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operators. Thus it seems perfetly natural that lassial observables are funtions on phase spaeand quantum observables are self-adjoint operators.However, there is muh less here than meets the eye. What should be meant by \measuring"a quantum observable, a self-adjoint operator? We think it is lear that this must be spei�ed|without suh spei�ation it an have no meaning whatsoever. Thus we should be areful hereand use safer terminology by saying that in quantum theory observables are assoiated with self-adjoint operators, sine it is diÆult to see what ould be meant by more than an assoiation, byan identi�ation of observables, regarded as somehow having independent meaning relating to ob-servation or measurement (if not to intrinsi \properties"), with suh a mathematial abstrationas a self-adjoint operator.We are insisting on \assoiation" rather than identi�ation in quantum theory, but not inlassial theory, beause there we begin with a rather lear notion of observable (or property)whih is well-aptured by the notion of a funtion on the phase spae, the state spae of ompletedesriptions. If the state of the system were observed, the value of the observable would ofourse be given by this funtion of the state (q; p), but the observable might be observed byitself, yielding only a partial spei�ation of the state. In other words, measuring a lassialobservable means determining to whih level surfae of the orresponding funtion the state ofthe system, the phase point|whih is at any time de�nite though probably unknown|belongs.In the quantum realm the analogous notion ould be that of funtion on Hilbert spae, not self-adjoint operator. But we don't measure the wave funtion, so that funtions on Hilbert spaeare not physially measurable, and thus do not de�ne \observables."The problematial harater of the way in whih measurement is treated in orthodox quantumtheory has been stressed by John Bell:The onept of `measurement' beomes so fuzzy on reetion that it is quite surprisingto have it appearing in physial theory at the most fundamental level. Less surpris-ing perhaps is that mathematiians, who need only simple axioms about otherwiseunde�ned objets, have been able to write extensive works on quantum measurementtheory|whih experimental physiists do not �nd it neessary to read. . . . Doesnot any analysis of measurement require onepts more fundamental than measure-ment? And should not the fundamental theory be about these more fundamentalonepts? [8℄. . . in physis the only observations we must onsider are position observations, ifonly the positions of instrument pointers. It is a great merit of the de Broglie-Bohmpiture to fore us to onsider this fat. If you make axioms, rather than de�nitionsand theorems, about the `measurement' of anything else, then you ommit redundanyand risk inonsisteny. [9℄The Broglie-Bohm theory, Bohmian mehanis, is a physial theory for whih the oneptof `measurement' does not appear at the most fundamental level|in the very formulation ofthe theory. It is a theory about onepts more fundamental than `measurement,' in terms ofwhih an analysis of measurement an be performed. In a previous work [25℄ we have shownhow probabilities for positions of partiles given by j j2 emerge naturally from an analysis of\equilibrium" for the deterministi dynamial system de�ned by Bohmian mehanis, in muhthe same way that the Maxwellian veloity distribution emerges from an analysis of lassialthermodynami equilibrium. Our analysis entails that Born's statistial rule � = j j2j shouldbe regarded as a loal manifestation of a global equilibrium state of the universe, what we all4



quantum equilibrium, a onept analogous to, but quite distint from, thermodynami equilib-rium: a universe in quantum equilibrium evolves so as to yield an appearane of randomness,with empirial distributions in agreement with all the preditions of the quantum formalism.While in our earlier work we have proven, from the �rst priniples of Bohmian mehanis,the \quantum equilibrium hypothesis" that when a system has wave funtion  , the distribution� of its on�guration satis�es � = j j2, our goal here is to show that it follows from thishypothesis, not merely that Bohmian mehanis makes the same preditions as does orthodoxquantum theory for the results of any experiment, but that the quantum formalism of operatorsas observables emerges naturally and simply as the very expression of the empirial import ofBohmian mehanis.More preisely, we shall show here that self-adjoint operators arise in assoiation with spei�experiments: insofar as the statistis for the values whih result from the experiment are on-erned, the notion of self-adjoint operator ompatly expresses and represents the relevant data.It is the assoiation \E 7! A" between an experiment E and an operator A|an assoiation thatwe shall establish in Setion 2 and upon whih we shall elaborate in the other setions|that is theentral notion of this paper. Aording to this assoiation the notion of operator-as-observablein no way implies that anything is measured in the experiment, and ertainly not the operatoritself. We shall nonetheless speak of suh experiments as measurements, sine this terminologyis unfortunately standard. When we wish to emphasize that we really mean measurement|theasertaining of the value of a quantity|we shall often speak of genuine measurement.Muh of our analysis of the emergene and role of operators as observables in Bohmianmehanis, inluding the von Neumann-type piture of measurements at whih we shall arrive,applies as well to orthodox quantum theory. Indeed, the best way to understand the statusof the quantum formalism|and to better appreiate the minimality of Bohmian mehanis|isBohr's way: What are alled quantum observables obtain meaning only through their assoiationwith spei� experiments. We believe that Bohr's point has not been taken to heart by mostphysiists, even those who regard themselves as advoates of the Copenhagen interpretation.Indeed, it would appear that the argument provided by our analysis against taking operatorstoo seriously as observables has even greater fore from an orthodox perspetive: Given theinitial wave funtion, at least in Bohmian mehanis the outome of the partiular experimentis determined by the initial on�guration of system and apparatus, while for orthodox quantumtheory there is nothing in the initial state whih ompletely determines the outome. Indeed, we�nd it rather surprising that most proponents of standard quantum measurement theory, that isthe von Neumann analysis of measurement [74℄, beginning with von Neumann, nonetheless seemto retain an unritial identi�ation of operators with properties. Of ourse, this is presumablybeause more urgent matters|the measurement problem and the suggestion of inonsisteny andinoherene that it entails|soon fore themselves upon one's attention. Moreover suh diÆultiesperhaps make it diÆult to maintain muh on�dene about just what should be onluded fromthe \measurement" analysis, while in Bohmian mehanis, for whih no suh diÆulties arise,what should be onluded is rather obvious.Moreover, a great many signi�ant real-world experiments are simply not at all assoiated withoperators in the usual way. Beause of these and other diÆulties, it has been proposed that weshould go beyond operators-as-observables, to generalized observables, desribed by mathematialobjets (positive-operator-valuedmeasures, POVMs) even more abstrat than operators (see, e.g.,the books of Davies [21℄, Holevo [50℄ and Kraus [55℄). It may seem that we would regard this5



development as a step in the wrong diretion, sine it supplies us with a new, muh larger lassof abstrat mathematial entities about whih to be naive realists. We shall, however, show thatthese generalized observables for Bohmian mehanis form an extremely natural lass of objetsto assoiate with experiments, and that the emergene and role these observables is merely anexpression of quantum equilibrium together with the linearity of Shr�odinger's evolution. It istherefore rather dubious that the ourrene of generalized observables|the simplest ase ofwhih are self-adjoint operators|an be regarded as suggesting any deep truths about reality orabout epistemology.As a byprodut of our analysis of measurement we shall obtain a riterion of measurability anduse it to examine the genuine measurability of some of the properties of a physial system. In thisregard, it should be stressed that measurability is theory-dependent: di�erent theories, thoughempirially equivalent, may di�er on what should be regarded as genuinely measurable withineah theory. This important|though very often ignored|point was made long ago by Einsteinand has been repeatedly stressed by Bell. It is best summarized by Einstein's remark [49℄: \It isthe theory whih deides what we an observe."We note in passing that measurability and reality are di�erent issues. Indeed, for Bohmianmehanis most of what is \measurable" (in a sense that we will explain) is not real and most ofwhat is real is not genuinely measurable. (The main exeption, the position of a partile, whihis both real and genuinely measurable, is, however, onstrained by absolute unertainty [25℄).In fousing here on the role of operators as observables, we don't wish to suggest that thereare no other important roles played by operators in quantum theory. In partiular, in addition tothe familiar role played by operators as generators of symmetries and time-evolutions, we wouldlike to mention the rather di�erent role played by the �eld operators of quantum �eld theory: tolink abstrat Hilbert-spae to spae-time and strutures therein, failitating the formulation oftheories desribing the behavior of an inde�nite number of partiles [30, 29℄.Finally, we should mention what should be the most interesting sense of measurement for aphysiist, namely the determination of the oupling onstants and other parameters that de�neour physial theories. This has little to do with operators as observables in quantum theory andshall not be addressed here.Notations and ConventionsQ = (Q1; : : : ;QN) denotes the atual on�guration of a system of N partile with positionsQk; q = (q1; : : : ;qN ) is its generi on�guration. Whenever we deal with a system-apparatusomposite, x (X) will denote the generi (atual) on�guration of the system and y (Y ) thatof the apparatus. Sometimes we shall refer to the system as the x-system and the apparatusas the y-system. Sine the apparatus should be understood as inluding all systems relevant tothe behavior of the system in whih we are interested, this notation and terminology is quiteompatible with that of Setion 2.2, in whih y refers to the environment of the x-system.For a system in the state 	, �	 will denote the quantum equilibrium measure, �	(dq) =j	(q)j2dq. If Z = F (Q) then �Z	 denotes the measure indued by F , i.e. �Z	 = �	 Æ F�1.
6



2 Bohmian ExperimentsAording to Bohmian mehanis, the omplete desription or state of an N -partile systemis provided by its wave funtion 	(q; t), where q = (q1; : : : ;qN) 2 R3N , and its on�gurationQ = (Q1; : : : ;QN) 2 R3N , where the Qk are the positions of the partiles. The wave funtion,whih evolves aording to Shr�odinger's equation,i~�	�t = H	 ; (2.1)horeographs the motion of the partiles: these evolve aording to the equationdQkdt = ~mk Im	�rk		�	 (Q1; : : : ;QN) (2.2)where rk = �=�qk: In equation (2.1), H is the usual nonrelativisti Shr�odinger Hamiltonian;for spinless partiles it is of the formH = �XNk=1 ~22mkr2k + V; (2.3)ontaining as parameters the masses m1 : : : ; mN of the partiles as well as the potential energyfuntion V of the system. For an N -partile system of nonrelativisti partiles, equations (2.1)and (2.2) form a omplete spei�ation of the theory (magneti �elds1 and spin,2 as well as Fermiand Bose-Einstein statistis,3 an easily be dealt with and in fat arise in a natural manner[6, 15, 64, 42, 28℄). There is no need, and indeed no room, for any further axioms, desribingeither the behavior of other observables or the e�ets of measurement.2.1 Equivariane and Quantum EquilibriumIt is important to bear in mind that regardless of whih observable one hooses to measure, theresult of the measurement an be assumed to be given on�gurationally, say by some pointerorientation or by a pattern of ink marks on a piee of paper. Then the fat that Bohmianmehanis makes the same preditions as does orthodox quantum theory for the results of anyexperiment|for example, a measurement of momentum or of a spin omponent|provided weassume a random distribution for the on�guration of the system and apparatus at the beginningof the experiment given by j	(q)j2|is a more or less immediate onsequene of (2.2). This isbeause of the quantum ontinuity equation�j	j2�t + div J	 = 0;whih is a simple onsequene of Shr�odinger's equation. Here J	 = (J	1 ; : : : ;J	N) withJ	k = ~mk Im (	�rk	)1When a magneti �eld is present, the gradients rk in the equations (2.1 and (2.2) must be understood asthe ovariant derivatives involving the vetor potential A.2See Setion 2.5.3For indistinguishable partiles, a areful analysis [28℄ of the natural on�guration spae, whih is no longerR3N , leads to the onsideration of wave funtions on R3N that are either symmetri or antisymmetri underpermutations. 7



the quantum probability urrent. This equation beomes the lassial ontinuity equation���t + div � v = 0 (2.4)for the system of equations dQ=dt = v de�ned by (2.2)|governing the evolution of the probabilitydensity � under the motion de�ned by the guiding equation (2.2) for the partiular hoie � =j	j2 = 	�	. In other words, if the probability density for the on�guration satis�es �(q; t0) =j	(q; t0)j2 at some time t0, then the density to whih this is arried by the motion (2.2) at anytime t is also given by �(q; t) = j	(q; t)j2. This is an extremely important property of anyBohmian system, as it expresses a ertain ompatibility between the two equations of motionde�ning the dynamis, whih we all the equivariane4 of j	j2.The above assumption guaranteeing agreement between Bohmian mehanis and quantummehanis regarding the results of any experiment is what we all the \quantum equilibriumhypothesis":When a system has wave funtion 	 its on�guration Q is random with probabilitydistribution given by the measure �	(dq) = j	(q)j2dq. (2.5)When this ondition is satis�ed we shall say that the system is in quantum equilibrium and weshall all �	 the quantum equilibrium distribution. While the meaning and justi�ation of (2.5)is a deliate matter, whih we have disussed at length elsewhere [25℄, it is important to reognizethat, merely as a onsequene of (2.2) and (2.5), Bohmian mehanis is a ounterexample to allof the laims to the e�et that a deterministi theory annot aount for quantum randomnessin the familiar statistial mehanial way, as arising from averaging over ignorane: Bohmianmehanis is learly a deterministi theory, and, as we have just explained, it does aount forquantum randomness as arising from averaging over ignorane given by j	(q)j2.2.2 Conditional and E�etive Wave FuntionsWhih systems should be governed by Bohmian mehanis? An n-partile subsystem of an N -partile system (n < N) need not in general be governed by Bohmian mehanis, sine no wavefuntion for the subsystem need exist. This will be so even with trivial interation potential V ,if the wave funtion of the system does not properly fatorize; for nontrivial V the Shr�odingerevolution would in any ase quikly destroy suh a fatorization. Therefore in a universe governedby Bohmian mehanis there is a priori only one wave funtion, namely that of the universe, andthere is a priori only one system governed by Bohmian mehanis, namely the universe itself.4 Equivariane an be formulated in very general terms: onsider the transformations U : 	 ! U	 andf : Q ! f(Q), where U is a unitary transformation on L2(dq) and f is a transformation on on�guration spaethat may depend on 	. We say that the map 	 7! �	 from wave funtions to measures on on�guration spae isequivariant with respet to U and f if �U	 = �	 Æ f�1. The above argument based on the ontinuity equation(2.4) shows that 	 7! j	j2dq is equivariant with respet to U � Ut = e�i t~ H , where H is the Shr�odingerHamiltonian (2.3) and f � ft is the solution map of (2.2). In this regard, it is important to observe that for aHamiltonian H whih is not of Shr�odinger type we shouldn't expet (2.2) to be the appropriate veloity �eld, thatis, a �eld whih generates an evolution in on�guration spae having j	j2 as equivariant density. For example,for H = ~i ��q , where  is a onstant (for simpliity we are assuming on�guration spae to be one-dimensional),we have that j	j2 is equivariant provided the evolution of on�gurations is given by dQ=dt = . In other words,for Ut = et ��q the map 	 7! j	j2dq is equivariant if ft : Q! Q+ t.8



Consider then an N -partile non relativisti universe governed by Bohmian mehanis, with(universal) wave funtion 	. Fous on a subsystem with on�guration variables x, i.e., on asplitting q = (x; y) where y represents the on�guration of the environment of the x-system. Theatual partile on�gurations at time t are aordingly denoted by Xt and Yt, i.e., Qt = (Xt; Yt).Note that 	t = 	t(x; y). How an one assign a wave funtion to the x-system? One obviouspossibility|a�orded by the existene of the atual on�guration|is given by what we all theonditional wave funtion of the x-system t(x) = 	t(x; Yt): (2.6)To get familiar with this notion onsider a very simple one dimensional universe made of twopartiles with Hamiltonian (~ = 1)H = H(x) +H(y) +H(xy) = �12� �2�x2 + �2�y2 � + 12(x� y)2:and initial wave funtion	0 =  
 �0 with  (x) = �� 14 e�x22 and �0(y) = �� 14 e� y22 :Then (2.1) and (2.2) are easily solved:	t(x; y) = �� 12 (1 + it)� 12 e� 14�(x�y)2+ (x+y)21+2it �;Xt = a(t)X + b(t)Y and Yt = b(t)X + a(t)Y;where a(t) = 12 [(1+ t2) 12 +1℄, b(t) = 12 [(1+ t2) 12 � 1℄, and X and Y are the initial positions of thetwo partiles. Fous now on one of the two partiles (the x-system) and regard the other one asits environment (the y-system). The onditional wave funtion of the x-system t(x) = �� 12 (1 + it)� 12 e� 14�(x�Yt)2+ (x+Yt)21+2it �;depends, through Yt, on both the initial ondition Y for the environment and the initial onditionX for the partile. As these are random, so is the evolution of  t, with probability law determinedby j	0j2. In partiular,  t does not satisfy Shr�odinger's equation for any H(x).We remark that even when the x-system is dynamially deoupled from its environment, itsonditional wave funtion will not in general evolve aording to Shr�odinger's equation. Thusthe onditional wave funtion laks the dynamial impliations from whih the wave funtion ofa system derives muh of its physial signi�ane. These are, however, aptured by the notion ofe�etive wave funtion:Suppose that 	(x; y) =  (x)�(y) + 	?(x; y) ; where � and 	? have marosop-ially disjoint y-supports. If Y 2 supp � we say that  is the e�etive wavefuntion of the x-system. (2.7)Of ourse,  is also the onditional wave funtion sine nonvanishing salar multiples of wavefuntions are naturally identi�ed.55Note that in Bohmian mehanis the wave funtion is naturally a projetive objet sine wave funtionsdi�ering by a multipliative onstant|possibly time-dependent|are assoiated with the same vetor �eld, andthus generate the same dynamis. 9



