al limit for lo
al plane waves to thatfor wave pa
kets is possible only within Bohmian me
hani
s: sin
e the parti
le has at anytime a well-de�ned position X and the di�erent 
omponents of the lo
al plane wave (21) don'tinterfere, we may \
ollapse"  to the wave pa
ket  i relevant to the dynami
s of X.7 General Wave Fun
tionsWe wish now to investigate the physi
al 
ontent of (14) and its impli
ations for a generalwave fun
tion. The �rst issue to address is what notion of wave length should be appropriatefor this 
ase. A rough estimate of � 
ould be given in terms of mean kineti
 energy asso
iatedwith  , Ekin( ) = h ;� �h22mrx2 i ; (22)with asso
iated wave length � = �( ) = hq2mEkin( ) : (23)Suppose now that (18), with � given by (23), is satis�ed. We 
laim that in this 
ase theS
hr�odinger evolution should \qui
kly" produ
e a lo
al plane wave, that 
an be e�e
tivelyregarded as built of pie
es that are wave pa
kets satisfying (18) for � = �(x) and hen
ethemselves evolving 
lassi
ally as we have seen in the previous se
tion.In fa
t, if �� L the kineti
 energy dominates the potential energy and the free S
hr�odingerevolution provides a rough approximation of the dynami
s up to the time needed for thepotential to a�e
t the evolution signi�
antly. During this time, the S
hr�odinger evolutionprodu
es a spatial separation of the di�erent wave ve
tors 
ontained in  , more or less asNewton's prism separates white light into the di�erent 
olors of the rainbow. In other words,3The use of the 
hara
teristi
 fun
tion may introdu
e an undesirable la
k of smoothness, but this 
an beeasily taken 
are by repla
ing the ��i with fun
tions �i forming a smooth partition of unity.9



the formation of a lo
al plane wave originates in the \dispersive" 
hara
ter of free S
hr�odingerevolution.So, in order to gain some appre
iation of this phenomenon 
onsider the free S
hr�odingerevolution  t(x) = 1(2�)3=2 Z eithk xt� �hk22m i ̂(k)dk ; (24)where  ̂ is the Fourier transform of the initial wave fun
tion  . The stationary phase methodyields straightforwardly the long time asymptoti
s of  t, t(x) � �im�ht �3=2 eim2�h x2t  ̂(k) ; where k = m�h xt ; (25)whi
h is indeed a lo
al plane wave with lo
al wave ve
tor k = mx=(�ht).We said above that the lo
al plane wave is \qui
kly" produ
ed. But how qui
kly? In orderto estimate su
h a time, 
onsider the simple example of an initial wave fun
tion  
omposed oftwo overlapping wave pa
kets with the same position spread �x and with opposite momentap and �p. The time � of formation of a lo
al plane should be of the order of the time forseparation of the pa
kets, whi
h is basi
ally the time needed to 
over a spa
e equal to �x.From �x�p � �h and �p � p we obtain� � �xp=m � �hp2=m � �hhEi ; (26)where hEi is the mean kineti
 energy of the parti
le. It is reasonable to suggest that (26),with hEi given by (22), 
ould give a very rough estimate of the time of formation of a lo
alplane wave for a general wave fun
tion  . Note that the time needed for the potential toprodu
e signi�
ant e�e
ts on the evolution is of orderT = Lv ; where v = hm�: (27)Thus, if � � L we have that � � T , whi
h means that the lo
al plane wave gets formed ona time s
ale mu
h shorter than the time s
ale over whi
h the potential a�e
ts the dynami
s.We arrive in this way at a sharp (or, at least, sharper than usually en
ountered) mathe-mati
al formulation of the 
lassi
al limit for a general wave fun
tion  . First of all, 
onsiderthe dimensionless parameter � = �( )L(V ) : (28)10



Se
ondly, 
onsider the Bohm motion X on the \ma
ros
opi
" length and time s
ales de�nedby  and V . By this we mean X 0 = X 0(t0); whereX 0 = X=L and t0 = t=T (29)with T given by (27). Finally, 
onsider FQ=m, the \quantum" 
ontribution to the totala

eleration in (11), on the ma
ros
opi
 s
ales (29), namelyD = T 2L FQ(X 0L; t0T ) (30)Then the Bohm motion on the ma
ros
opi
 length and time s
ales will be approximately
lassi
al, with deviation from 
lassi
ality D tending to 0 as �! 0.We'd like to point out that the use of ma
ros
opi
 
