
Seven Steps Towards the Classial WorldValia Allori1, Detlef D�urr2, Shelly Goldstein3, and Nino Zangh��11 Dipartimento di Fisia, Istituto Nazionale di Fisia Nuleare - sezione di Genova,Via Dodeaneso 33, 16146 Genova, Italye-mail of Allori: allori�ge.infn.ite-mail of Zangh��: zanghi�ge.infn.it2 Mathematishes Institut der Universit�at M�unhen,Theresienstra�e 39, 80333 M�unhen, Germanye-mail: duerr�rz.mathematik.uni-muenhen.de3 Departments of Mathematis and Physis, Rutgers University,New Brunswik, NJ 08903, USAe-mail: oldstein�math.rutgers.eduNovember 30, 2001Abstrat. Classial physis is about real objets, like apples falling from trees, whose motion isgoverned by Newtonian laws. In standard quantum mehanis only the wave funtion or the resultsof measurements exist, and to answer the question of how the lassial world an be part of thequantum world is a rather formidable task. However, this is not the ase for Bohmian mehanis,whih, like lassial mehanis, is a theory about real objets. In Bohmian terms, the problem ofthe lassial limit beomes very simple: when do the Bohmian trajetories look Newtonian?1 IntrodutionThe lassial world, say the world of objets of familiar experiene that obey Newtonian laws,seems far removed from the \wavy" world of quantum mehanis. In this paper we shallsketh what we believe are the basi steps to be taken in going from the quantum world tothe lassial world.1. The �rst step is the ruial one: As is well known, and as Bell has emphasized [1℄,standard quantum mehanis is not a preise mirosopi theory beause the division between1



the mirosopi and the marosopi world, whih is essential to the very formulation ofthat theory, is not made preise by the theory [8℄. In fat, the following onlusion seemsinevitable: quantum mehanis does not ontain the means for desribing the lassial worldin any approximate sense and one needs to go beyond quantum mehanis in order to doso. There are two natural possibilities for amending ordinary quantum mehanis: eitherthe wave funtion is not all there is, or Shr�odinger's equation is wrong. In this paper we'llformulate the problem of the lassial limit within the framework of Bohmian mehanis, atheory whih follows the �rst path and in whih the observer doesn't play any ruial role.It is a theory about reality, not about the result of measurements. A very short review ofBohmian mehanis is given in setion 2 and the the relevant part of this theory, related tothe lassial limit, is disussed in setion 4.2. To get a handle on a problem, one should �rst simplify it as muh as possible. Theomplex motion of a marosopi body an be drastially simpli�ed by making some ratherstandard approximations and reduing the problem to that of a \partile" moving in anexternal potential. This is what we shall do in setion 3.3. Good textbooks on quantum mehanis ontain enlightening ideas. One of these ideas isthe so alled Ehrenfest theorem that we shall use in setion 5 in order to obtain a neessaryondition for the lassiality for wave pakets.4. The struture of Bohmian mehanis ontains the means for extending the ondition forlassiality to more general wave funtions, namely wave funtions whih loally look likeplane waves, as we shall see in setion 6. In setion 7 we shall then show how the problem oflassial limit for general wave funtions an be redued to that for loal plane waves.5. Simpliity is good, but it has its limitations: the redution of the motion of the enter ofmass to a one body problem doesn't explain the robustness and stability of lassial behavior.This however an be explained by making the model a little more realisti, say by inludingin an e�etive way the external as well as the internal environment. We shall briey touhthis point in setion 8.6. This step is the ruial one from a mathematial point of view. In setion 9 we shall putforward a mathematial onjeture on the emergene of lassial behavior. Unfortunately we2