2.3 DeohereneOne might wonder why systems possess an e�etive wave funtion at all. In fat, in general theydon't! For example the x-system will not have an e�etive wave funtion when, for instane,it belongs to a larger mirosopi system whose e�etive wave funtion doesn't fatorize in theappropriate way. However, the larger the environment of the x-system, the greater is the potentialfor the existene of an e�etive wave funtion for this system, owing in e�et to the abundaneof \measurement-like" interation with a larger environment.6We remark that it is the relative stability of the marosopi disjointness employed in thede�nition of the e�etive wave funtion, arising from what are nowadays often alled mehanismsof deoherene|the destrution of the oherent spreading of the wave funtion, the e�etivelyirreversible ow of \phase information" into the (marosopi) environment|whih aountsfor the fat that the e�etive wave funtion of a system obeys Shr�odinger's equation for thesystem alone whenever this system is isolated. One of the best desriptions of the mehanisms ofdeoherene, though not the word itself, an be found in Bohm's 1952 \hidden variables" paper[15℄.Deoherene plays a ruial role in the very formulation of the various interpretations ofquantum theory loosely alled deoherene theories(GriÆths [46℄, Omn�es [65℄, Leggett [60℄, Zurek[79℄, Joos and Zeh [51℄, Gell-Mann and Hartle [35℄). In this regard we wish to emphasize, however,as did Bell in his artile \Against Measurement" [11℄, that deoherene in no way omes to gripswith the measurement problem itself, being arguably a neessary, but ertainly not a suÆient,ondition for its omplete resolution. In ontrast, for Bohmian mehanis deoherene is purelyphenomenologial|it plays no role whatsoever in the formulation (or interpretation) of the theoryitself7|and the very notion of e�etive wave funtion aounts at one for the redution of thewave paket in quantum measurement.Aording to orthodox quantum measurement theory [74, 14, 76, 77℄, after a measurement,or preparation, has been performed on a quantum system, the x-system, the wave funtion forthe omposite formed by system and apparatus is of the formX�  � 
 �� (2.8)with the di�erent �� supported by the marosopially distint (sets of) on�gurations orre-sponding to the various possible outomes of the measurement, e.g., given by apparatus pointerorientations. Of ourse, for Bohmian mehanis the terms of (2.8) are not all on the samefooting: one of them, and only one, is seleted, or more preisely supported, by the outome|orresponding, say, to �0|whih atually ours. To emphasize this we may write (2.8) in the6To understand how this omes about one may suppose that initially the y-supports of � and 	? (f. thede�nition above of e�etive wave funtion) are just \suÆiently" (but not marosopially) disjoint. Then, dueto the interation with the environment, the amount of y-disjointness will tend to inrease dramatially as timegoes on, with, as in a hain reation, more and more degrees of freedom partiipating in this disjointness. Whenthe e�et of this \deoherene" is taken into aount, one �nds that even a small amount of y-disjointness willoften tend to beome \suÆient," and quikly \more than suÆient," and �nally marosopi.7However, deoherene plays an important role in the emergene of Newtonian mehanis as the desription ofthe marosopi regime for Bohmian mehanis, supporting a piture of a marosopi Bohmian partile, in thelassial regime, guided by a marosopially well-loalized wave paket with a marosopially sharp momentummoving along a lassial trajetory. It may, indeed, seem somewhat ironi that the gross features of our worldshould appear lassial beause of interation with the environment and the resulting wave funtion entanglement,the harateristi quantum innovation. 10



form  
 � +	?where  =  �0 , � = ��0 , and 	? = P�6=�0  � 
 ��. By omparison with (2.7) it follows thatafter the measurement the x-system has e�etive wave funtion  �0 . This is how ollapse (orredution) of the e�etive wave funtion to the one assoiated with the outome �0 arises inBohmian mehanis.While in orthodox quantum theory the \ollapse" is merely superimposed upon the unitaryevolution|without a preise spei�ation of the irumstanes under whih it may legitimatelybe invoked|we have now, in Bohmian mehanis, that the evolution of the e�etive wave funtionis atually given by a stohasti proess, whih onsistently embodies both unitarity and ollapseas appropriate. In partiular, the e�etive wave funtion of a subsystem evolves aording toShr�odinger's equation when this system is suitably isolated. Otherwise it \pops in and out"of existene in a random fashion, in a way determined by the ontinuous (but still random)evolution of the onditional wave funtion  t. Moreover, it is the ritial dependene on thestate of the environment and the initial onditions whih is responsible for the random behaviorof the (onditional or e�etive) wave funtion of the system.2.4 Wave Funtion and StateAs an important onsequene of (2.6) we have, for the onditional probability distribution ofthe on�guration Xt of a system at time t, given the on�guration Yt of its environment, thefundamental onditional probability formula [25℄:Prob	0�Xt 2 dx �� Yt� = j t(x)j2 dx; (2.9)where Prob	0(dQ) = j	0(Q)j2 dQ;with Q = (X; Y ) the on�guration of the universe at the (initial) time t = 0. Formula (2.9) isthe ornerstone of our analysis [25℄ on the origin of randomness in Bohmian mehanis. Sinethe right hand side of (2.9) involves only the e�etive wave funtion, it follows that the wavefuntion  t of a subsystem represents maximal information about its on�guration Xt. In otherwords, given the fat that its wave funtion is  t, it is in priniple impossible to know more aboutthe on�guration of a system than what is expressed by the right hand side of (2.9), even whenthe detailed on�guration Yt of its environment is taken into aount [25℄Prob	0�Xt 2 dx �� Yt� = Prob	0�Xt 2 dx ��  t� = j t(x)j2 dx: (2.10)The fat that the knowledge of the on�guration of a system must be mediated by its wavefuntion may partially aount for the possibility of identifying the state of a system|its om-plete desription|with its wave funtion without enountering any pratial diÆulties. This isprimarily beause of the wave funtion's statistial role, but its dynamial role is also relevanthere. Thus it is natural, even in Bohmian mehanis, to regard the wave funtion as the \state"of the system. This attitude is supported by the asymmetri roles of on�guration and wavefuntion: while the fat that the wave funtion is  entails that the on�guration is distributedaording to j j2, the fat that the on�guration is X has no impliations whatsoever for the11



wave funtion.8 Indeed, suh an asymmetry is grounded in the dynamial laws and in the initialonditions.  is always assumed to be �xed, being usually under experimental ontrol, while Xis always taken as random, aording to the quantum equilibrium distribution.When all is said and done, it is important to bear in mind that regarding  as the \state"is only of pratial value, and shouldn't obsure the more important fat that the most de-tailed desription|the omplete state desription|is given (in Bohmian mehanis) by the wavefuntion and the on�guration.2.5 The Stern-Gerlah ExperimentInformation about a system does not spontaneously pop into our heads or into our (other)\measuring" instruments; rather, it is generated by an experiment : some physial interationbetween the system of interest and these instruments, whih together (if there is more than one)omprise the apparatus for the experiment. Moreover, this interation is de�ned by, and mustbe analyzed in terms of, the physial theory governing the behavior of the omposite formedby system and apparatus. If the apparatus is well designed, the experiment should somehowonvey signi�ant information about the system. However, we annot hope to understand thesigni�ane of this \information"|for example, the nature of what it is, if anything, that hasbeen measured|without some suh theoretial analysis.As an illustration of suh an analysis we shall disuss the Stern-Gerlah experiment fromthe standpoint of Bohmian mehanis. But �rst we must explain how spin is inorporated intoBohmian mehanis: If 	 is spinor-valued, the bilinear forms appearing in the numerator anddenominator of (2.2) should be understood as spinor-inner-produts; e.g., for a single spin 12partile the two-omponent wave funtion	 � � 	+(x)	�(x) �generates the veloity v	 = ~mIm(	;r	)(	;	) (2.11)where ( � ; � ) denotes the salar produt in the spin spae C 2 . The wave funtion evolves via(2.1), where now the Hamiltonian H ontains the Pauli term, for a single partile proportionalto B ��, that represents the oupling between the \spin" and an external magneti �eld B; here� = (�x; �y; �z) are the Pauli spin matries whih an be taken to be�x = � 0 11 0 � �y = � 0 �ii 0 � �z = � 1 00 �1 �Let's now fous on a Stern-Gerlah \measurement of the operator �z": An inhomogeneousmagneti �eldB is established in a neighborhood of the origin, by means of a suitable arrangementof magnets. This magneti �eld is oriented in the positive z-diretion, and is inreasing in thisdiretion. We also assume that the arrangement is invariant under translations in the x-diretion,i.e., that the geometry does not depend upon x-oordinate. A partile with a fairly de�nite8The \fat" (that the on�guration is X) shouldn't be onfused with the \knowledge of the fat": the latterdoes have suh impliations [25℄! 12



momentum is direted towards the origin along the negative y-axis. For simpliity, we shallonsider a neutral spin-1=2 partile whose wave funtion 	 evolves aording to the HamiltonianH = � ~22mr2 � ���B: (2.12)where � is a positive onstant (if one wishes, one might think of a �titious eletron not feelingthe Lorentz fore).The inhomogeneous �eld generates a vertial deetion of 	 away from the y-axis, whih forBohmian mehanis leads to a similar deetion of the partile trajetory aording to the veloity�eld de�ned by (2.11): if its wave funtion 	 were initially an eigenstate of �z of eigenvalue 1 or�1, i.e., if it were of the form	(+) =  (+) 
 �0(x) or 	(�) =  (�) 
 �0(x)where  (+) � � 10 � and  (�) � � 01 � (2.13)then the deetion would be in the positive (negative) z-diretion (by a rather de�nite angle).This limiting behavior is readily seen for �0 = �0(z)�(x; y) and B = (0; 0; B), so that the z-motion is ompletely deoupled from the motion along the other two diretions, and by makingthe standard (albeit unphysial) assumption [13℄, [14℄�B�z = onst > 0 : (2.14)whene ���B = (b+ az)�zwhere a > 0 and b are onstants. Then	(+)t = � �(+)t (z)�t(x; y)0 � and 	(�)t = � 0�(�)t (z)�t(x; y) �where �(�)t are the solutions ofi~��t(�)�t = � ~22m�2�t(�)�z2 � (b+ a z)�t(�); (2.15)for initial onditions �0(�) = �0(z). Sine z generates translations of the z-omponent of themomentum, the behavior desribed above follows easily. More expliitly, the limiting behaviorfor t ! 1 readily follows by a stationary phase argument on the expliit solution9 of (2.15).9Eq. (2.15) is readily solved: �(�)t (z) = Z G(�)(z; z0; t)�0(z0) dz0 ;where (by the standard rules for the Green's funtion of linear and quadrati Hamiltonians)G(�)(z; z0; t) =r m2�i~t e i~�m2t�z�z0�(�) at2m �2+ (�)at2 �z�z0�(�) at2m ��(�)(az0+b)t+ at33m �
13



More simply, we may onsider the initial Gaussian state�0 = e(� z24d2 )(2d2�) 14for whih j��t (z)j2, the probability density of the partile being at a point of z-oordinate z, is,by the linearity of the interation in (2.15), a Gaussian with mean and mean square deviationgiven respetively by �z(t) = (�)a t22m d(t) = dr1 + ~2t22m2d4 : (2.16)For a more general initial wave funtion,	 =  
 �0  = � (+) + � (�) (2.17)passage through the magneti �eld will, by linearity, split the wave funtion into an upward-deeted piee (proportional to  (+)) and a downward-deeted piee (proportional to  (�)),with orresponding deetions of the trajetories. The outome is registered by detetors plaedin the paths of these two possible \beams." Thus of the four kinematially possible outomes(\pointer orientations") the ourrene of no detetion and of simultaneous detetion an beignored as highly unlikely, and the two relevant outomes orrespond to registration by eitherthe upper or the lower detetor. Aordingly, for a measurement of �z the experiment is equippedwith a \alibration" (i.e., an assignment of numerial values to the outomes of the experiment)�+ = 1 for upper detetion and �� = �1 for lower detetion (while for a measurement of thez-omponent of the spin angular momentum itself the alibration is given by 12~��).Note that one an ompletely understand what's going on in this Stern-Gerlah experimentwithout invoking any putative property of the eletron suh as its atual z-omponent of spinthat is supposed to be revealed in the experiment. For a general initial wave funtion there isno suh property. What is more, the transpareny of the analysis of this experiment makes itlear that there is nothing the least bit remarkable (or for that matter \nonlassial") aboutthe nonexistene of this property. But the failure to pay attention to the role of operatorsas observables, i.e., to preisely what we should mean when we speak of measuring operator-observables, helps reate a false impression of quantum peuliarity.2.6 A Remark on the Reality of Spin in Bohmian MehanisBell has said that (for Bohmian mehanis) spin is not real. Perhaps he should better havesaid: \Even spin is not real," not merely beause of all observables, it is spin whih is generallyregarded as quantum mehanially most paradigmati, but also beause spin is treated in ortho-dox quantum theory very muh like position, as a \degree of freedom"|a disrete index whihsupplements the ontinuous degrees of freedom orresponding to position|in the wave funtion.Be that as it may, his basi meaning is, we believe, this: Unlike position, spin is not primitive,i.e., no atual disrete degrees of freedom, analogous to the atual positions of the partiles, areadded to the state desription in order to deal with \partiles with spin." Roughly speaking, spinis merely in the wave funtion. At the same time, as explained in Setion 2.5, \spin measure-ments" are ompletely lear, and merely reet the way spinor wave funtions are inorporatedinto a desription of the motion of on�gurations.14