oordinates (29) for the formulationof the 
lassi
al limit is rather natural from a physi
al point of view. First of all, the s
alesL and T are the fundamental units of measure for the motion: L is the s
ale on whi
h thepotential varies and T provides an estimate of the time ne
essary for the parti
le to see itse�e
ts. More importantly, in the limit �! 0 the non
lassi
al behavior|o

urring during thetime � of formation of the lo
al plane wave|disappears, sin
e, as we have argued above, inthis limit � � T . In other words, on the ma
ros
opi
 s
ales on whi
h we expe
t 
lassi
albehavior the lo
al plane wave has been formed.8 Limitations of the Model: Interferen
e and the Roleof the EnvironmentBefore 
ommenting on the mathemati
s of the limit �! 0 we should stress a physi
al 
aveat.For motion in unbounded spa
e, the expanding 
hara
ter of the S
hr�odinger evolution makesthe set of lo
al plane waves an \attra
tor" for the dynami
s|so that the lo
al plane waveform is in this sense \typi
al". However, for motion in a bounded region (with wave fun
tionswhi
h are superpositions of bound states) the \typi
al" wave fun
tion is 
omposed by a sumof lo
al plane waves, this being due to interferen
e between the waves re
e
ted by the \edges"of the 
on�ning potential. Consider for example an in�nite potential well of size L in onedimension and initial wave fun
tion  , well lo
alized in the 
enter of the well whi
h is thesuperposition of two pa
kets with opposite momenta p and �p. Suppose that �( ) � L.Then the two pa
kets move 
lassi
ally and at a 
ertain time, say tr, are re
e
ted from the11



walls of the potential. At the time t
 = 2tr, they interfere in the middle of the well. t
 is the\�rst 
austi
 time," the time at whi
h the 
lassi
al a
tion S
l(x; t) be
omes multivalued. Ingeneral, we should not expe
t 
lassi
al behavior for times larger than the �rst 
austi
 time t
.What is going on? The emergen
e of 
lassi
al behavior should be robust and stable, whi
hwould not be the 
ase if it were restri
ted to times smaller than t
. However, if one remembersthat the model we are investigating is a strong idealization, the problem evaporates. Weare in fa
t dealing with the one-body problem de�ned by (5) and (6), an approximationto the 
omplete dynami
s de�ned by (4) in whi
h the term H(x;y), des
ribing the intera
tionbetween the 
enter of mass and the relative 
oordinates, is negle
ted. Note than even (4) is anidealization sin
e it does not in
lude the unavoidable intera
tion of the body with its externalenvironment: in a more realisti
 model H(x;y) would take into a

ount both the internal andexternal environment of the 
enter of mass (with y now in
luding both the relative 
oordinatesand the degrees of freedom of the external environment). These intera
tions|even for verysmall intera
tion energy|should produ
e entanglement between the 
enter of mass x of thesystem and the other degrees of freedom y, so that their e�e
tive role is that of \measuring"the position X and suppressing superpositions of spatially separated wave fun
tions. (Takingthese intera
tions into a

ount is what people nowadays 
all de
oheren
e, see, e.g., [7℄ andthe referen
es therein). Referring to the above example, the e�e
t of the environment shouldbe to sele
t (as relevant to the dynami
s of X; see [5℄ and [9℄) one of the two pa
kets on atime s
ale mu
h shorter than the �rst 
austi
 time t
.9 Towards a Mathemati
al Conje
tureThe mathemati
al 
ontent of se
tions 7 and 8 is summarized by the following (not yet sharplyformulated) 
onje
ture:Conje
ture. Let � be the dimensionless parameter de�ned by (28) and D be the quantity givenby (30). Then there are environmental intera
tions su
h that D ; 0 as �! 0, uniformly in and V .Con
erning this 
onje
ture, we'd like to make here just a few remarks.1. \D ; 0" means 
onvergen
e to 0 in a \suitable" probabilisti
 sense sin
e D is a randomvariable. D is a fun
tion of X, and X is random with probability distribution given by12