annot provide any rigorous mathematial justi�ation for it. Mathematial work on it wouldbe valuable sine this onjeture goes beyond the standard mathematial work of semilassialanalysis (see, e.g., [13℄, [14℄) or, in more modern terms, miroloal analysis (see, e.g., [12℄).7. This is the last step in what we believe is the main struture of the lassial limit:( ;X)! (P;X) ;where on the two sides of the arrow are represented the omplete state desription of Bohmianmehanis, in terms of wave funtion and position, and of lassial mehanis, in terms ofmomentum and position.2 Bohmian MehanisIn nonrelativisti Bohmian mehanis the world is desribed by partiles whih follow tra-jetories determined by a law of motion. The evolution of the positions of these partiles isguided by the wave funtion whih itself evolves aording to Shr�odinger's equation. In otherwords, in Bohmian mehanis the omplete desription of the state of an N -partile systemis the pair (	; Q), where 	 = 	(q) = 	(q1; : : : ; qN) and Q = (Q1; :::; QN) are respetively thewave funtion and the atual on�guration of the system, with Qk denoting the position ofthe k-th partile in ordinary three-dimensional spae.For non relativisti spinless partiles the state (	; Q) evolves aording to the equationsdQkdt = �hmk Imrqk	(Q)	(Q) (1)i�h�	�t = � NXk=1 �h22mkr2qk	+ U(q)	 (2)Equations (1) and (2) form a omplete spei�ation of the theory. Agreement betweenBohmian mehanis and quantum mehanis regarding the results of any experiment is guar-anteed by what has been alled [5℄ the quantum equilibrium hypothesis: when a system has awave funtion  , its on�guration Q is random with probability distribution�(q) = j (q)j2: (3)While the meaning and justi�ation of this hypothesis is a deliate matter, whih has beendisussed at length elsewhere [5℄ (see also [4℄ and [6℄), we wish to underline here an important3



property of (3): if the probability density for the on�guration satis�es �(q; t0) = j (q; t0)j2at some time t0, then the density at any time t to whih this is arried by the motion (1) isalso given by �(q; t) = j (q; t)j2. This is an extremely important property of any Bohmiansystem, expressing a ompatibility between the two equations of motion (1) and (2) de�ningthe dynamis, whih we all the equivariane of j j2.3 Motion in an External PotentialOur goal is to study the lassial behavior of a marosopi body omposed of N partileswith N � 1 (one may think of an apple falling from a tree or a planet moving around thesun). It is rather lear that one expets lassial behavior only for appropriate marosopifuntions of the partile on�guration (Q1; :::; QN). The relevant marosopi variable, whoselassial behavior we wish to investigate here, is the enter of mass of the bodyX = PimiQim ;where m1; : : : ;mN are the masses of the partiles omposing the body and m = Pimi is thetotal mass of the body.We shall assume that the partiles interat through internal fores as well as being subjetedto an external potential, so that the potential energy in (2) is of the formU(q) =Xi<j U(qi; qj) +Xi Vi(qi) :Let y = (y1; : : : ; yN�1) be a suitable set of oordinates1 relative to the enter of mass x =Pimiqi=m. Then under the hange of variables q = (x; y) Shr�odinger's equation (2) assumesthe form i�h�	�t = �Hx +Hy +H(x;y)�	 (4)where Hx = �h22mrx2 + V (x) ; V (x) �Xi Vi(x) ;Hy is the free Hamiltonian assoiated with the relative oordinates y and the operator H(x;y)desribes the interation between the enter of mass and the relative oordinates. If Vi are1For sake of onreteness one may think, e.g., of the so alled Jaobi oordinates.4



slowly varying on the size of the body, H(x;y) an be treated as a small perturbation, and, in�rst approximation, negleted. Thus, if 	 =  (x)�(y) at some time, the time evolution ofthe enter of mass deouples from that of the relative oordinates and we end up with a verysimple one partile problem: the wave funtion  of the enter of mass evolves aording toone-partile Shr�odinger's equationi�h� �t = �h22mrx2 + V (x) (5)and its position X evolves aording todXdt = �hmImrx (X) (X) : (6)From now on, whenever no ambiguity will arise, we shall treat the enter of mass as a \partile"and we shall refer to X and  as the position and the wave funtion of suh a partile.4 The Classial Limit in Bohmian MehanisIn order to investigate the onditions under whih X evolves lassially it is useful to writethe wave funtion  =  (x) in the polar form (x) = R(x)e i�hS(x); (7)From Shr�odinger's equation (5) one obtains, following Bohm [2℄, the ontinuity equation forR2, �R2�t + div ��rxSm �R2� = 0; (8)and the modi�ed Hamilton-Jaobi equation for S�S�t + (rxS)22m + V � �h22mrx2RR = 0: (9)Note that equation (9) is the usual lassial Hamilton-Jaobi equation with an additionalterm VQ � � �h22mrx2RR ; (10)alled the quantum potential. Sine rxSm is the right hand side of (6), one then sees thatthe (size of the) quantum potential provides a rough measure of the deviation of Bohmianevolution from its lassial approximation. 5