In this regard, it might be objeted that while spin may not be primitive, so that the result ofour \spin measurement" will not reet any initial primitive property of the system, nonethelessthis result is determined by the initial on�guration of the system, i.e., by the position of oureletron, together with its initial wave funtion, and as suh|as a funtion X�z(q;  ) of the stateof the system|it is some property of the system and in partiular it is surely real. We shalladdress this issue in Setions 8.3 and 8.4.2.7 The Framework of Disrete ExperimentsWe shall now onsider a generi experiment. Whatever its signi�ane, the information onveyedby the experiment is registered in the apparatus as an output, represented, say, by the orientationof a pointer. Moreover, when we speak of a generi experiment, we have in mind a fairly de�niteinitial state of the apparatus, the ready state �0 = �0(y), one for whih the apparatus shouldfuntion as intended, and in partiular one in whih the pointer has some \null" orientation, aswell as a de�nite initial state of the system  =  (x) on whih the experiment is performed.Under these onditions it turns out [25℄ that the initial t = 0 wave funtion 	0 = 	0(q) of theomposite system formed by system and apparatus, with generi on�guration q = (x; y), has aprodut form, i.e., 	0 =  
 �0:Suh a produt form is an expression of the independene of system and apparatus immediatelybefore the experiment begins.10For Bohmian mehanis we should expet in general, as a onsequene of the quantum equi-librium hypothesis, that the outome of the experiment|the �nal pointer orientation|will berandom: Even if the system and apparatus initially have de�nite, known wave funtions, so thatthe outome is determined by the initial on�guration of system and apparatus, this on�gu-ration is random, sine the omposite system is in quantum equilibrium, and the distributionof the �nal on�guration is given by j	T (x; y)j2, where 	T is the wave funtion of the system-apparatus omposite at the time t = T when the experiment ends, and x, respetively y, is thegeneri system, respetively apparatus, on�guration.Suppose now that 	T has the form (2.8), whih roughly orresponds to assuming that theexperiment admits, i.e., that the apparatus is so designed that there is, only a �nite (or ountable)set of possible outomes, given, say, by the di�erent possible marosopially distint pointerorientations of the apparatus and orresponding to a partition of the apparatus on�gurationspae into marosopially disjoint regions G�, � = 1; 2; : : :.11 We arrive in this way at thenotion of disrete experiment, for whih the time evolution arising from the interation of thesystem and apparatus from t = 0 to t = T is given by the unitary mapU : H
 �0 !M� H
 �� ;  
 �0 7! 	T =X�  � 
 �� (2.18)where H is the system Hilbert spae of square-integrable wave funtions with the usual inner10It might be argued that it is somewhat unrealisti to assume a sharp preparation of  , as well as the possibilityof resetting the apparatus always in the same initial state �0. We shall address this issue in Setion 611Note that to assume there are only �nitely, or ountably, many outomes is really no assumption at all, sinethe outome should ultimately be onverted to digital form, whatever its initial representation may be.15



produt h ; �i = Z  �(x)�(x) dx:and the �� are a �xed set of (normalized) apparatus states supported by the marosopiallydistint regions G� of apparatus on�gurations.The experiment usually omes equipped with an assignment of numerial values �� (or avetor of suh values) to the various outomes �. This assignment is de�ned by a \alibration"funtion F on the apparatus on�guration spae assuming on eah region G� the onstant value��. If for simpliity we assume that these values are in one-to-one orrespondene with theoutomes12 then p� = ZF�1(��) j	T (x; y)j2dx dy = ZG� j	T (x; y)j2dx dy (2.19)is the probability of �nding ��, for initial system wave funtion  . Sine ��0(y) = 0 for y 2 G�unless � = �0, we obtainp� = Z dx ZG� jX�0  �0(x)��0(y)j2 dy = Z j �(x)j2dx = k �k2: (2.20)Note that when the result �� is obtained, the e�etive wave funtion of the system undergoesthe transformation  !  �:A simple example of a disrete experiment is provided by the mapU :  
 �0 7!X� � 
 ��; (2.21)where the � are omplex numbers suh that P� j�j2 = 1; then p� = j�j2. Note that theexperiment de�ned by (2.21) resembles a oin-ip more than a measurement sine the outome� ours with a probability independent of  .2.8 Reproduibility and its ConsequenesThough for a generi disrete experiment there is no reason to expet the sort of \measurement-like" behavior typial of familiar quantum measurements, there are, however, speial experimentswhose outomes are somewhat less random than we might have thought possible. Aording toShr�odinger [72℄:The systematially arranged interation of two systems (measuring objet and mea-suring instrument) is alled a measurement on the �rst system, if a diretly-sensiblevariable feature of the seond (pointer position) is always reprodued within ertainerror limits when the proess is immediately repeated (on the same objet, whih inthe mean time must not be exposed to additional inuenes).To implement the notion of \measurement-like" experiment onsidered by Shr�odinger, we�rst make some preliminary observations onerning the unitary map (2.18). Let P[��℄ be the12We shall onsider the more general ase later on in Subsetion 3.2.4.16



orthogonal projetion in the Hilbert spaeL�H
�� onto the subspae H
�� and let fH� bethe subspaes of H de�ned by P[��℄ [U(H
 �0)℄ = fH� 
 �� : (2.22)(Sine the vetors in eH� arise from projeting 	T = P�  � 
 �� onto its �-omponent, fH� isthe spae of the \ollapsed" wave funtions assoiated with the ourrene of the outome �.)Then U(H
 �0) �M� fH� 
 ��: (2.23)Note, however, that it need not be the ase that U(H 
 �0) = L� fH� 
 ��, and that thespaes fH� need be neither orthogonal nor distint; e.g., for (2.21) fH� = H and U(H 
 �0) =H
P� ��� 6=L�H
 ��.13A \measurement-like" experiment is one whih is reproduible in the sense that it will yieldthe same outome as originally obtained if it is immediately repeated. (This means in partiularthat the apparatus must be immediately reset to its ready state, or a fresh apparatus mustbe employed, while the system is not tampered with so that its initial state for the repeatedexperiment is its �nal state produed by the �rst experiment.) Thus the experiment is reproduibleif U(fH� 
 �0) � fH� 
 �� (2.24)or, equivalently, if there are spaes H�0 � fH� suh thatU(fH� 
 �0) = H�0 
 �� : (2.25)Note that it follows from the unitarity of U and the orthogonality of the subspaes fH� 
 ��that the subspaes fH� 
 �0 and hene the fH� are also orthogonal. Therefore, by taking theorthogonal sum over � of both sides of (2.25), we obtainM� U(fH� 
 �0) = U  M� fH� 
 �0! =M� H�0 
 ��: (2.26)If we now make the simplifying assumption that the subspaes fH� are �nite dimensional, we havefrom unitarity that fH� = H�0, and thus, by omparing (2.23) and (2.26), that equality holds in(2.23) and that H =M� H� (2.27)with U(H� 
 �0) = H� 
 �� (2.28)for H� � fH� = H�0 :13Note that if H has �nite dimension n, and the number of outomes � is m, dim [U(H 
 �0)℄ = n, whiledim [L�H
��℄ = n �m. 17



Therefore if the wave funtion of the system is initially inH�, outome � de�nitely ours andthe value �� is thus de�nitely obtained (assuming again for simpliity one-to-one orrespondenebetween outomes and results). It then follows that for a general initial system wave funtion =X� PH� ;where PH� is the projetion in H onto the subspae H�, that the outome �, with result ��, isobtained with (the usual) probabilityp� = kPH� k2 = h ; PH� i; (2.29)whih follows from (2.28), (2.20), and (2.18) sine U�PH� 
�0� =  �
�� and hene kPH� k =k �k by unitarity. In partiular, when the �� are real-valued, the expeted value obtained isX� p��� =X� ��kPH� k2 = h ;A i (2.30)where A =X� ��PH� (2.31)is the self-adjoint operator with eigenvalues �� and spetral projetions PH�.2.9 Operators as ObservablesWhat we wish to emphasize here is that, insofar as the statistis for the values whih result fromthe experiment are onerned,the relevant data for the experiment are the olletion fH�g of speial orthogonalsubspaes, together with the orresponding alibration f��g; (2.32)and this data is ompatly expressed and represented by the self-adjoint operator A, on the systemHilbert spae H, given by (2.31). Thus, under the assumptions we have made, with a reproduibleexperiment E we naturally assoiate an operator A = AE , a single mathematial objet, de�nedon the system alone, in terms of whih an eÆient desription (2.29) of the statistis of thepossible results is ahieved; we shall denote this assoiation byE 7! A : (2.33)If we wish we may speak of \operators as observables," and when an experiment E is assoiatedwith a self-adjoint operator A, as desribed above, we may say that the experiment E is a\measurement" of the observable represented by the self-adjoint operator A. If we do so, however,it is important that we appreiate that in so speaking we merely refer to what we have justderived: the role of operators in the desription of ertain experiments.14So understood, the notion of operator-as-observable in no way implies that anything is gen-uinely measured in the experiment, and ertainly not the operator itself! In a general experiment14Operators as observables also naturally onvey information about the system's wave funtion after the exper-iment. For example, for an ideal measurement, when the outome is � the wave funtion of the system after theexperiment is (proportional to) PH� . We shall elaborate upon this in the next setion.18



no system property is being measured, even if the experiment happens to be measurement-like.(Position measurements in Bohmian mehanis are of ourse an important exeption.) What ingeneral is going on in obtaining outome � is ompletely straightforward and in no way suggests,or assigns any substantive meaning to, statements to the e�et that, prior to the experiment,observable A somehow had a value ��|whether this be in some determinate sense or in thesense of Heisenberg's \potentiality" or some other ill-de�ned fuzzy sense|whih is revealed, orrystallized, by the experiment. Even speaking of the observable A as having value �� whenthe system's wave funtion is in H�, i.e., when this wave funtion is an eigenstate of A of eigen-value ��|insofar as it suggests that something peuliarly quantum is going on when the wavefuntion is not an eigenstate whereas in fat there is nothing the least bit peuliar about thesituation|perhaps does more harm than good.It might be objeted that we are laiming to arrive at the quantum formalism under some-what unrealisti assumptions, suh as, for example, reproduibility or �nite dimensionality. Weagree. But this objetion misses the point of the exerise. The quantum formalism itself is anidealization; when appliable at all, it is only as an approximation. Beyond illuminating the roleof operators as ingredients in this formalism, our point was to indiate how naturally it emerges.In this regard we must emphasize that the following question arises for quantum orthodoxy, butdoes not arise for Bohmian mehanis: For preisely whih theory is the quantum formalism anidealization?We shall disuss how to go beyond the idealization involved in the quantum formalism inSetion 4|after having analyzed it thoroughly in Setion 3. First we wish to show that manymore experiments than those satisfying our assumptions an indeed be assoiated with operatorsin exatly the manner we have desribed.2.10 The General Framework of Bohmian ExperimentsAording to (2.19) the statistis of the results of a disrete experiment are governed by theprobability measure �	T ÆF�1, where �	T (dq) = j	T (q)j2dq is the quantum equilibrium measure.Note that disreteness of the value spae of F plays no role in the haraterization of thismeasure. This suggests that we may onsider a more general notion of experiment, not basedon the assumption of a ountable set of outomes, but only on the unitarity of the operator U ,whih transforms the initial state  
 �0 into the �nal state 	T , and on a generi alibrationfuntion F from the on�guration spae of the omposite system to some value spae, e.g., R,or Rm , giving the result of the experiment as a funtion F (QT ) of the �nal on�guration QT ofsystem and apparatus. We arrive in this way at the notion of general experimentE � f�0; U; Fg; (2.34)where the unitary U embodies the interation of system and apparatus and the funtion F ouldbe ompletely general. Of ourse, for appliation to the results of real-world experiments F mightrepresent the \orientation of the apparatus pointer" or some oarse-graining thereof.Performing E on a system with initial wave funtion  leads to the result Z = F (QT ) and sineQT is randomly distributed aording to the quantum equilibrium measure �	T , the probabilitydistribution of Z is given by the indued measure�Z = �	T Æ F�1 : (2.35)19



(We have made expliit only the dependene of the measure on  , sine the initial apparatusstate �0 is of ourse �xed, de�ned by the experiment E .) Note that this more general notion ofexperiment eliminates the slight vagueness arising from the impreise notion of marosopi uponwhih the notion of disrete experiment is based. Note also that the struture (2.34) onveysinformation about the wave funtion (2.6) of the system after a ertain result F (QT ) is obtained.Note, however, that this somewhat formal notion of experiment may not ontain enoughinformation to determine the detailed Bohmian dynamis, whih would require spei�ationof the Hamiltonian of the system-apparatus omposite, that might not be aptured by U . Inpartiular, the �nal on�guration QT may not be determined, for given initial wave funtion, asa funtion of the initial on�guration of system and apparatus. E does, however, determine whatis relevant for our purposes about the random variable QT , namely its distribution, and henethat of Z = F (QT ).Let us now fous on the right had side of the equation (2.29), whih establishes the assoiationof operators with experiments: h ; PH� i is the probability that \the operator A has value ��",and aording to standard quantum mehanis the statistis of the results of measuring a generalself-adjoint operator A, not neessarily with pure point spetrum, in the (normalized) state  are desribed by the probability measure� 7! �A (�) � h ; PA(�) i (2.36)where � is a (Borel) set of real numbers and PA : � 7! PA(�) is the projetion-valued-measure(PVM) uniquely assoiated with A by the spetral theorem. (We reall [70℄ that a PVM isa normalized, ountably additive set funtion whose values are, instead of nonnegative reals,orthogonal projetions on a Hilbert spae H. Any PVM P onH determines, for any given  2 H,a probability measure � � �P : � 7! h ; P (�) i on R. Integration against projetion-valued-measure is analogous to integration against ordinary measures, so that B � R f(�)P (d�) is well-de�ned, as an operator on H. Moreover, by the spetral theorem every self-adjoint operator A isof the form A = R �P (d�), for a unique projetion-valued-measure P = PA, and R f(�)P (d�) =f(A). )It is then rather lear how (2.33) extends to general self-adjoint operators: a general exper-iment E is a measurement of the self-adjoint operator A if the statistis of the results of E aregiven by (2.36), i.e., E 7! A if and only if �Z = �A : (2.37)In partiular, if E 7! A, then the moments of the result of E are the moments of A:< Zn >= Z �nh ; P (d�) i = h ;An i:3 The Quantum FormalismThe spirit of this setion will be rather di�erent from that of the previous one. Here the fouswill be on the formal struture of experiments measuring self-adjoint operators. Our aim is toshow that the standard quantum formalism emerges from a formal analysis of the assoiationE 7! A between operator and experiment provided by (2.37). By \formal analysis" we mean notonly that the detailed physial onditions under whih might E 7! A hold (e.g., reproduibility)20



will play no role, but also that the pratial requirement that E be physially realizable will beof no relevane whatsoever.Note that suh a formal approah is unavoidable in order to reover the quantum formalism.In fat, within the quantum formalism one may onsider measurements of arbitrary self-adjointoperators, for example, the operator A = X̂2P̂ + P̂X2, where X̂ and P̂ are respetively theposition and the momentum operators. However, it may very well be the ase that no \realworld" experiment measuring A exists. Thus, in order to allow for measurements of arbitrary self-adjoint operators we shall regard (2.34) as haraterizing an \abstrat experiment"; in partiular,we shall not regard the unitary map U as arising neessarily from a (realizable) Shr�odinger timeevolution. We may also speak of virtual experiments.In this regard one should observe that to resort to a formal analysis is indeed quite ommonin physis. Consider, e.g., the Hamiltonian formulation of lassial mehanis that arose from anabstration of the physial desription of the world provided by Newtonian mehanis. Here wemay freely speak of ompletely general Hamiltonians, e.g. H(p; q) = p6, without being onernedabout whether they are physial or not. Indeed, only very few Hamiltonians orrespond tophysially realizable motions!A warning: As we have stressed in the introdution and in Setion 2.9, when we speak hereof a measurement we don't usually mean a genuine measurement|an experiment revealing thepre-existing value of a quantity of interest, the measured quantity or property. (We speak in thisunfortunate way beause it is standard.) Genuine measurement will be disussed muh later, inSetion 7.3.1 Weak Formal MeasurementsThe �rst formal notion we shall onsider is that of weak formal measurement, formalizing therelevant data of an experiment measuring a self-adjoint operator:Any orthogonal deomposition H =L�H�, i.e., any omplete olletion fH�g ofmutually orthogonal subspaes, paired with any set f��g of distint real numbers,de�nes the weak formal measurement M� f(H�; ��)g � fH�; ��g. (3.1)(Compare (3.1) with (2.32) and note that now we are not assuming that the spaes H� are�nite-dimensional.) The notion of weak formal measurement is aimed at expressing the minimalstruture that all experiments (some or all of whih might be virtual) measuring the same operatorA =P��PH� have in ommon (PH� is the orthogonal projetion onto the subspae H�). Then,\to perform M" shall mean to perform (at least virtually) any one of these experiments, i.e.,any experiment suh that p� = h ; PH� i (3.2)is the probability of obtaining the result �� on a system initially in the state  . (This is of ourseequivalent to requiring that the result �� is de�nitely obtained if and only if the initial wavefuntion  2 H�.)Given M� fH�; ��g onsider the set funtionP : � 7! P (�) � X��2�PH� ; (3.3)where � is a set of real numbers (tehnially, a Borel set). Then21



1) P is normalized, i.e., P (R) = I, where I is the identity operator and R is the real line,2) P (�) is an orthogonal projetion, i.e., P (�)2 = P (�) = P (�)�,3) P is ountably additive, i.e., P (Sn�n) =Pn P (�n), for �n disjoint sets.Thus P is a projetion-valued-measure and therefore the notion of weak formal measurement isindeed equivalent to that of \disrete" PVM, that is, a PVM supported by a ountable set f��gof values.More general PVMs, e.g. PVMs supported by a ontinuous set of values, will arise if weextend (3.1) and base the notion of weak formal measurement upon the general assoiation(2.37) between experiments and operators. If we stipulate thatany projetion-valued-measure P on H de�nes a weak formal measurement M� P , (3.4)then \to perform M" shall mean to perform any experiment E assoiated with A = R �P (d�)in the sense of (2.37).Note that sine by the spetral theorem there is a natural one-to-one orrespondene betweenPVMs and self-adjoint operators, we may speak equivalently of the operator A = AM, for givenM, or of the weak formal M =MA, for given A. In partiular, the weak formal measurementMA represents the equivalene lass of all experiments E ! A.3.2 Strong Formal MeasurementsWe wish now to lassify the di�erent experiments E assoiated with the same self-adjoint operatorA by taking into aount the e�et of E on the state of the system, i.e., the state transformations !  � indued by the ourrene of the various results �� of E . Aordingly, unless otherwisestated, from now on we shall assume E to be a disrete experiment measuring A = P��PH� ,for whih the state transformation  !  � is de�ned by (2.18). This leads to the notion ofstrong formal measurements. For the most important types of strong formal measurements,ideal, normal and standard, there is a one-to-one orrespondene between �'s and numerialresults ��.3.2.1 Ideal MeasurementsGiven a weak formal measurement of A, the simplest possibility for the transition  !  � isthat when the result �� is obtained, the initial state  is projeted onto the orresponding spaeH�, i.e., that  !  � = PH� : (3.5)This presription de�nes uniquely the ideal measurement of A. (The transformation  !  �should be regarded as de�ned only in the projetive sense:  !  � and  !  � ( 6= 0) shouldbe regarded as the same transition.) \To perform an ideal measurement of A" shall then meanto perform a disrete experiment E whose results are statistially distributed aording to (3.2)and whose state transformations (2.18) are given by (3.5).Under an ideal measurement the wave funtion hanges as little as possible: an initial  2 H�is unhanged by the measurement. Ideal measurements have always played a privileged role inquantum mehanis. It is the ideal measurements that are most frequently disussed in textbooks.22