j j2. To require almost sure 
onvergen
e is probably too strong a demand. Convergen
e inprobability, or L2 
onvergen
e, would seem more appropriate. Moreover, � is de�ned in (23)in terms of the average kineti
 energy. This average 
ould be large even when there is asigni�
ant probability for a very small kineti
 energy. Thus it is probably ne
essary to regard� as random (with randomness inherited from the kineti
 energy) and to understand � ! 0also in a probabilisti
 sense.2. Uniformity of the limit in  and V 
ould be expressed as follows: let (Vn;  n) be anysequen
e for whi
h �n = �nLn ! 0, with �n = �( n) given by (23), and Ln = L(Vn). ThenD ; 0 as n ! +1. Understanding D ; 0 as 
onvergen
e in probability, we 
ould alsoexpress uniformity in the following way: for any � > 0 and for any Æ > 0, there exists an�0 > 0 su
h that P(D > Æ) is smaller than � whenever � < �0. Here P is the probabilitymeasure de�ned by j	j2, i.e., P(dq) = j	(q)j2dq, whi
h in
ludes randomness arising from theenvironment.3. For quadrati
 potentials (in
luding free motion and motion in a uniform for
e �eld) L =1so that � = 0. In this 
ase the 
onje
ture should be modi�ed as follows: let Lo be any lengths
ale and To the 
orresponding time s
ale To = Lov . Then for the Bohm motion on the s
alesgiven by Lo and To, D; 0 uniformly in  and Lo whenever ~� � �( )Lo ! 0.4. There is an enormous amount of mathemati
al work, 
alled semi
lassi
al analysis or, inmore modern terms, mi
rolo
al analysis, in whi
h the limit �h ! 0 of S
hr�odinger evolutionsis rigorously studied. It should be stressed that the limit �! 0 is mu
h more general than thelimit �h! 0. In fa
t � = �=L = h=mvL. So keeping L and the momentummv �xed, the limit�h ! 0 implies � ! 0. But there are many ways in whi
h � 
ould go to zero. The 
lassi
allimit, as expressed by the above 
onje
ture, is (at the very least) a two-parameters limit,involving � and L, and �h ! 0 is just a very spe
ial 
ase. Moreover, these two parametersthemselves live on in�nite dimensional spa
es sin
e � = �( ), with  varying in the Hilbertspa
e of the system's wave fun
tions, and L = L(V ), with V varying in the 
lass of admissibleone parti
le potentials (that is, potentials leading to a self-adjoint Hamiltonian).5. Exa
tly for the reason expressed in the previous remark, the 
onje
ture is really very hardto prove: it require a lot of uniformity both in the wave fun
tion  and in the potential V .13



Just to have an idea of the diÆ
ulties, one may think of the analogous problem in statisti
alme
hani
s, namely the problem of studying the deviations from thermodynami
 behavior ofa large but �nite system about whi
h not so mu
h is known.6. While the 
onje
ture is diÆ
ult to prove, it is still not 
ompletely satisfa
tory from aphysi
al point of view. The 
onje
ture states only that D depends on � in su
h a way thatD ; 0 as � ! 0, uniformly in  and V . A physi
ally more relevant result would be toestimate how rapidly D is tending to 0 (e.g., like �, or �2 or whatever). Note that only thislast kind of result 
an be of pra
ti
al value: given V and  , it provides an estimate for thedeviation from 
lassi
ality, while any other results do not quite do this.7. With the 
onje
ture, and even with the re�nement proposed in the previous remark,there is a further diÆ
ulty to 
onsider: even if H(x;y) is treated as a small perturbation in (4),the suggestion of se
tion 8 might not be too realisti
. In fa
t, the autonomous S
hr�odingerevolution, even of a very narrow wave fun
tion  =  (x), 
ould be destroyed in very shorttimes. This is a serious diÆ
ulty; one resolution might be found in the notion of 
onditionalwave fun
tion of the x-system,  (x) = 	(x; Y ), where Y is the a
tual 
on�guration of theenvironment (this notion has been introdu
ed and analyzed in [5℄). We regard the extensionof the 
onje
ture to this more realisti
 framework as the most interesting open problem onthe 
lassi
al limit, whi
h we leave for future work.10 The Classi
al Limit in a NutshellThe key ingredient in our analysis of the emergen
e of the 
lassi
al world, is that as soon asthe lo
al plane wave has formed, ea
h 
on�guration X is atta
hed to a guiding wave pa
ketwith a de�nite wave ve
tor k(x; t) that lo
ally determines the parti
le dynami
s a

ording tothe lo
al de Broglie relation p(x; t) = �hk(x; t);whi
h, for �� L, evolves a

ording to 
lassi
al laws. This means that the 
lassi
al limit 
anbe symboli
ally expressed as ( ;X)! (P;X);where ( ;X) is the 
omplete quantum state des
ription in terms of wave fun
tion and position,while (P;X) is the 
omplete 
lassi
al state des
ription in terms of momentum and position.14



All the relevant ma
ros
opi
 information 
ontained in the pair ( ;X) is, in the 
lassi
al limit,embodied in the pair (P;X)|the only robust, stable quantity. In other words, as far as thema
ros
opi
 dynami
s of X is 
on
erned, only the information 
arried by P is relevant.A
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