Analogously, onsider the modi�ed Newton equation assoiated with (9), and obtained bydi�erentiating both sides of equation (6) with respet to time,md2Xd t2 = F + FQ; (11)where F = �rxV (X) and FQ = �rxVQ(X) are respetively the lassial fore and the\quantum" fore. Equation (11) shows that all the deviations from lassiality are embodiedin the quantum fore FQ.Thus, the formulation of the lassial limit in Bohmian mehanis turns out to be rathersimple: lassial behavior emerges whenever the partile trajetory X = X(t), satisfying (11),approximately satis�es the lassial Newton equation, i.e.,md2Xd t2 ' F : (12)The problem is to determine the physial onditions ensuring (12). Usually, physiists onsiderlassial behavior as ensured by the limit �h! 0, meaning by this�h� A0; (13)where A0 is some harateristi ation of the orresponding lassial motion (see, e.g.,[13℄,[15℄,[3℄)). Condition (13) is often regarded as equivalent to another standard onditionof lassiality whih involves the length sales of the motion (see, e.g., [11℄): if the de Brogliewave length � is small with respet to the harateristi dimension L determined by the saleof variation of the potential V , the behavior of the system should be lose to the lassialbehavior in the same potential V . This is very reminisent of how geometrial optis an bededued from wave optis. We regard this ondition, i.e.,�� L; (14)as the most natural ondition of lassiality sine it relates in a ompletely transparent waya property of the state, namely its de Broglie wave length �, and a property of the dynamis,namely the sale of variation of the potential L. In the remainder of this paper we shall arguethat (14) is indeed a neessary and suÆient ondition for (12).5 Wave PaketsTo explain the physial ontent of (14) and its impliations we shall onsider �rst the asefor whih the wave funtion has a well-de�ned de Broglie wave length: we shall assume that6



 is a wave paket with diameter �, with mean wave vetor k and assoiated wave length� = 2�=jkj.As we shall see, the analysis of this situation will allow us to �nd a preise haraterizationof the sale L of variation of the potential. Our analysis will be rather standard|it is basiallythe Ehrenfest's Theorem|and an be found in good textbooks (see, e.g., [10℄). We reprodueit here both for the sake of ompleteness and beause we believe that it attains, withinthe Bohmian framework, a deeper and muh more general signi�ane than within standardformulations of quantum mehanis.From the equivariane of (3) we have that the mean partile position at time t is given byhXi = Z xj t(x)j2dx :From (5) it follows that m d2dt2 hXi = � Z rxV (x)j t(x)j2dx :By expanding F (x) = �rxV (x) in Taylor series around hXi one obtainsm d2dt2 hXi = F (hXi) + 12Xj;k �j;k �2F�xj�xk (hXi) + :::; (15)where �j;k = hXjXki � hXjihXkiis of order �2, where � is the diameter of the paket. Therefore, the mean partile positionshould satisfy the lassial Newton equation whenever�2 ����� �3V�xi�xj�xk ������ ������V�xi ����� ; (16)i.e., � � s���� V 0V 000 ���� (17)where V 0 and V 000 denote respetively suitable estimates of the �rst and third derivatives (e.g.,by taking a sup over the partial derivatives).The minimum value of the diameter of the paket � is of order �. Hene (17) beomes�� s���� V 0V 000 ���� (18)7