It is for ideal measurements that the standard ollapse rule is obeyed. When Dira [23℄ wrote:\a measurement always auses the system to jump into an eigenstate of the dynamial variablethat is being measured" he was referring to an ideal measurement.3.2.2 Normal MeasurementsThe rigid struture of ideal measurements an be weakened by requiring only that H� as a whole,and not the individual vetors in H�, is unhanged by the measurement and therefore that thestate transformations indued by the measurement are suh that when the result �� is obtainedthe transition  !  � = U�PH� (3.6)ours, where the U� are operators on H� ( U� : H� ! H�). Then for any suh disreteexperiment E measuring A, the U� an be hosen so that (3.6) agrees with (2.18), i.e., so that for 2 H�, U( 
�0) = U� 
��, and hene so that U� is unitary (or at least a partial isometry).Suh a measurement, with unitaries U� : H� !H�, will be alled a normal measurement of A.In ontrast with an ideal measurement, a normal measurement of an operator is not uniquelydetermined by the operator itself: additional information is needed to determine the transitions,and this is provided by the family fU�g. Di�erent families de�ne di�erent normal measurementsof the same operator. Note that ideal measurements are, of ourse, normal (with U� = I� � iden-tity on H�), and that normal measurements with one-dimensional subspaes H� are neessarilyideal.Sine the transformations (3.6) leave invariant the subspaes H�, the notion of normal mea-surement haraterizes ompletely the lass of reproduible measurements of self-adjoint oper-ators. Following the terminology introdued by Pauli [66℄, normal measurement are sometimesalledmeasurements of �rst kind . Normal measurements are also quantum non demolition (QND)measurements [18℄, de�ned as measurements suh that the operators desribing the induedstate transformations, i.e, the operators R� � U�PH�, ommute with the measured operatorA =P��PH�. (This ondition is regarded as expressing that the measurement leaves the mea-sured observable A unperturbed).3.2.3 Standard MeasurementsWe may now drop the ondition that the H� are left invariant by the measurement and onsiderthe very general state transformations !  � = T�PH� (3.7)with operators T� : H� ! H. Then, exatly as for the ase of normal measurements, it followsthat T� an be hosen to be unitary from H� onto its range fH�. The subspaes fH� need beneither orthogonal nor distint. We shall write R� = T�PH� for the general transition operators.With T� as hosen, R� is haraterized by the equation R��R� = PH� (where R�� denotes theadjoint of R�).The state transformations (3.7), given by unitaries T� : H� ! fH�, or equivalently by boundedoperators R� on H satisfying R��R� = PH�, de�ne what we shall all a standard measurement ofA. Note that normal measurements are standard measurements with fH� = H� (or fH� � H�).Although standard measurements are in a sense more realisti than normal measurements (real23



world measurements are seldom reproduible in a strit sense), they are very rarely disussed intextbooks. We emphasize that the ruial data in a standard measurement is given by R�, whihgoverns both the state transformations ( ! Ra ) and the probabilities (p� = h ; PH� i =kR� k2).We shall illustrate the main features of standard measurements by onsidering a very simpleexample: Let fe0; e1; e2; : : :g, be a �xed orthonormal basis of H and onsider the standard mea-surement whose results are the numbers 0; 1; 2; : : : and whose state transformations are de�nedby the operators R� � je0ihe�j i.e., R� = he�;  ie0; � = 0; 1; 2; : : :With suh R�'s are assoiated the projetions P� = R��R� = je�ihe�j , i.e., the projetionsonto the one dimensional spaes H� spanned respetively by the vetors e�. Thus, this is ameasurement of the operator A =P� �je�ihe�j. Note that the spaes fH�, i.e. the ranges of theR�'s, are all the same and equal to the spae H0 generated by the vetor e0. The measurementis then not normal sine H� 6= fH�. Finally, note that this measurement ould be regarded asgiving a simple model for a photo detetion experiment, where any state is projeted onto the\vauum state" e0 after the detetion.3.2.4 Strong Formal MeasurementsWe shall now relax the ondition that � 7! �� is one-to-one, as we would have to do for anexperiment having a general alibration � 7! ��, whih need not be invertible. This leads to(what we shall all) a strong formal measurement. Sine this notion provides the most generalformalization of the notion of a \measurement of a self-adjoint operator" that takes into aountthe e�et of the measurement on the state of the system, we shall spell it out preisely as follows:Any omplete (labelled) olletion fH�g of mutually orthogonal subspaes, any (la-belled) set f��g of not neessarily distint real numbers, and any (labelled) olle-tion fR�g of bounded operators on H, suh that R��R� � PH� (the projetion ontoH�), de�nes a strong formal measurement. (3.8)A strong formal measurement will be ompatly denoted by M � f(H�; ��; R�)g �fH�; ��; R�g, or even more ompatly by M � f��; R�g (the spaes H� an be extratedfrom the projetions PH� = R��R�). With M is assoiated the operator A = P��PH�. Notethat sine the �� are not neessarily distint numbers, PH� need not be the spetral projetionPA(��) assoiated with ��; in generalPA(�) = X�:��=�PH�;i.e., it is the sum of all the PH�'s that are assoiated with the value �.15 \To perform themeasurement M" on a system initially in  shall aordingly mean to perform a disrete ex-periment E suh that: 1) the probability p(�) of getting the result � is governed by A, i.e.,15It is for this reason that it would be pointless and inappropriate to similarly generalize weak measurements.It is only when the state transformation is taken into aount that the distintion between the outome � (whihdetermines the transformation) and the result �� (whose probability the formal measurement is to supply) beomesrelevant. 24



p(�) = h ; PA(�) i, and 2) the state transformations of E are those presribed by M, i.e., !  � = R� .Observe that strong formal measurements do provide a more realisti formalization of thenotion of measurement of an operator than standard measurements: the notion of disrete ex-periment does not imply a one-to-one orrespondene between outomes, i.e, �nal marosopion�gurations of the pointer, and the numerial results of the experiment.The relationship between (weak or strong) formal measurements, self-adjoint operators, andexperiments an be summarized by the following sequene of maps:E 7! M 7! A (3.9)The �rst map expresses thatM (weak or strong) is a formalization of E|it ontains the \relevantdata" about E|and it will be many-to-one if M is a weak formal measurement16; the seondmap expresses thatM is a formal measurement of A and it will be many-to-one ifM is (requiredto be) strong and one-to-one ifM is weak. Note that E 7! A is always many-to-one.3.3 From Formal Measurements to ExperimentsGiven a strong measurement M� fH�; ��; R�g one may easily onstrut a map (2.18) de�ninga disrete experiment E = EM assoiated with M:U :  
 �0 7!X� (R� )
 �� (3.10)The unitarity of U ( from H 
 �0 onto the range of U) follows then immediately from theorthonormality of the f��g sineX� kR� k2 =X� h ;R��R� i = h ;X� PH� i = h ;  i = k k2 (3.11)This experiment is abstratly haraterized by: 1) the �nite or ountable set I of outomes �,2) the apparatus ready state �0 and the set f��g of normalized apparatus states, 3) the unitarymap U : H
 �0 !L�H
 �� given by (3.10), 4) the alibration � 7! �� assigning numerialvalues (or a vetor of suh values) to the various outomes �. Note that U need not arise froma Shr�odinger Hamiltonian governing the interation between system and apparatus. Thus Eshould properly be regarded as an \abstrat" experiment as we have already pointed out in theintrodution to this setion.3.4 Von Neumann MeasurementsWe shall now briey omment on the relation between our approah, based on formal measure-ments, and the widely used formulation of quantum measurement in terms of von Neumannmeasurements [74℄.A von Neumann measurement of A = P��PH� on a system initially in the state  an bedesribed as follows (while the nondegeneray of the eigenvalues of A|i.e., that dim(H�) = 1|is usually assumed, we shall not do so): Assume that the (relevant) on�guration spae of the16There is an obvious natural unitary equivalene between the preimages E of a strong formal measurementM. 25



apparatus, whose generi on�guration shall be denoted by y, is one-dimensional, so that itsHilbert spae HA ' L2(R), and that the interation between system and apparatus is governedby the Hamiltonian H = HvN = A
 P̂y (3.12)where P̂y � i~�=�y is (minus) the momentum operator of the apparatus. Let �0 = �0(y) bethe ready state of the apparatus. Then for  = PH� one easily sees that the unitary operatorU � e�iTH=~ transforms the initial state  �
�0 into  �
�� where �� = �0(y���T ), so thatthe ation of U on general  =PPH� isU :  
 �0 !X� (PH� )
 �� (3.13)If �0 has suÆiently narrow support, say around y = 0, the �� will have disjoint supportaround the \pointer positions" y� = ��T , and thus will be orthogonal, so that, with alibrationF (y) = y=T (more preisely, F (y) = y�=T for y in the support of ��), the resulting vonNeumann measurement beomes a disrete experiment measuring A; omparing (3.13) and (3.5)we see that it is an ideal measurement of A.17Thus, the framework of von Neumann measurements is less general than that of disreteexperiments, or equivalently of strong formal measurements; at the same time, sine the Hamil-tonian HvN is not of Shr�odinger type, von Neumann measurements are just as formal. (We notethat more general von Neumann measurements of A an be obtained by replaing HvN with moregeneral Hamiltonians; for example, H 0vN = H0 +HvN, where H0 is a self-adjoint operator on thesystem Hilbert spae whih ommutes with A, gives rise to a normal measurement of A, withR� = e�iTH0=~PH�.Thus by proper extension of the von Neumann measurements one may arriveat a framework of measurements ompletely equivalent to that of strong formal measurements.)3.5 Preparation ProeduresBefore disussing further extensions of the assoiation between experiments and operators, weshall omment on an impliit assumption apparently required for the measurement analysis tobe relevant: that the system upon whih measurements are to be performed an be prepared inany presribed state  .Firstly, we observe that the system an be prepared in a presribed state  by means ofan appropriate standard measurement M performed on the system when it is initially in anunknown state  0. We have to hoose M � fH�; ��; R�g in suh a way that R�0 0 =  , forsome �0 and all  0, i.e., that Ran(R�0) = span( ); then from reading the result ��0 we mayinfer that the system has ollapsed to the state  . The simplest possibility is for M to be anideal measurement with at least a one-dimensional subspae H�0 that is spanned by  . Anotherpossibility is to perform a (nonideal) standard measurement like that of the example at the endof Setion 3.2.3, whih an be regarded as de�ning a preparation proedure for the state e0.Seondly, we wish to emphasize that the existene of preparation proedures is not as ruialfor relevane as it may seem. If we had only statistial knowledge about the initial state  ,nothing would hange in our analysis of Bohmian experiments of Setion 2, and in our onlusions17It is usually required that von Neumann measurements be impulsive ( large, T small) so that only theinteration term (3.12) ontributes signi�antly to the total Hamiltonian over the ourse of the measurement.26



onerning the emergene of self-adjoint operators, exept that the unertainty about the �nalon�guration of the pointer would originate from both quantum equilibrium and randomness in . We shall elaborate upon this later when we disuss Bohmian experiments for initial statesdesribed by a density matrix.3.6 Measurements of Commuting Families of OperatorsAs hinted in Setion 2.7, the result of an experiment E might be more omplex than we have sug-gested until now in Setion 3: it might be given by the vetor �� � (�(1)� ; : : : ; �(m)� ) orrespondingto the orientations of m pointers. For example, the apparatus itself may be a omposite of mdevies with the possible results �(i)� orresponding to the �nal state of the i-th devie. Nothingmuh will hange in our disussion of measurements if we now replae the numbers �� withthe vetors �� � (�(1)� ; : : : ; �(m)� ), sine the dimension of the value spae was not very relevant.However E will now be assoiated, not with a single self-adjoint operator, but with a ommutingfamily of suh operators. In other words, we arrive at the notion of an experiment E that is ameasurement of a ommuting family of self-adjoint operators,18 namely the familyA �X� ��PH� =  X� �(1)� PH�; : : : ;X� �(m)� PH�! � (A1; : : : ; Am): (3.14)Then the notions of the various kinds of formal measurements|weak, ideal, normal, standard,strong|extend straightforwardly to formal measurements of ommuting families of operators. Inpartiular, for the general notion of weak formal measurement given by 3.4, P beomes a PVM onRm , with assoiated operators Ai = RRm �(i)P (d�) [� = (�(1); : : : ; �(m)) 2 Rm ℄. And just as forPVMs on R and self-adjoint operators, this assoiation in fat yields, by the spetral theorem,a one-to-one orrespondene between PVMs on Rm and ommuting families of m self-adjointoperators.The PVM orresponding to the ommuting family (A1; : : : ; Am) is in fat simply theprodut PVM P = PA = PA1 � � � � � PAm given on produt sets byPA(�1 � � � � ��m) = PA1(�1) � � �PAm(�m); (3.15)where PA1; : : : ; PAm are the PVMs of A1; : : : ; Am, and �i � R, with the assoiated probabilitydistributions on Rm given by the spetral measures for A�A (�) = h ; PA(�) i (3.16)for any (Borel) set � � Rm .18We reall some basi fats about ommuting families of self-adjoint operators [74, 71, 68℄. The self-adjointoperators A1; : : : ; Am form a ommuting family if they are bounded and pairwise ommute, or, more generally,if this is so for their spetral projetions, i.e., if [PAi(�); PAj (�)℄ = 0 for all i; j = 1; : : : ;m and (Borel) sets�;� � R. A ommuting family A � (A1; : : : ; Am) of self-adjoint operators is alled omplete if every self-adjointoperator C that ommutes with all members of the family an be expressed as C = g(A1; A2; : : : ) for some funtiong. The set of all suh operators annot be extended in any suitable sense (it is losed in all relevant operatortopologies). For any ommuting family (A1; : : : ; Am) of self-adjoint operators there is a self-adjoint operator Band measurable funtions fi suh that Ai = fi(B). If the family is omplete, then this operator has simple (i.e.,nondegenerate) spetrum. 27



In partiular, for a PVM on Rm , orresponding to A = (A1; : : : ; Am), the i-marginal distri-bution, i.e., the distribution of the i-th omponent �(i), is�A (R � � � �R ��i � R � � � � � R) = h ; PAi(�i) i = �Ai (�i);the spetral measure for Ai. Thus, by fousing on the respetive pointer variables �(i), wemay regard an experiment measuring (or a weak formal measurement of) A = (A1; : : : ; Am) asproviding an experiment measuring (or a weak formal measurement of) eah Ai, just as wouldbe the ase for a genuine measurement of m quantities A1; : : : ; Am. Note also the following:If fH�; ��; R�g is a strong formal measurement of A = (A1; : : : ; Am), then fH�; �(i)� ; R�g is astrong formal measurement of Ai, but if fH�; ��; R�g is an ideal, resp. normal, resp. standard,measurement of A, fH�; �(i)� ; R�g need not be ideal, resp. normal, resp. standard.There is a ruial point to observe: the same operator may belong to di�erent ommuting fam-ilies. Consider, for example, a measurement of A = (A1; : : : ; Am) and one of B = (B1; : : : ; Bm),where A1 = B1 � C. Then while both measurements provide a measurement of C, they ould betotally di�erent: the operators Ai and Bi for i 6= 1 need not ommute and the PVMs of A andB, as well as any orresponding experiments E A and E B, will be in general essentially di�erent.To emphasize this point we shall reall a famous example, the EPRB experiment [32, 14℄: Apair of spin one-half partiles, prepared in a spin-singlet state = 1p2 � (+) 
  (�) +  (�) 
  (+)� ;are moving freely in opposite diretions. Measurements are made, say by Stern-Gerlah magnets,on seleted omponents of the spins of the two partiles. Let a; b;  be three di�erent unitvetors in spae, let �1 � � 
 I and let �2 � I 
 �; where � = (�x; �y; �z) are the Paulimatries. Then we ould measure the operator �1�a by measuring either of the ommutingfamilies (�1�a ;�2�b) and (�1�a ;�2�). However these measurements are di�erent, both as weakand as strong measurements, and of ourse as experiments. In Bohmian mehanis the resultobtained at one plae at any given time will in fat depend upon the hoie of the measurementsimultaneously performed at the other plae (i.e., on whether the spin of the other partile ismeasured along b or along ). However, the statistis of the results won't be a�eted by thehoie of measurement at the other plae beause both hoies yield measurements of the sameoperator and thus their results must have the same statistial distribution.3.7 Funtions of MeasurementsOne of the most ommon experimental proedures is to realibrate the sale of an experiment E :if Z is the original result and f an appropriate funtion, realibration by f leads to f(Z) as thenew result. Thus f(E ) has an obvious meaning. Moreover, if E 7! A aording to (2.37) then�f(Z) = �Z Æ f�1 = �A Æ f�1, and�A Æ f�1(d�) = h ; PA(f�1(d�)) i = h ; P f(A)(d�) iwhere the last equality follows from the very de�nition off(A) = Z f(�)PA(d�) = Z �PA(f�1(d�))28



provided by the spetral theorem. Thus,if �Z = �A then �f(Z) = �f(A) ; (3.17)i.e., if E 7! A then f(E ) 7! f(A): (3.18)The notion of funtion of a formal measurement has then an unequivoal meaning: if Mis a weak formal measurement de�ned by the PVM P then f(M) is the weak formal mea-surement de�ned by the PVM P Æ f�1, so that if M is a measurement of A then f(M) is ameasurement of f(A); for a strong formal measurement M = fH�; ��; R�g the self-evident re-quirement that the realibration not a�et the wave funtion transitions indued by M leads tof(M) = fH�; f(��); R�g. Note that ifM is a standard measurement, f(M) will in general notbe standard (sine in general f an be many{to{one).To highlight some subtleties of the notion of funtion of measurement we shall disuss twoexamples: Suppose that M and M0 are respetively measurements of the ommuting familiesA = (A1; A2) and B = (B1; B2), with A1A2 = B1B2 = C. Let f : R2 ! R, f(�1; �2) = �1�2.Then both f(M) and f(M0) are measurement of the same self-adjoint operator C. Nevertheless,as strong measurements or as experiments, they ould be very di�erent: if A2 and B2 do notommute they will be assoiated with di�erent families of spetral projetions. (Even moresimply, onsider measurements Mx and My of �x and �y and let f(�) = �2. Then f(Mx) andf(My) are measurement of I|so that the result must be 1)|but the two strong measurements,as well as the orresponding experiments, are ompletely di�erent.)The seond example is provided by measurements designed to determine whether the operatorA = P��PH� (the ��'s are distint) has values in some given set �. This determination anbe aomplished in at least two di�erent ways: Suppose that M is an ideal measurement of Aand let 1�(�) be the harateristi funtion of the set �. Then we ould perform 1�(M), thatis, we measure A and see whether \A 2 �". But we ould also perform an \ideal determinationof A 2 �", that is, an ideal measurement of 1�(A) = PA(�). Now, both measurements providea \measurement of A 2 �" (i.e., of the operator 1�(A)), sine in both ases the results 1 and 0get assigned the same probabilities. However, as strong measurements, they are di�erent: when1�(M) is performed, and the result 1 is obtained,  undergoes the transition ! PH� where � is the outome with �� 2 � that atually ours. On the other hand, for an idealmeasurement of 1�(A), the ourrene of the result 1 will generate the transition ! PA(�) = X��2�PH� :Note that in this ase the state of the system is hanged as little as possible. For example,suppose that two eigenvalues, say ��1 ; ��2, belong to � and  =  �1 +  �2 ; then determinationby performing 1�(M) will lead to either  �1 or  �2 , while the ideal determination of A 2 � willnot hange the state. 29



3.8 Measurements of Operators with Continuous SpetrumWe shall now reonsider the status of measurements of self-adjoint operators with ontinuousspetrum. First of all, we remark that while on the weak level suh measurements arise verynaturally|and, as already stressed in Setion 3.1, are indeed the �rst to appear in Bohmianmehanis|there is no straightforward extension of the notion of strong measurement to opera-tors with ontinuous spetrum.However, for given set of real numbers �, one may onsider any determination of A 2 �, thatis, any strong measurement of the spetral projetion PA(�). More generally, for any hoie ofa simple funtion f(�) = NXi=1 i 1�i(�);one may onsider the strong measurements of f(A). In partiular, let ff (n)g be a sequene ofsimple funtions onverging to the identity, so that f (n)(A)! A, and let Mn be measurementsof f (n)(A). Then Mn are approximate measurements of A.Observe that the foregoing applies to operators with disrete spetrum, as well as to operatorswith ontinuous spetrum. But note that while on the weak level we always haveMn !M ;where M is a (general) weak measurement of A (in the sense of (3.4)), if A has ontinuousspetrum M will not exist as a strong measurement (in any reasonable generalized sense, sinethis would imply the existene of a bounded-operator-valued funtion R� on the spetrum of Asuh that R��R� d� = PA(d�), whih is learly impossible). In other words, in this ase therean be no atual (generalized) strong measurement that the approximate measurements Mnapproximate|whih is perfetly reasonable.3.9 Sequential MeasurementsSuppose that n measurements (with for eah i, the �(i)�i distint)M1 � fH(1)�1 ; �(1)�1 ; R(1)�1 g; : : : ; Mn � fH(n)�n ; �(n)�n ; R(n)�n gof operators (whih need not ommute)A1 =X�1 �(1)�1 P (1)�1 ; : : : ; An =X�n �(n)�n P (n)�nare suessively performed on our system at times 0 < t1 < t2 < � � � < tN . Assume that theduration of any single measurement is small with respet to the time di�erenes ti� ti�1, so thatthe measurements an be regarded as instantaneous. If in between two suessive measurementsthe system's wave funtion hanges unitarily with the operators Ut then, using obvious notation,Prob (A1 = �(1)�1 ; : : : ; An = �(n)�n ) = kR(n)�n (tn) � � � R(1)�1 (t1) k2; (3.19)where R(i)�i (t) = U�1t R(i)�iUt and  is the initial (t = 0) wave funtion.30



To understand how (3.19) omes about onsider �rst the ase where n = 2 and t2 � t1 � 0.Aording to standard probability rules, the probability of obtaining the results Z1 = �(1)�1 for the�rst measurement and Z2 = �(2)�2 for the seond one is the produt19Prob (Z2 = �(2)�2 jZ1 = �(1)�1 ) � Prob (Z1 = �(1)�1 )where the �rst term is the probability of obtaining �(2)�2 given that the result of the �rst measure-ment is �(1)�1 . Sine M1 then transforms the wave funtion  to R(1)�1  , the (normalized) initialwave funtion for M2 is R(1)�1  =kR(1)�1  k, this probability is equal tokR(2)�2R(1)�1  k2kR(1)�1  k2 :The seond term, the probability of obtaining �(1)�1 , is of ourse kR(1)�1  k2. ThusProb (A(1) = �(1)�1 ; A(2) = �(2)�2 ) = kR(2)�2R(1)�1  k2in this ase. Note that, in agreement with the analysis of disrete experiments (see Eq. (2.20)),the probability of obtaining the results �(1)�1 and �(2)�2 turns out to be the square of the norm of the�nal system wave funtion assoiated with these results. Now, for general times t1 and t2 � t1between the preparation of  at t = 0 and the performane of M1 and between M1 and M2,respetively, the �nal system wave funtion is R(2)�2 Ut2�t1R(1)�1 Ut1 = R(2)�2 Ut2U�1t1 R(1)�1 Ut1 : ButkR(2)�2 Ut2U�1t1 R(1)�1 Ut1 k = kU�1t2 R(2)�2 Ut2U�1t1 R(1)�1 Ut1 k; and it is easy to see, just as for the simplease just onsidered, that the square of the latter is the probability for the orresponding result,whene (3.19) for n = 2. Iterating, i.e., by indution, we arrive at (3.19) for general n.We note that when the measurementsM1; : : :Mn are ideal, the operators R(i)�i are the orthog-onal projetions P (i)�i , and equation (3.19) beomes the standard formula for the joint probabilitiesof the results of a sequene of measurements of quantum observables, usually known as Wigner'sformula [76℄.It is important to observe that, even for ideal measurements, the joint probabilitiesgiven by (3.19) are not in general a onsistent family of joint distributions: summationin (3.19) over the outomes of the i-th measurement does not yield the joint probabil-ities for the results of the measurements of the operators A1; : : : ; Ai�1; Ai+1; : : : An per-formed at the times t1; : : : ; ti�1; ti+1; : : : tn. (By rewriting the right hand side of (3.19) ash ;R(1)�1 (tn)� � � �R(n)�n (tn)�R(n)�n (tn)R(1)�1 (t1) i one easily sees that the \sum rule" will be satis�edwhen i = n or if the operators R(i)�i (ti) ommute. More generally, the onsisteny is guaranteedby the \deoherene onditions" of GriÆths, Omn�es, Gell-Mann and Hartle, and Goldstein andPage [46, 35, 44℄.19This is so beause of the onditional independene of the outomes of two suessive measurements giventhe �nal onditional wave funtion for the �rst measurement. More generally, the outome of any measurementdepends only on the wave funtion resulting from the preeding one. For Bohmian experiments this independeneis a diret onsequene of (2.10). One may wonder about the status of this independene for orthodox quantumtheory. We stress that while this issue might be problematial for orthodox quantum theory, it is not a problemfor Bohmian mehanis: the onditional independene of two suessive measurements is a onsequene of thetheory. (For more on this point, see [25℄).) We also would like to stress that this independene assumption is infat ruial for orthodox quantum theory. Without it, it is hard to see how one ould ever be justi�ed in invokingthe quantum formalism. Any measurement we may onsider will follow many earlier measurements.31



This failure of onsisteny means that the marginals of the joint probabilities given by (3.19)are not themselves given by the orresponding ase of the formula. This should, however, ome asno surprise: Sine performing the measurement Mi a�ets the state of the system, the outomeof Mi+1 should in general depend on whether or not Mi has been performed. Note that thereis nothing partiularly quantum in the fat that measurements matter in this way: They mattereven for genuine measurements (unlike those we have been onsidering, in whih nothing needbe genuinely measured), and even in lassial physis, if the measurements are suh that theya�et the state of the system.The sequenes of results �� � (�(1)�1 ; : : : ; �(n)�n ); the assoiated state transformations R� �R(n)�n Utn�tn�1R(n�1)�n�1 � � � R(1)�1 Ut1 ; and the probabilities (3.19) (i.e., given by p� = kR�k2) de�ne whatwe shall all a sequential measurement ofM1; � � �Mn, whih we shall denote byMn
 : : :
M1.A sequential measurement does not in general de�ne a formal measurement, neither weak norstrong, sine R��R� need not be a projetion. This fat might seem disturbing (see, e.g., [21℄);we shall take up this issue in the next setion.3.10 Some Summarizing RemarksThe notion of formal measurement we have explored in this setion is at the heart of the quantumformalism. It embodies the two essential ingredients of a quantum measurement: the self-adjointoperator A whih represents the measured observable and the set of state transformations R�assoiated with the measured results. The operator always arries the information about thestatistis of possible results. The state transformations presribe how the state of the systemhanges when the measurement is performed. For ideal measurement the latter information isalso provided by the operator, but in general additional struture (the R�'s) is required.There are some important morals to draw. The assoiation between measurements and oper-ators is many-to-one: the same operator A an be measured by many di�erent measurements,for example ideal, or normal but not ideal. Among the possible measurements of A, we mustonsider all possible measurements of ommuting families of operators that inlude A, eah ofwhih may orrespond to entirely di�erent experimental setups.A related fat: not all measurements are ideal measurements.20 No argument, physial ormathematial, suggests that ideal measurements should be regarded as \more orret" than any20In this regard we observe that the vague belief in a universal ollapse rule is as old, almost, as quantummehanis. It is reeted in von Neumann's formulation of quantum mehanis [74℄, based on two distint dy-namial laws: a unitary evolution between measurements , and a nonunitary evolution when measurements areperformed. However, von Neumann's original proposal [74℄ for the nonunitary evolution|that when a measure-ment of A =P� ��PH� is performed upon a system in the state given by the density matrix W , the state of thesystem after the measurement is represented by the density matrixW 0 =X� X� h��� ;W���iP[��� ℄where, for eah �, f���g is a basis for H�|does not treat the general measurement as ideal. Moreover, thisexpression in general depends on the hoie of the basis f���g, and was thus ritiized by L�uders [61℄, whoproposed the transformation W !W 0 =X� PH�WPH� ;as it gives a unique presription. Note that for W = P[ ℄, where P[ ℄ is the projetion onto the initial pure state , W 0 =P� p�P[ �℄, where p� = jh ; PH� ij2 and  � = PH� , orresponding to an ideal measurement.32



other type. In partiular, the Wigner formula for the statistis of a sequene of ideal measure-ments is no more orret than the formula (3.19) for a sequene of more general measurement.Granting a privileged status to ideal measurements amounts to a drasti and arbitrary restri-tion on the quantum formalism qua measurement formalism, sine many (in fat most) real worldmeasurements would be left out.In this regard we note that the arbitrary restrition to ideal measurements a�ets the researhprogram of \deoherent" or \onsistent" histories [35, 65, 46℄, sine Wigner's formula for a se-quene of ideal measurements is unquestionably at its basis. (It should be emphasized howeverthat the speial status granted to ideal measurements is probably not the main diÆulty withthis approah. The no-hidden-variables theorems, whih we shall disuss in Setion 7, show thatthe totality of di�erent families of weakly deohering histories, with their respetive probabilityformulas, is genuinely inonsistent. While suh inonsisteny is perfetly aeptable for a mea-surement formalism, it is hard to see how it an be tolerated as the basis of what is laimed tobe a fundamental theory. For more on this, see [25, 43℄.4 The Extended Quantum FormalismAs indiated in Setion 2.9, the textbook quantum formalism is merely an idealization. Asjust stressed, not all real world measurements are ideal. In fat, in the real world the projetionpostulate|that when the measurement of an observable yields a spei� value, the wave funtionof the system is replaed by its projetion onto the orresponding eigenspae|is rarely obeyed.More importantly, a great many signi�ant real-world experiments are simply not at all assoiatedwith operators in the usual way. Consider for example an eletron with fairly general initial wavefuntion, and surround the eletron with a \photographi" plate, away from (the support of thewave funtion of) the eletron, but not too far away. This setup measures the position of \esape"of the eletron from the region surrounded by the plate. Notie that sine in general the time ofesape is random, it is not at all lear whih operator should orrespond to the esape position|it should not be the Heisenberg position operator at a spei� time, and a Heisenberg positionoperator at a random time has no meaning. In fat, there is presumably no suh operator, so thatfor the experiment just desribed the probabilities for the possible results annot be expressedin the form (2.37), and in fat are not given by the spetral measure for any operator (on theHilbert spae of the system itself 21).Time measurements, for example esape times or deay times, are partiularly embarrassingfor the quantum formalism. This subjet remains mired in ontroversy, with various researhgroups proposing their own favorite andidates for the \time operator" while paying little at-tention to the proposals of the other groups. For an analysis of time measurements within theframework of Bohmian mehanis, see [20℄; in this regard see also [57, 58, 59, 47℄.Beause of these and other diÆulties, it has been proposed that we should go beyondoperators-as-observables, to \generalized observables," desribed by mathematial objets evenmore abstrat than operators (see, e.g., the books of Davies [21℄, Holevo [50℄ and Kraus [55℄). Thebasis of this generalization lies in the observation that, by the spetral theorem, the onept ofself-adjoint operator is ompletely equivalent to that of (a normalized) projetion-valued measure21There is of ourse an operator on the Hilbert spae of the omposite system onsisting of the eletron andthe photographi plate that orresponds to the deteted esape position, namely the operator assoiated with theappropriate details of the state of the plate after the detetion.33