This last equation gives a neessary ondition for the lassiality of the partile motion and, byomparing it with (14), a preise de�nition of the notion of sale of variation of the potential,namely, L = L(V ) = s���� V 0V 000 ���� : (19)In the following we shall argue that (14), with L given by (19), is indeed also suÆientfor lassial behavior of Bohmian trajetories. For wave pakets this follows easily fromthe equivariane of j j2: over the lapse of time for whih the spreading of the paket anbe negleted, the overwhelming majority2 of trajetories X = X(t) will stik around theirmean value hXi and follow its lassial time evolution. Thus we expet (12) to hold for theoverwhelming majority of trajetories.6 Loal Plane WavesSuppose now that  is not a paket but a wave funtion that loally looks like a paket. Bythis we mean, referring to the polar representation (7), that the amplitude R(x) and the loalwave vetor k = k(x) � rxS(x)=�h (20)are slowly varying over distanes of order �(x) � h=jrxS(x)j, the loal de Broglie wave length.We may all suh a  a \loal plane wave".At any given time the loal plane wave an be thought as omposed of a sum of wavepakets: Consider a partition of physial spae into a union of disjoint sets �i hosen in suha way that the loal wave vetor k(x) doesn't vary appreiably inside of eah of them anddenote by ki the almost onstant value k(x) for x 2 �i. Let ��i be the harateristi funtionof the set �i (��i(x) = 1 if x 2 �i and 0 otherwise). Sine Pi ��i = 1, we have (x) =Xi ��i(x) (x) =Xi  i(x): (21)Note that this deomposition is somewhat arbitrary: provided that k(x) is almost onstantin �i, the extent of these sets an be of the order of many wave lengths down to a minimal2With respet to the equivariant measure j j2. 8



size �i ' j�ij1=3 of the same order of �i.3At any time, the position X of the partile will be in the support of one of the paketsforming the deomposition (21), say in the support of  i. If the ondition (17) holds for �i,we may then proeed as in the previous setion: the minimal size of the paket  i an betaken of order �i = �(x) and the ondition of lassiality is again (18) for � = �(x).Note that this straightforward redution of the lassial limit for loal plane waves to thatfor wave pakets is possible only within Bohmian mehanis: sine the partile has at anytime a well-de�ned position X and the di�erent omponents of the loal plane wave (21) don'tinterfere, we may \ollapse"  to the wave paket  i relevant to the dynamis of X.7 General Wave FuntionsWe wish now to investigate the physial ontent of (14) and its impliations for a generalwave funtion. The �rst issue to address is what notion of wave length should be appropriatefor this ase. A rough estimate of � ould be given in terms of mean kineti energy assoiatedwith  , Ekin( ) = h ;� �h22mrx2 i ; (22)with assoiated wave length � = �( ) = hq2mEkin( ) : (23)Suppose now that (18), with � given by (23), is satis�ed. We laim that in this ase theShr�odinger evolution should \quikly" produe a loal plane wave, that an be e�etivelyregarded as built of piees that are wave pakets satisfying (18) for � = �(x) and henethemselves evolving lassially as we have seen in the previous setion.In fat, if �� L the kineti energy dominates the potential energy and the free Shr�odingerevolution provides a rough approximation of the dynamis up to the time needed for thepotential to a�et the evolution signi�antly. During this time, the Shr�odinger evolutionprodues a spatial separation of the di�erent wave vetors ontained in  , more or less asNewton's prism separates white light into the di�erent olors of the rainbow. In other words,3The use of the harateristi funtion may introdue an undesirable lak of smoothness, but this an beeasily taken are by replaing the ��i with funtions �i forming a smooth partition of unity.9



the formation of a loal plane wave originates in the \dispersive" harater of free Shr�odingerevolution.So, in order to gain some appreiation of this phenomenon onsider the free Shr�odingerevolution  t(x) = 1(2�)3=2 Z eithk xt� �hk22m i ̂(k)dk ; (24)where  ̂ is the Fourier transform of the initial wave funtion  . The stationary phase methodyields straightforwardly the long time asymptotis of  t, t(x) � �im�ht �3=2 eim2�h x2t  ̂(k) ; where k = m�h xt ; (25)whih is indeed a loal plane wave with loal wave vetor k = mx=(�ht).We said above that the loal plane wave is \quikly" produed. But how quikly? In orderto estimate suh a time, onsider the simple example of an initial wave funtion  omposed oftwo overlapping wave pakets with the same position spread �x and with opposite momentap and �p. The time � of formation of a loal plane should be of the order of the time forseparation of the pakets, whih is basially the time needed to over a spae equal to �x.From �x�p � �h and �p � p we obtain� � �xp=m � �hp2=m � �hhEi ; (26)where hEi is the mean kineti energy of the partile. It is reasonable to suggest that (26),with hEi given by (22), ould give a very rough estimate of the time of formation of a loalplane wave for a general wave funtion  . Note that the time needed for the potential toprodue signi�ant e�ets on the evolution is of orderT = Lv ; where v = hm�: (27)Thus, if � � L we have that � � T , whih means that the loal plane wave gets formed ona time sale muh shorter than the time sale over whih the potential a�ets the dynamis.We arrive in this way at a sharp (or, at least, sharper than usually enountered) mathe-matial formulation of the lassial limit for a general wave funtion  . First of all, onsiderthe dimensionless parameter � = �( )L(V ) : (28)10