(PVM), an orthogonal-projetion-valued additive set funtion, on the value spae R. Orthogonalprojetions are among the simplest examples of positive operators, and a natural generalizationof a \quantum observable" is provided by a positive-operator-valued measure (POVM): a nor-malized, ountably additive set funtion O whose values are positive operators on a Hilbert spaeH. When a POVM is sandwihed by a wave funtion it generates a probability distribution�O : � 7! �O (�) � h ;O(�) i (4.1)in exatly the same manner as a PVM.4.1 POVMs and Bohmian ExperimentsFrom a fundamental perspetive, it may seem that we would regard this generalization, topositive-operator-valued measures, as a step in the wrong diretion, sine it supplies us witha new, muh larger lass of fundamentally unneeded abstrat mathematial entities far removedfrom the basi ingredients of Bohmian mehanis. However from the perspetive of Bohmianphenomenology positive-operator-valued measures form an extremely natural lass of objets|indeed more natural than projetion-valued measures.To see how this omes about observe that (2.18) de�nes a family of bounded linear operatorsR� by P[��℄ [U( 
 �0)℄ = (R� )
 ��; (4.2)in terms of whih we may rewrite the probability (2.20) of obtaining the result �� (distint) in ageneri disrete experiment asp� = k �k2 = kR� k2 = h ;R��R� i : (4.3)By the unitarity of the overall evolution of system and apparatus we have that P� k �k2 =P�h ;R��R� i = 1 for all  2 H, wheneX� R��R� = I : (4.4)The operators O� � R��R� are obviously positive, i.e.,h ;O� i � 0 for all  2 H (4.5)and by (4.4) sum up to the identity, X� O� = I : (4.6)Thus we may assoiate with a generi disrete experiment E|with no assumptions about repro-duibility or anything else, but merely unitarity|a POVMO(�) = X��2�O� � X��2�R��R�; (4.7)in terms of whih the statistis of the results an be expressed in a ompat way: the probabilitythat the result of the experiment lies in a set � is given byX��2� p� = X��2�h ;O� i = h ;O(�) i : (4.8)Moreover, it follows from (2.18) and (4.2) that E generates state transformations !  � = R� : (4.9)34



4.2 Formal ExperimentsThe assoiation between experiments and POVMs an be extended to a general experiment (2.34)in a straightforward way. In analogy with (2.37) we shall say that the POVM O is assoiatedwith the experiment E whenever the probability distribution (2.35) of the results of E is equalto the probability measure (4.1) generated by O, i.e.,22E 7! O if and only if �Z = �O ; (4.10)We may now proeed as in Setion 3 and analyze on a formal level the assoiation (4.10) byintroduing the notions of weak and strong formal experiment as the obvious generalizations of(3.4) and (3.8):Any positive-operator-valued measure O de�nes the weak formal experiment E � O.Any set f��g of not neessarily distint real numbers (or vetors of real numbers)paired with any olletion fR�g of bounded operators on H suh that PR��R� = Ide�nes the strong formal experiment E � f��; R�g with assoiated POVM (4.7)and state transformations (4.9). (4.11)The notion of formal experiment is a genuine extension of that of formal measurement, thelatter being the speial ase in whih O is a PVM and R��R� are the projetions.Formal experiments share with formal measurements many features. This is so beause allmeasure-theoreti properties of projetion-valued measures extend to positive-operator-valuedmeasures. For example, just as for PVMs, integration of real funtions against positive-operator-valued measure is a meaningful operation that generates self-adjoint operators: for given real(and measurable) funtion f , the operator B = R f(�)O(d�) is a self-adjoint operator de�ned,say, by its matrix elements h�;B i = R ���; (d�) for all � and  in H, where ��; is the omplexmeasure ��; (d�) = h�;O(d�) i. (We ignore the diÆulties that might arise if f is not bounded.)In partiular, with O is assoiated the self-adjoint operatorAO � Z �O(d�): (4.12)It is however important to observe that this assoiation (unlike the ase of PVMs, for whihthe spetral theorem provides the inverse) is not invertible, sine the self-adjoint operator AO isalways assoiated with the PVM provided by the spetral theorem. Thus, unlike PVMs, POVMsare not equivalent to self-adjoint operators. In general, the operator AO will arry informationonly about the mean value of the statistis of the results,Z � h ;O(d�) i = h ;AO i ;while for the higher moments we should expet thatZ �n h ;O(d�) i 6= h ;AnO i22Whenever (4.10) is satis�ed we may say that the experiment E is a measurement of the generalized observableO. We shall however avoid this terminology in onnetion with generalized observables; even when it is standard(so that we use it), i.e., when O is a PVM and thus equivalent to a self-adjoint operator, it is in fat improper.35



unless O is a PVM.What we have just desribed is an important di�erene between general formal experimentsand formal measurements. This and other di�erenes originate from the fat that a POVM is amuh weaker notion than a PVM. For example, a POVM O on Rm|like ordinary measures andunlike PVMs|need not be a produt measure: If O1; : : : ; Om are the marginals of O,O1(�1) = O(�1 � Rm�1) ; : : : ; Om(�m) = O(Rm�1 ��m);the produt POVM O1 � � � � � Om will be in general di�erent from O. (This is trivial sine anyprobability measure on Rm times the identity is a POVM.)Another important di�erene between the notion of POVM and that of PVM is this: while theprojetions P (�) of a PVM, for di�erent �'s, ommute, the operators O(�) of a generi POVMneed not ommute. An illustration of how this may naturally arise is provided by sequentialmeasurements.A sequential measurement (see Setion 3.9)Mn 
 : : :
M1 is indeed a very simple exampleof a formal experiment that in general is not a formal measurement (see also Davies [21℄). Wehave that Mn 
 : : :
M1 = f��; R�gwhere �� � (�(1)�1 ; : : : ; �(n)�n )and R� � R(n)�n Utn�tn�1R(n�1)�n�1 � � � R(1)�1 :Ut1 :Note that sine p� = kR� k2, we have thatX� R��R� = I, whih also follows diretly usingX�j R(j)�j �R(j)�j = I ; j = 1; : : : ; nNow, with Mn 
 : : :
M1 is assoiated the POVMO(�) = X��2�R��R� :Note that O(�) and O(�0) in general don't ommute sine in general R� and R� may fail to doso. An interesting lass of POVMs for whih O(�) and O(�0) do ommute arises in assoiationwith the notion of an \approximate measurement" of a self-adjoint operator: suppose that theresult Z of a measurement M = PA of a self-adjoint operator A is distorted by the addition ofan independent noise N with symmetri probability distribution �(�). Then the result Z +N ofthe experiment, for initial system wave funtion  , is distributed aording to� 7! Z� ZR �(�� �0)h ; PA(d�0) i d� ;36



whih an be rewritten as � 7! h ; Z� �(�� A)d�  i :Thus the result Z +N is governed by the POVMO(�) = Z� �(�� A) d� : (4.13)The formal experiment de�ned by this POVM an be regarded as providing an approximatemeasurement of A. For example, let �(�) = 1�p2�e� �22 �2 : (4.14)Then for � ! 0 the POVM (4.13) beomes the PVM of A and the experiment beomes ameasurement of A.Conerning the POVM (4.13) we wish to make two remarks. The �rst is that the O(�)'sommute sine they are all funtions of A. The seond is that this POVM has a ontinuousdensity, i.e., O(d�) = o(�) d� where o(�) = �(�� A) :This is another di�erene between POVMs and PVMs: like ordinary measures and unlike PVMs,POVMs may have a ontinuous density. The reason this is possible for POVMs is that, for aPOVM O, unlike for a PVM, given  2 H, the vetors O(�) and O(�0) , for � and �0 disjointand arbitrarily small, need not be orthogonal. Otherwise, no density o(d�) ould exist, beausethis would imply that there is a ontinuous family fo(�) g of orthogonal vetors in H.Finally, we observe that unlike strong measurements, the notion of strong formal experimentan be extended to POVM with ontinuous spetrum (see Setion 3.8). One may in fat de�nea strong experiment by E = f�;R�g, where � 7! R� is a ontinuous bounded-operator-valuedfuntion suh that R R��R� d � = I. Then the statistis for the results of suh an experiment isgoverned by the POVM O(d�) � R��R� d�. For example, letR� = � (�� A) where � (�) = 1p� 4p2�e� �24 �2 :Then O(d�) = R��R� d � is the POVM (4.13) with � given by (4.14). We observe that the statetransformations (f. the de�nition (2.6) of the onditional wave funtion) ! R� = 1p� 4p2�e� (��A)24 �2  (4.15)an be regarded as arising from a von Neumann interation with Hamiltonian (3.12) (and T = 1)and ready state of the apparatus �0(y) = 1p� 4p2�e� y24 �2 :Experiments with state transformations (4.15), for large �, have been onsidered by Aharonov andoworkers (see, e.g., Aharonov, Anandan, and Vaidman [1℄) as providing \weak measurements" ofoperators. (The e�et of the measurement on the state of the system is \small" if � is suÆientlylarge). This terminology notwithstanding, it is important to observe that suh experiments arenot measurements of A in the sense we have disussed here. They give information about theaverage value of A, sine R � h ;R��R�  i d� = h ;A i, but presumably none about its highermoments. 37



4.3 From Formal Experiments to ExperimentsJust as with a formal measurement (see Setion 3.3), with a formal experiment E � f��; R�g,we may assoiate a disrete experiment E . The unitary map (2.18) of E will be given again by(3.10), i.e., U :  
 �0 7!X� (R� )
 ��; (4.16)but now R��R� of ourse need not be projetion. The unitarity of U follows immediately fromthe orthonormality of the �� using PR��R� = I. (Note that with a weak formal experimentE � O = fO�g we may assoiate many inequivalent disrete experiments, de�ned by (4.16) withoperators R� � U�pO�, for any hoie of unitary operators U�.)We shall now disuss a onrete example of a disrete experiment de�ned by a formal exper-iment whih will allow us to make some more further omments on the issue of reproduibilitydisussed in Setion 2.8.Let f: : : ; e�1; e0; e1; : : : g be an orthonormal basis in the system Hilbert spaeH, let P� ; P0 ; P+be the orthogonal projetions onto the subspaes eH�, H0, eH+ spanned by feg�<0, fe0g, feg�>0respetively, and let V+, V� be the right and left shift operators,V+e� = e�+1 ; V�e� = e��1 :Consider the strong formal experiment E with the two possible results �� = �1 and assoiatedstate transformations R�1 = V�(P� + 1p2P0): (4.17)Then the unitary U of the orresponding disrete experiment E is given byU :  
 �0 ! R� 
 �� +R+ 
 �+;where �0 is the ready state of the apparatus and �� are the apparatus states assoiated withthe results �1. If we now onsider the ation of U on the basis vetors e�,U(e� 
 �0) = e�+1 
 �+ for � > 0U(e� 
 �0) = e��1 
 �� for � < 0U(e0 
 �0) = 1p2(e1 
 �+ + e�1 
 ��) ;we see immediately that U( eH� 
 �0) � eH� 
 ��1:Thus (2.24) is satis�ed and E is a reproduible experiment. Note however that the POVMO = fO�1; O+1g assoiated with (4.17),O�1 = R��1R�1 = P� + 12P0 ;is not a PVM sine the positive operators O�1 are not projetions, i.e, O2�1 6= O�1. Thus Eis not a measurement of any self-adjoint operator, whih shows that without the assumption ofthe �nite dimensionality of the subspaes eH� a reproduible disrete experiment need not be ameasurement of a self-adjoint operator. 38



4.4 Measure-Valued Quadrati MapsWe onlude this setion with a remark about POVMs. Via (4.1) every POVM O de�nes a\normalized quadrati map" fromH to measures on some spae (the value-spae for the POVM).Moreover, every suh map omes from a POVM in this way. Thus the two notions are equivalent:(4.1) de�nes a anonial one-to-one orrespondene between POVMs and normal-ized measure-valued quadrati maps on H. (4.18)To say that a measure-valued map on H  7! � (4.19)is quadrati means that � = B( ;  ) (4.20)is the diagonal part of a sesquilinear map B, from H � H to the omplex measures on somevalue spae �. If B( ;  ) is a probability measure whenever k k = 1, we say that the map isnormalized.23Proposition (4.18) is a onsequenes of the following onsiderations: For a given POVM O themap  7! �O , where �O (�) � h ;O(�) i, is manifestly quadrati, with B(�;  ) = h�;O(�) i,and it is obviously normalized. Conversely, let  7! � be a normalized measure-valued quadratimap, orresponding to some B, and write B�(�;  ) = B(�;  )[�℄ for the omplex measure B atthe Borel set �. By the Shwartz inequality, applied to the positive form B�(�;  ), we have thatjB�(�;  )j � k kk�k. Thus, using Riesz's lemma [70℄, there is a unique bounded operator O(�)on H suh that B�(�;  ) = h�;O(�) i:Moreover, O(�), like B�, is ountably additive in �, and sine B( ;  ) is a (positive) measure,O is a positive-operator-valued measure, normalized beause B is.A simple example of a normalized measure-valued quadrati map is	 7! �	(dq) = j	j2dq ; (4.21)whose assoiated POVM is the PVM P Q̂ for the position (on�guration) operatorQ̂	(q) = q	(q) : (4.22)Note also that if the quadrati map � orresponds to the POVM O, then, for any unitaryU , the omposite map  7! �U orresponds to the POVM U�OU , sine hU ;O(�)U i =h ; U�O(�)U i. In partiular for the map (4.21) and U = UT , the omposite map orrespondsto the PVM P Q̂T , with Q̂T = U�Q̂U , the Heisenberg position (on�guration) at time T , sineU�TP Q̂UT = PU�T Q̂UT .23A sesquilinear map B(�;  ) is one that is linear in the seond slot and onjugate linear in the �rst:B(�; � 1 + � 2) = �B(�;  1) + �B(�;  2)B(��1 + ��2;  ) = ��B(�1;  ) + ��B(�2;  ) :Clearly any suh normalized B an be hosen to be onjugate symmetri, B( ; �) = B(�;  ), without a�etingits diagonal, and it follows from polarization that any suh B must in fat be onjugate symmetri.39



5 The General Emergene of OperatorsFor Bohmian mehanis POVMs emerge naturally, not for disrete experiments, but for a generalexperiment (2.34). To see how this omes about onsider the probability measure (2.35) givingthe probability distribution of the result Z = F (QT ) of the experiment, where QT is the �nalon�guration of system and apparatus and F is the alibration funtion expressing the numerialresult, for example the orientation � of a pointer. Then the map 7! �Z = �	T Æ F�1; (5.1)from the initial wave funtion of the system to the probability distribution of the result, isquadrati sine it arises from the sequene of maps 7! 	 =  
 �0 7! 	T = U( 
 �0) 7! �	T (dq) = 	�T	Tdq 7! �Z = �	T Æ F�1; (5.2)where the middle map, to the quantum equilibrium distribution, is obviously quadrati, whileall the other maps are linear, all but the seond trivially so. Now, by (4.18), the notion ofsuh a quadrati map (5.1) is ompletely equivalent to that of a POVM on the system Hilbertspae H. (The sesquilinear map B assoiated with (5.2) is B( 1;  2) = 	�1T	2Tdq Æ F�1, where	i T = U( i 
 �0).)Thus the emergene and role of POVMs as generalized observables in Bohmian mehanis ismerely an expression of the sesquilinearity of quantum equilibrium together with the linearityof the Shr�odinger evolution. Thus the fat that with every experiment is assoiated a POVM,whih forms a ompat expression of the statistis for the possible results, is a near mathematialtriviality. It is therefore rather dubious that the ourrene of POVMs|the simplest ase of whihis that of PVMs|as observables an be regarded as suggesting any deep truths about reality orabout epistemology.An expliit formula for the POVM de�ned by the quadrati map (5.1) follows immediatelyfrom (5.2):�Z (d�) = h 
 �0; U�P Q̂(F�1(d�))U  
 �0i = h 
 �0; P0U�P Q̂(F�1(d�))UP0  
 �0iwhere P Q̂ is the PVM for the position (on�guration) operator (4.22) and P0 is the projetiononto H
 �0, whene O(d�) = 1�1�0P0 U�P Q̂(F�1(d�))UP01�0 ; (5.3)where 1�0 =  
�0 is the natural identi�ation of H with H
�0. This is the obvious POVMreeting the essential struture of the experiment.2424This POVM an also be written asO(d�) = trA hP0 U�P Q̂(F�1(d�))Ui ; (5.4)where trA is the partial trae over the apparatus variables. The partial trae is a map trA : W 7! trA(W ),from trae lass operators on the Hilbert spae HS 
 HA to trae lass operators on HS , uniquely de�ned bytr S(trA(W )B) = tr S+A(WB 
 I), where tr S+A and tr S are the usual (salar-valued) traes of operators onHS 
 HA and HS , respetively. For a trae lass operator B on L2(dx) 
 L2(dy) with kernel B(x; y; x0; y0) wehave trA (B) (x; x0) = R B(x; y; x0; y)dy: In (5.4) trA is applied to operators that need not be trae lass|norneed the operator on the left be trae lass|sine, e.g., O(�) = I . The formula nonetheless makes sense.40



Note that the POVM (5.3) is unitarily equivalent toP0P F (Q̂T )(d�)P0 (5.5)where Q̂T is the Heisenberg on�guration of system and apparatus at time T . This POVM, atingon the subspae H 
 �0, is the projetion to that subspae of a PVM, the spetral projetionsfor F (Q̂T ). Naimark has shown (see, e.g., [21℄) that every POVM is equivalent to one that arisesin this way, as the orthogonal projetion of a PVM to a subspae.25We shall now illustrate the assoiation of POVMs with experiments by onsidering somespeial ases of (5.2).5.1 \No Interation" ExperimentsLet U = US 
 UA in (5.2) (hereafter the indies \S" and \A" shall refer, respetively, to systemand apparatus). Then for F (x; y) = y the measure-valued quadrati map de�ned by (5.2) is 7! (y)k k2dywhere (y) = jUA�0j2(y), with POVM O1(dy) = (y)dy IS, while for F (q) = q = (x; y) the mapis  7! (y) jUS j2(x) dqwith orresponding POVM O2(dq) = (y)U�SP X̂(dx)US dy. Neither O1 nor O2 is a PVM. How-ever, if F is independent of y, F (x; y) = F (x), then the apparatus an be ignored in (5.2) or(5.3) and O = U�SP X̂US Æ F�1, i.e.,O(d�) = U�SP X̂(F�1(d�))US ;whih is manifestly a PVM|in fat orresponding to F (X̂T ), where X̂T is the Heisenberg on-�guration of the system at the end of the experiment.This ase is somewhat degenerate: with no interation between system and apparatus ithardly seems anything like a measurement. However, it does illustrate that it is \true" POVMs(i.e., those that aren't PVMs) that typially get assoiated with experiments|i.e., unless somespeial onditions hold (here that F = F (x)).5.2 \No X" ExperimentsThe map (5.2) is well de�ned even when the system (the x-system) has no translational degrees offreedom, so that there is no x (or X). This will be the ase, for example, when the system Hilbertspae HS orresponds to the spin degrees of freedom. Then HS = C n is �nite dimensional.25If O(d�) is a POVM on � ating on H, then the Hilbert spae on whih the orresponding PVM ats isthe natural Hilbert spae assoiated with the data at hand, namely L2(�;H; O(d�)), the spae of H-valuedfuntions  (�) on �, with inner produt given by R h (�); O(d�)�(�)i. (If this is not, in fat, positive de�nite,then the quotient with its kernel should be taken| (�) should, in other words, be understood as the appropriateequivalene lass.) Then O(d�) is equivalent to PE(d�)P , where E(�) = 1̂�(�), multipliation by 1�(�), and Pis the orthogonal projetion onto the subspae of onstant H-valued funtions  (�) =  .41



In suh ases, the alibration F of ourse is a funtion of y alone, sine there is no x. ForF = y the measure-valued quadrati map de�ned by (5.2) is 7! j[U( 
 �0)℄(y)j2dy ; (5.6)where j � � � j denotes the norm in C n .This ase is physially more interesting than the previous one, though it might appear ratherpuzzling sine until now our measured systems have always involved on�gurations. After all,without on�gurations there is no Bohmian mehanis! However, what is relevant from a Bohmianperspetive is that the omposite of system and apparatus be governed by Bohmian mehanis,and this may well be the ase if the apparatus has on�gurational degrees of freedom, even ifwhat is alled the system doesn't. Moreover, this ase provides the prototype of many real-worldexperiments, e.g., spin measurements.For the measurement of a spin omponent of a spin{1=2 partile|reall the desription of theStern-Gerlah experiment given in Setion 2.5|we letHS = C 2 , the spin spae, with \apparatus"on�guration y = x, the position of the partile, and with suitable alibration F (x). (For a realworld experiment there would also have to be a genuine apparatus|a detetor|that measureswhere the partile atually is at the end of the experiment, but this would not in any way a�etour analysis. We shall elaborate upon this below.) The unitary U of the experiment is theevolution operator up to time T generated by the Pauli Hamiltonian (2.12), whih under theassumption (2.14) beomes H = � ~22mr2 � (b+ az)�z (5.7)Moreover, as in Setion 2.5, we shall assume that the initial partile wave funtion has theform �0(x) = �0(z)�(x; y).26 Then for F (x) = z the quadrati map (5.2) is 7! �jh +;  ij2j�(+)T (z)j2 + jh �;  ij2j�(�)T (z)j2� dz= D ; j +ih +jj�(+)T (z)j2 + j �ih �jj�(�)T (z)j2  E dzwith POVM O(dz) =  j�(+)T (z)j2 00 j�(�)T (z)j2 ! dz ; (5.8)where  � are the eigenvetors (2.13) of �z and �(�)T are the solutions of (2.15) omputed at t = T ,for initial onditions �0(�) = �0(z).Consider now the appropriate alibration for the Stern-Gerlah experiment, namely the fun-tion F (x) = (+1 if z > 0;�1 if z < 0 (5.9)whih assigns to the outomes of the experiment the desired numerial results: if the partilegoes up in the z- diretion the spin is +1, while if the partile goes down the spin is -1. Theorresponding POVM OT is de�ned byOT (+1) = � p+T 00 p�T � OT (�1) = � 1� p+T 00 1� p�T �26We abuse notation here in using the notation y = x = (x; y; z). The y on the right should of ourse not beonfused with the one on the left. 42



where p+T = Z 10 j�T (+)j2(z)dz; p�T = Z 10 j�T (�)j2(z)dz :It should be noted that OT is not a PVM. However, as indiated in Setion 2.5, as T !1,p+T ! 1 and p�T ! 0, and the POVM OT beomes the PVM of the operator �z, i.e., OT ! P �z ,de�ned by P (+1) = � 1 00 0 � P (�1) = � 0 00 1 � (5.10)and the experiment beomes a measurement of the operator �z.5.3 \No Y " ExperimentsSuppose now that the \apparatus"involves no translational degrees of freedom, i.e., that there isno y (or Y ). For example, suppose the apparatus Hilbert spae HA orresponds to ertain spindegrees of freedom, with HA = C n �nite dimensional. Then, of ourse, F = F (x).This ase illustrates what measurements are not. If the apparatus has no on�gurationaldegrees of freedom, then neither in Bohmian mehanis nor in orthodox quantum mehanis isit a bona �de apparatus: Whatever virtues suh an apparatus might otherwise have, it ertainlyan't generate any diretly observable results (at least not when the system itself is mirosopi).Aording to Bohr ([17℄, pages 73 and 90): \Every atomi phenomenon is losed in the sensethat its observation is based on registrations obtained by means of suitable ampli�ation devieswith irreversible funtioning suh as, for example, permanent marks on the photographi plate"and \the quantum-mehanial formalism permits well-de�ned appliations only to suh losedphenomena." To stress this point, disussing partile detetion Bell has said [7℄: \Let us supposethat a disharged ounter pops up a ag sayings `Yes' just to emphasize that it is a marosopiallydi�erent thing from an undisharged ounter, in a very di�erent region of on�guration spae."Experiments based on ertain miro-apparatuses, e.g., \one-bit detetors" [73℄, provide a nieexample of \No Y" experiments. We may think of a one-bit detetor as a spin-1=2-like system(e.g., a two-level atom), with \down" state �0 (the ready state) and \up" state �1 and whih issuh that its on�gurational degrees of freedom an be ignored. Suppose that this \spin-system,"in its \down" state, is plaed in a small spatial region �1 and onsider a partile whose wavefuntion has been prepared in suh a way that at t = 0 it has the form  =  1 +  2, where  1 issupported by �1 and  2 by �2 disjoint from �1. Assume that the partile interats loally withthe spin-system, in the sense that were  =  1 the \spin" would ip to the \up" state, while were =  2 it would remain in its \down" state, and that the interation time is negligibly small,so that other ontributions to the Hamiltonian an be ignored. Then the initial state  
 �0undergoes the unitary transformationU :  
 �0!	 =  1 
 �1 +  2 
 �0 : (5.11)We may now ask whether U de�nes an experiment genuinely measuring whether the partile isin �1 or �2. The answer of ourse is no (sine in this experiment there is no apparatus property atall with whih the position of the partile ould be orrelated) unless the experiment is (quikly)ompleted by a measurement of the \spin" by means of another (marosopi) apparatus. Inother words, we may onlude that the partile is in �1 only if the spin-system in e�et pops upa ag saying \up". 43



5.4 \No Y no �" ExperimentsSuppose there is no apparatus at all: no apparatus on�guration y nor Hilbert spae HA, or,what amounts to the same thing, HA = C . For alibration F = x the measure-valued quadratimap de�ned by (5.2) is  7! jU (x)j2 ;with POVM U�P X̂U , while the POVM for general alibration F (x) isO(d�) = U�P X̂(F�1(d�))U : (5.12)O is a PVM, as mentioned in Setion 5.1, orresponding to the operator U�F (X̂)U = F (X̂T ),where X̂T is the Heisenberg position (on�guration) operator at time T .It is important to observe that even though these experiments su�er from the defet that noorrelation is established between the system and an apparatus, this an easily be remedied|byadding a �nal detetion measurement that measures the �nal atual on�guration XT|withoutin any way a�eting the essential formal struture of the experiment. For these experimentsthe apparatus thus does not introdue any additional randomness, but merely reets what wasalready present in XT . All randomness in the �nal resultZ = F (XT ) (5.13)arises from randomness in the initial on�guration of the system.27For F = x and U = I the quadrati map is  7! j (x)j2 with PVM P X̂ , so that this (trivial)experiment orresponds to the simplest and most basi operator of quantum mehanis: theposition operator. How other basi operators arise from experiments is what we are going todisuss next.5.5 The Basi Operators of Quantum MehanisAording to Bohmian mehanis, a partile whose wave funtion is real (up to a global phase),for example an eletron in the ground state of an atom, has vanishing veloity, even though thequantum formalism assigns a nontrivial probability distribution to its momentum. It might thusseem that we are faed with a onit between the preditions of Bohmian mehanis and thoseof the quantum formalism. This, however, is not so. The quantum preditions about momentumonern the results of an experiment that happens to be alled a momentum measurement anda onit with Bohmian mehanis with regard to momentum must reet disagreement aboutthe results of suh an experiment.One may base suh an experiment on free motion followed by a �nal measurement of posi-tion.28 Consider a partile of mass m whose wave funtion at t = 0 is  =  (x). Suppose no27Though passive, the apparatus here plays an important role in reording the �nal on�guration of the system.However, for experiments involving detetions at di�erent times, the apparatus plays an ative role: Consider suhan experiment, with detetions at times t1; : : : ; tn, and �nal result Z = F (Xt1 ; : : : ; Xtn). Though the apparatusintrodues no extra randomness, it plays an essential role by hanging the wave funtion of the system at thetimes t1; : : : ; tn and thus hanging the evolution of its on�guration. These hanges are reeted in the POVMstruture that governs the statistial distribution of Z for suh experiments (see Setion 3.9).28The emergene of the momentum operator in suh so-alled time-of-ight measurements was disussed byBohm in his 1952 artile [15℄. A similar derivation of the momentum operator an be found in Feynman andHibbs [34℄. 44



fores are present, that is, that all the potentials ating on the partile are turned o�, and let thepartile evolve freely. Then we measure the position XT that it has reahed at the time t = T .It is natural to regard VT = XT=T and PT = mXT=T as providing, for large T , approximationsto the asymptoti veloity and momentum of the partile. It turns out that the probabilitydistribution of PT , in the limit T ! 1, is exatly what quantum mehanis presribes for themomentum, namely j ~ (p)j2, where~ (p) = (F )(p) = 1p(2�~)3 Z e� i~p�x (x) dxis the Fourier transform of  .This result an be easily understood: Observe that j T (x)j2 dx, the probability distributionof XT , is the spetral measure �X̂T (dx) = h ; P X̂T (dx) i of X̂T = U�T X̂UT , the (Heisenberg)position operator at time t = T ; here Ut is the free evolution operator and X̂ is, as usual, theposition operator at time t = 0. By elementary quantum mehanis (spei�ally, the Heisenbergequations of motion), X̂T = 1mP̂T + X̂, where P̂ � �i~r is the momentum operator. Thusas T !1 the operator mX̂T=T onverges to the momentum operator P̂, sine X̂=T is O(1=T ),and the distribution of the random variable PT aordingly onverges to the spetral measure ofP̂, given by j ~ (p)j2.29The momentum operator arises from a (T !1) limit of \no Y no �" single-partile exper-iments, eah experiment being de�ned by the unitary operator UT (the free partile evolutionoperator up to time T ) and alibration FT (x) = mx=T . Other standard quantum-mehanialoperators emerge in a similar manner, i.e., from a T ! 1 limit of appropriate single-partileexperiments.This is the ase, for example, for the spin operator �z. As in Setion 5.2, onsider the evolu-tion operator UT generated by Hamiltonian (5.7), but instead of (5.9), onsider the alibrationFT (x) = 2mz= a T 2. This alibration is suggested by (2.16), as well as by the expliit form ofthe z-omponent of the position operator at time t = T ,ẐT = U�T ẐUT = Ẑ + P̂zm T + a2m�z T 2 ; (5.14)whih follows from the Heisenberg equationsmd2Ẑtd t2 = a �z ; d Ẑtd t �����t=0= P̂z � �i~ ��z ; Ẑ0 = Ẑ :29 This formal argument an be turned into a rigorous proof by onsidering the limit of the harateristifuntion of PT , namely of the funtion fT (�) = R ei��p �T (dp), where �T is the distribution of mXT =T : fT (�) =D ; exp�i� �mX̂T =T�  E, and using the dominated onvergene theorem [70℄ this onverges as T ! 1 tof(�) = D ; exp�i �� P̂� E, implying the desired result. The same result an also be obtained using the wellknown asymptoti formula (see, e.g., [69℄) for the solution of the free Shr�odinger equation with initial ondition =  (x),  T (x) � �miT � 32 eimx22~T ~ (mxT ) for T !1:
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Then, for initial state 	 =  
 �0 with suitable �0, where  = � (+) + � (�), the distributionof the random variable �zT = FT (XT ) = 2mZTa T 2onverges as T ! 1 to the spetral measure of �z, with values +1 and �1 ourring withprobabilities j�j2 and j�j2, respetively.30 This is so, just as with the momentum, beause asT !1 the operator 2m ẐTa T 2 onverges to �z.We remark that we've made use above of the fat that simple algebrai manipulations on thelevel of random variables orrespond automatially to the same manipulations for the assoiatedoperators. More preisely, suppose that Z 7! A (5.15)in the sense (of (2.37)) that the distribution of the random variable Z is given by the spetralmeasure for the self-adjoint operator A. Then it follows from (3.17) thatf(Z)! f(A) (5.16)for any (Borel) funtion f . For example, sine XT 7! X̂T , mXT=T 7! mX̂T=T , and sine ZT !ẐT , 2mZTa T 2 ! 2mẐTa T 2 . Similarly, if a random variable P 7! P̂ , then P 2=(2m) 7! H0 = P̂ 2=(2m).This is rather trivial, but it is not as trivial as the failure even to distinguish Z and Ẑ wouldmake it seem.5.6 From Positive-Operator-Valued Measures to ExperimentsWe wish here to point out that to a very onsiderable extent the assoiation E 7! O(d�) ofexperiments with POVMs is onto. It is more or less the ase that every POVM arises from anexperiment.We have in mind two distint remarks. First of all, it was pointed out in the �rst paragraphof Setion 4.3 that every disrete POVM O� (weak formal experiment) arises from some disreteexperiment E . Thus, for every POVM O(d�) there is a sequene E (n) of disrete experiments forwhih the orresponding POVMs O(n) onverge to O.The seond point we wish to make is that to the extent that every PVM arises from anexperiment E = f�0; U; Fg, so too does every POVM. This is based on the fat, mentioned atthe end of the introdution to Setion 5, that every POVM O(d�) an be regarded as arisingfrom the projetion of a PVM E(d�), ating on H(1), onto the subspae H � H(1). We mayassume without loss of generality that both H and H(1) 	 H are in�nite dimensional (by someotherwise irrelevant enlargements if neessary). Thus we an identify H(1) with H
Happaratus(1)and the subspae with H
�(1)0 , for any hoie of �(1)0 . Suppose now that there is an experimentE (1) = f�(2)0 ; U; Fg that measures the PVM E (i.e., that measures the observable A = R �E(d�))where �(2)0 2 Happaratus(2) , U ats on H
Happaratus where Happaratus = Happaratus(1) 
Happaratus(2)and F is a funtion of the on�guration of the omposite of the 3 systems: system, apparatus(1)and apparatus(2). Then, with �0 = �(1)0 
�(2)0 , E = f�0; U; Fg is assoiated with the POVM O.30For the Hamiltonian (5.7) no assumption on the initial state 	 is required here; however (5.7) will be areasonably good approximation only when 	 has a suitable form, expressing in partiular that the partile isappropriately moving towards the magnet. 46