Seondly, onsider the Bohm motion X on the \marosopi" length and time sales de�nedby  and V . By this we mean X 0 = X 0(t0); whereX 0 = X=L and t0 = t=T (29)with T given by (27). Finally, onsider FQ=m, the \quantum" ontribution to the totalaeleration in (11), on the marosopi sales (29), namelyD = T 2L FQ(X 0L; t0T ) (30)Then the Bohm motion on the marosopi length and time sales will be approximatelylassial, with deviation from lassiality D tending to 0 as �! 0.We'd like to point out that the use of marosopi oordinates (29) for the formulationof the lassial limit is rather natural from a physial point of view. First of all, the salesL and T are the fundamental units of measure for the motion: L is the sale on whih thepotential varies and T provides an estimate of the time neessary for the partile to see itse�ets. More importantly, in the limit �! 0 the nonlassial behavior|ourring during thetime � of formation of the loal plane wave|disappears, sine, as we have argued above, inthis limit � � T . In other words, on the marosopi sales on whih we expet lassialbehavior the loal plane wave has been formed.8 Limitations of the Model: Interferene and the Roleof the EnvironmentBefore ommenting on the mathematis of the limit �! 0 we should stress a physial aveat.For motion in unbounded spae, the expanding harater of the Shr�odinger evolution makesthe set of loal plane waves an \attrator" for the dynamis|so that the loal plane waveform is in this sense \typial". However, for motion in a bounded region (with wave funtionswhih are superpositions of bound states) the \typial" wave funtion is omposed by a sumof loal plane waves, this being due to interferene between the waves reeted by the \edges"of the on�ning potential. Consider for example an in�nite potential well of size L in onedimension and initial wave funtion  , well loalized in the enter of the well whih is thesuperposition of two pakets with opposite momenta p and �p. Suppose that �( ) � L.Then the two pakets move lassially and at a ertain time, say tr, are reeted from the11



walls of the potential. At the time t = 2tr, they interfere in the middle of the well. t is the\�rst austi time," the time at whih the lassial ation Sl(x; t) beomes multivalued. Ingeneral, we should not expet lassial behavior for times larger than the �rst austi time t.What is going on? The emergene of lassial behavior should be robust and stable, whihwould not be the ase if it were restrited to times smaller than t. However, if one remembersthat the model we are investigating is a strong idealization, the problem evaporates. Weare in fat dealing with the one-body problem de�ned by (5) and (6), an approximationto the omplete dynamis de�ned by (4) in whih the term H(x;y), desribing the interationbetween the enter of mass and the relative oordinates, is negleted. Note than even (4) is anidealization sine it does not inlude the unavoidable interation of the body with its externalenvironment: in a more realisti model H(x;y) would take into aount both the internal andexternal environment of the enter of mass (with y now inluding both the relative oordinatesand the degrees of freedom of the external environment). These interations|even for verysmall interation energy|should produe entanglement between the enter of mass x of thesystem and the other degrees of freedom y, so that their e�etive role is that of \measuring"the position X and suppressing superpositions of spatially separated wave funtions. (Takingthese interations into aount is what people nowadays all deoherene, see, e.g., [7℄ andthe referenes therein). Referring to the above example, the e�et of the environment shouldbe to selet (as relevant to the dynamis of X; see [5℄ and [9℄) one of the two pakets on atime sale muh shorter than the �rst austi time t.9 Towards a Mathematial ConjetureThe mathematial ontent of setions 7 and 8 is summarized by the following (not yet sharplyformulated) onjeture:Conjeture. Let � be the dimensionless parameter de�ned by (28) and D be the quantity givenby (30). Then there are environmental interations suh that D ; 0 as �! 0, uniformly in and V .Conerning this onjeture, we'd like to make here just a few remarks.1. \D ; 0" means onvergene to 0 in a \suitable" probabilisti sense sine D is a randomvariable. D is a funtion of X, and X is random with probability distribution given by12



j j2. To require almost sure onvergene is probably too strong a demand. Convergene inprobability, or L2 onvergene, would seem more appropriate. Moreover, � is de�ned in (23)in terms of the average kineti energy. This average ould be large even when there is asigni�ant probability for a very small kineti energy. Thus it is probably neessary to regard� as random (with randomness inherited from the kineti energy) and to understand � ! 0also in a probabilisti sense.2. Uniformity of the limit in  and V ould be expressed as follows: let (Vn;  n) be anysequene for whih �n = �nLn ! 0, with �n = �( n) given by (23), and Ln = L(Vn). ThenD ; 0 as n ! +1. Understanding D ; 0 as onvergene in probability, we ould alsoexpress uniformity in the following way: for any � > 0 and for any Æ > 0, there exists an�0 > 0 suh that P(D > Æ) is smaller than � whenever � < �0. Here P is the probabilitymeasure de�ned by j	j2, i.e., P(dq) = j	(q)j2dq, whih inludes randomness arising from theenvironment.3. For quadrati potentials (inluding free motion and motion in a uniform fore �eld) L =1so that � = 0. In this ase the onjeture should be modi�ed as follows: let Lo be any lengthsale and To the orresponding time sale To = Lov . Then for the Bohm motion on the salesgiven by Lo and To, D; 0 uniformly in  and Lo whenever ~� � �( )Lo ! 0.4. There is an enormous amount of mathematial work, alled semilassial analysis or, inmore modern terms, miroloal analysis, in whih the limit �h ! 0 of Shr�odinger evolutionsis rigorously studied. It should be stressed that the limit �! 0 is muh more general than thelimit �h! 0. In fat � = �=L = h=mvL. So keeping L and the momentummv �xed, the limit�h ! 0 implies � ! 0. But there are many ways in whih � ould go to zero. The lassiallimit, as expressed by the above onjeture, is (at the very least) a two-parameters limit,involving � and L, and �h ! 0 is just a very speial ase. Moreover, these two parametersthemselves live on in�nite dimensional spaes sine � = �( ), with  varying in the Hilbertspae of the system's wave funtions, and L = L(V ), with V varying in the lass of admissibleone partile potentials (that is, potentials leading to a self-adjoint Hamiltonian).5. Exatly for the reason expressed in the previous remark, the onjeture is really very hardto prove: it require a lot of uniformity both in the wave funtion  and in the potential V .13



Just to have an idea of the diÆulties, one may think of the analogous problem in statistialmehanis, namely the problem of studying the deviations from thermodynami behavior ofa large but �nite system about whih not so muh is known.6. While the onjeture is diÆult to prove, it is still not ompletely satisfatory from aphysial point of view. The onjeture states only that D depends on � in suh a way thatD ; 0 as � ! 0, uniformly in  and V . A physially more relevant result would be toestimate how rapidly D is tending to 0 (e.g., like �, or �2 or whatever). Note that only thislast kind of result an be of pratial value: given V and  , it provides an estimate for thedeviation from lassiality, while any other results do not quite do this.7. With the onjeture, and even with the re�nement proposed in the previous remark,there is a further diÆulty to onsider: even if H(x;y) is treated as a small perturbation in (4),the suggestion of setion 8 might not be too realisti. In fat, the autonomous Shr�odingerevolution, even of a very narrow wave funtion  =  (x), ould be destroyed in very shorttimes. This is a serious diÆulty; one resolution might be found in the notion of onditionalwave funtion of the x-system,  (x) = 	(x; Y ), where Y is the atual on�guration of theenvironment (this notion has been introdued and analyzed in [5℄). We regard the extensionof the onjeture to this more realisti framework as the most interesting open problem onthe lassial limit, whih we leave for future work.10 The Classial Limit in a NutshellThe key ingredient in our analysis of the emergene of the lassial world, is that as soon asthe loal plane wave has formed, eah on�guration X is attahed to a guiding wave paketwith a de�nite wave vetor k(x; t) that loally determines the partile dynamis aording tothe loal de Broglie relation p(x; t) = �hk(x; t);whih, for �� L, evolves aording to lassial laws. This means that the lassial limit anbe symbolially expressed as ( ;X)! (P;X);where ( ;X) is the omplete quantum state desription in terms of wave funtion and position,while (P;X) is the omplete lassial state desription in terms of momentum and position.14
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