5.7 Invariane Under Trivial ExtensionSuppose we hange an experiment E to E 0 by regarding its x-system as ontaining more of theuniverse that the x-system for E , without in any way altering what is physially done in theexperiment and how the result is spei�ed. One would imagine that E 0 would be equivalent to E .This would, in fat, be trivially the ase lassially, as it would if E were a genuine measurement,in whih ase E 0 would obviously measure the same thing as E . This remains true for the moreformal notion of measurement under onsideration here. The only soure of nontriviality inarriving at this onlusion is the fat that with E 0 we have to deal with a di�erent, larger lassof initial wave funtions.We will say that E 0 is a trivial extension of E if the only relevant di�erene between E andE 0 is that the x-system for E 0 has generi on�guration x0 = (x; x̂), whereas the x-system for Ehas generi on�guration x. In partiular, the unitary operator U 0 assoiated with E 0 has theform U 0 = U 
 Û , where U is the unitary assoiated with E , implementing the interation of thex-system and the apparatus, while Û is a unitary operator desribing the independent evolutionof the x̂-system, and the alibration F for E 0 is the same as for E . (Thus F does not dependupon x̂.)The assoiation of experiments with (generalized) observables (POVMs) is invariant undertrivial extension: if E 7! O in the sense of (4.10) and E 0 is a trivial extension of E , thenE 0 7! O 
 I, where I is the identity on the Hilbert spae of the x̂-system.To see this note that if E 7! O then the sesquilinear map B arising from (5.2) for E 0 is of theform B( 1 
  ̂1;  2 
  ̂2) = h 1; O 2ih ̂1;  ̂2ion produt wave funtions  0 =  
  ̂, whih easily follows from the form of U 0 and the fatthat F doesn't depend upon x̂, so that the x̂-degrees of freedom an be integrated out. Thus thePOVM O0 for E 0 agrees with O 
 I on produt wave funtions, and sine suh wave funtionsspan the Hilbert spae for the (x; x̂)-system, we have that O0 = O 
 I. Thus E 0 7! O 
 I.In other words, if E is a measurement of O, then E 0 is a measurement of O
 I. In partiular,if E is a measurement of the self-adjoint operator A, then E 0 is a measurement of A 
 I. Thisresult is not quite so trivial as it would be were it onerned with genuine measurements, ratherthan with the more formal notion under onsideration here.Now suppose that E 0 is a trivial extension of a disrete experiment E , with state transforma-tions given by R�. Then the state transformations for E 0 are given by R0� = R� 
 Û . This is sobeause R0� must agree with R� 
 Û on produt wave funtions  0 =  
  ̂, and these span theHilbert spae of the (x; x̂)-system.5.8 POVMs and the Positions of Photons and Dira EletronsWe have indiated how POVMs emerge naturally in assoiation with Bohmian experiments.We wish here to indiate a somewhat di�erent role for a POVM: to desribe the probabilitydistribution of the atual (as opposed to measured31) position. The probability distribution ofthe position of a Dira eletron in the state  is  + . This is given by a PVM E(dx) on theone-partile Hilbert spae H spanned by positive and negative energy eletron wave funtions.However the physial one-partile Hilbert-spae H+ onsists solely of positive energy states, and31The aurate measurement of the position of a Dira eletron is presumably impossible.47



this is not invariant under the projetions E. Nonetheless the probability distribution of theposition of the eletron is given by the POVM P+E(dx)P+ ating on H+, where P+ is theorthogonal projetion onto H+. Similarly, onstraints on the photon wave funtion require theuse of POVMs for the loalization of photons [54, 3℄.326 Density MatriesThe notion of a density matrix, a positive (trae lass) operator with unit trae on the Hilbertspae of a system, is often regarded as providing the most general haraterization of a quantumstate of that system. Aording to the quantum formalism, when a system is desribed by thedensity matrix W , the expeted value of an observable A is given by tr (WA). If A has PVM O,and more generally for any POVM O, the probability that the (generalized) observable O hasvalue in � is given by Prob(O 2 �) = tr (WO(�)): (6.1)A density matrix that is a one-dimensional projetion, i.e., of the form j ih j where  is a unitvetor in the Hilbert spae of the system, desribes a pure state (namely,  ), and a generaldensity matrix an be deomposed into a mixture of pure states  k,W =Xk pkj kih kj where Xk pk = 1: (6.2)Naively, one might regard pk as the probability that the system is in the state  k. Thisinterpretation is, however, untenable, for a variety of reasons. First of all, the deomposition(6.2) is not unique. A density matrix W that does not desribe a pure state an be deomposedinto pure states in a variety of di�erent ways.It is always possible to deompose a density matrix W in suh a way that its omponents  kare orthonormal. Suh a deomposition will be unique exept when W is degenerate, i.e., whensome pk's oinide. For example, if p1 = p2 we may replae  1 and  2 by any other orthonormalpair of vetors in the subspae spanned by  1 and  2. And even if W were nondegenerate, itneed not be the ase that the system is in one of the states  k with probability pk, beause forany deomposition (6.2), regardless of whether the  k are orthogonal, if the wave funtion of thesystem were  k with probability pk, this situation would be desribed by the density matrix W .Thus a general density matrix arries no information|not even statistial information|aboutthe atual wave funtion of the system. Moreover, a density matrix an desribe a system thathas no wave funtion at all! This happens when the system is a subsystem of a larger systemwhose wave funtion is entangled, i.e., does not properly fatorize (in this ase one usually speaksof the redued density matrix of the subsystem).This impossibility of interpreting density matries as real mixtures of pure states has beenregarded by many authors (e.g., von Neumann [74℄ and Landau [56℄) as a further indiation thatquantum randomness is inexpliable within the realm of lassial logi and probability. However,from the point of view of Bohmian mehanis, there is nothing mysterious about density matries.Indeed, their role and status within the quantum formalism an be understood very easily in terms32For example, on the one-photon level, both the proposal 	 = E + iB (where E and B are the eletri andthe magneti free �elds) [12℄, and the proposal 	 = A (where A is the vetor potential in the Coulomb gauge)[3℄, require the onstraint r �	 = 0. 48



of the general framework of experiments of Setion 5. (It an, we believe, be reasonably arguedthat even from the perspetive of orthodox quantum theory, density matries an be understoodin a straightforward way.)6.1 Density Matries and Bohmian ExperimentsConsider a general experiment E 7! O (see equation (4.10)) and suppose that the initial wavefuntion of the system is random with probability distribution p(d ) (on the set of unit vetorsin H). Then nothing will hange in the general argument of Setion 5 exept that now �Z in(4.10) and (5.2) should be interpreted as the onditional probability given  . It follows then from(6.1), using the fat that h ;O(�) i = tr (j ih jO(�)), that the probability that the result ofE lies in � is given byZ p(d ) h ;O(�) i = tr �Z p(d ) j ih jO(�)� = tr (WO(�)) (6.3)where33 W � Z p(d ) j ih j (6.4)is the ensemble density matrix arising from a random wave funtion with (ensemble) distribu-tion p.Now suppose that instead of having a random wave funtion, our system has no wave funtionat all beause it is entangled with another system. Then there is still an objet that an naturallybe regarded as the state of our system, an objet assoiated with the system itself in terms ofwhih the results of experiments performed on our system an be simply expressed. This objetis a density matrix W and the results are governed by (6.1). W is the redued density matrixarising from the state of the larger system. This is more or less an immediate onsequene ofinvariane under trivial extension, desribed in Setion 5.7:Consider a trivial extension E 0 of an experiment E 7! O on our system|preisely what wemust onsider if the larger system has a wave funtion  0 while our (smaller) system does not.The probability that the result of E 0 lies in � is given byh 0; O(�)
 I 0i = tr 0 (j 0ih 0jO(�)
 I) = tr (WO(�)) ; (6.5)where tr 0 is the trae for the x0-system (the big system) and tr is the trae for the x-system. Inagreement with standard quantum mehanis, the last equality of (6.5) de�nes W as the redueddensity matrix of the x-system, i.e, W � btr (j 0ih 0j) (6.6)where btr denotes the partial trae over the oordinates of the x̂-system.33Note that sine p is a probability measure on the unit sphere in H, W is a positive trae lass operator withunit trae.
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6.2 Strong Experiments and Density MatriesA strong formal experiment E � f��; R�g generates state transformations  ! R� . Thissuggests the following ation on an initial state desribed by a density matrix W : When theoutome is �, we have the transformationW ! R�Wtr (R�W ) � R�WR��tr (R�WR��) (6.7)where R�W = R�WR�� : (6.8)After all, (6.7) is a density matrix naturally assoiated with R� and W , and it agrees with ! R� for a pure state, W = j ih j. In order to show that (6.7) is indeed orret, we mustverify it for the two di�erent ways in whih our system might be assigned a density matrix W ,i.e., for W an ensemble density matrix and for W a redued density matrix.Suppose the initial wave funtion is random, with distribution p(d ). Then the initialstate of our system is given by the density matrix (6.4). When the outome � is obtained,two hanges must be made in (6.4) to reet this information: j ih j must be replaed by(R�j ih jR��)=kR� k2, and p(d ) must be replaed by p(d j�), the onditional distribution ofthe initial wave funtion given that the outome is �. For the latter we havep(d j�) = kR� k2tr (R�WR��)p(d )(kR� k2p(d ) is the joint distribution of  and � and the denominator is the probability ofobtaining the outome �.) Therefore W undergoes the transformationW = Z p(d ) j ih j ! Z p(d j�) R�j ih jR��kR� k2 = Z p(d ) R�j ih jR��tr (R�WR��) = R�WR��tr (R�WR��) :We wish to emphasize that this demonstrates in partiular the nontrivial fat that the densitymatrixR�W=tr (R�W ) produed by the experiment depends only upon the initial density matrixW . Though W an arise in many di�erent ways, orresponding to the multipliity of di�erentprobability distributions p(d ) yielding W via (6.4), insofar as the �nal state is onerned, thesedi�erenes don't matter.This does not, however, establish (6.7) when W arises not from a random wave funtion butas a redued density matrix. To deal with this ase we onsider a trivial extension E 0 of a disreteexperiment E with state transformations R�. Then E 0 has state transformations R� 
 Û (seeSetion 5.7). Thus, when the initial state of the x0-system is  0, the �nal state of the x-systemis given by the partial traebtr �R� 
 Û j 0ih 0jR�� 
 Û��tr 0 �R� 
 Û j 0ih 0jR�� 
 Û�� = btr (R� 
 Ij 0ih 0jR�� 
 I)tr 0 (R� 
 Ij 0ih 0jR�� 
 I) = R� btr (j 0ih 0j)R��tr �R� btr (j 0ih 0j)R���= R�WR��tr (R�WR��) ;where the yliity of the trae has been used. 50



To sum up, when a strong experiment E � f��; R�g is performed on a system desribed bythe initial density matrix W and the outome � is obtained, the �nal density matrix is given by(6.7); moreover, from the results of the previous setion it follows that the outome � will ourwith probability p� = tr (WO�) = tr (WR��R�) = tr (R�W ) ; (6.9)where the last equality follows from the yliity of the trae.6.3 The Notion of InstrumentWe shall briey omment on the relationship between the notion of strong formal experimentand that of instrument (or e�et) disussed by Davies [21℄.Consider an experiment E � f��; R�g on a system with initial density matrix W . Then anatural objet assoiated with E is the set funtionR(�)W � X��2�R�W = X��2�R�WR�� : (6.10)The set funtion R : � 7! R(�) ompatly expresses both the statistis of E for a general initialsystem density matrix W and the e�et of E on W onditioned on the ourrene of the event\the result of E is in �".To see this, note �rst that it follows from (6.9) that the probability that the result of theexperiment lies in the set � is given byp(�) = tr (R(�)W ) :The onditional distribution p(�j�) that the outome is � given that the result �� 2 � is thentr (R�W )=tr (R(�)W ). The density matrix that reets the knowledge that the result is in �,obtained by averaging (6.7) over � using p(�j�), is thus R(�)W=tr (R(�)W ).It follows from (6.10) that R is a ountably additive set funtion whose values are positivity-preserving linear transformations in the spae of trae-lass operators on H. Any map with theseproperties, not neessarily of the speial form (6.10), is alled an instrument.6.4 On the State Desription Provided by Density MatriesSo far we have followed the standard terminology and have spoken of a density matrix as de-sribing the state of a physial system. It is important to appreiate, however, that this is merelya frequently onvenient way of speaking, for Bohmian mehanis as well as for orthodox quan-tum theory. Insofar as Bohmian mehanis is onerned, the signi�ane of density matries isneither more nor less than what is implied by their role in the quantum formalism as desribedin Setions 6.1 and 6.2. While many aspets of the notion of (e�etive) wave funtion extendto density matries, in partiular with respet to weak and strong experiments, density matrieslak the dynamial impliations of wave funtions for the evolution of the on�guration, a pointthat has been emphasized by Bell [7℄:In the de Broglie-Bohm theory a fundamental signi�ane is given to the wave fun-tion, and it annot be transferred to the density matrix. . . . Of ourse the densitymatrix retains all its usual pratial utility in onnetion with quantum statistis.51



That this is so should be reasonably lear, sine it is the wave funtion that determines, inBohmian mehanis, the evolution of the on�guration, and the density matrix of a system doesnot determine its wave funtion, even statistially. To underline the point we shall reall theanalysis of Bell [7℄: Consider a partile desribed by a density matrixWt evolving autonomously,so that Wt = UtW0U�1t , where Ut is the unitary group generated by a Shr�odinger Hamiltonian.Then �Wt(x) � Wt(x; x) � hxjWtjxi gives the probability distribution of the position of thepartile. Note that �W satis�es the ontinuity equation��W�t + divJW = 0 where JW (x) = ~mIm [rxW (x; x0)℄x0=x :This might suggest that the veloity of the partile should be given by v = JW=�W , whihindeed agrees with the usual formula when W is a pure state (W (x; x0) =  (x) �(x0)). How-ever, this extension of the usual formula to arbitrary density matries, though mathemati-ally \natural," is not onsistent with what Bohmian mehanis presribes for the evolutionof the on�guration. Consider, for example, the situation in whih the wave funtion of apartile is random, either  1 or  2, with equal probability. Then the density matrix isW (x; x0) = 12 ( 1(x) �1(x0) +  2(x) �2(x0)). But the veloity of the partile will be always ei-ther v1 or v2 (aording to whether the atual wave funtion is  1 or  2), and|unless  1 and  2have disjoint supports|this does not agree with JW=�W , an average of v1 and v2.What we have just said is orret, however, only when spin is ignored. For partiles with spin anovel kind of density matrix emerges, a onditional density matrix, analogous to the onditionalwave funtion (2.6) and with an analogous dynamial role: Even though no onditional wavefuntion need exist for a system entangled with its environment when spin is taken into aount,a onditional density matrixW always exists, and is suh that the veloity of the system is indeedgiven by JW=�W . See [31℄ for details.A �nal remark: the statistial role of density matries is basially di�erent from that providedby statistial ensembles, e.g, by Gibbs states in lassial statistial mehanis. This is beause,as mentioned earlier, even when it desribes a random wave funtion via (6.4), a density matrixW does not determine the ensemble p(d ) from whih it emerges. The map de�ned by (6.4)from probability measures p on the unit sphere in H to density matries W is many-to-one.34Consider, for example, the density matrix 1nI where I is the identity operator on an n-dimensionalHilbert spae H. Then a uniform distribution over the vetors of any given orthonormal basisof H leads to this density matrix, as well as does the ontinuous uniform measure on the spherek k = 1. However, sine the statistial distribution of the results of any experiment dependson p only through W , di�erent p's assoiated with the same W are empirially equivalent in thesense that they an't be distinguished by experiments performed on a system prepared somehowin the state W .34This is relevant to the foundations of quantum statistial mehanis, for whih the state of an isolatedthermodynami system is usually desribed by the miroanonial density matrix Z�1Æ(H � E), where Z =tr Æ(H � E) is the partition funtion. Whih ensemble of wave funtions should be regarded as forming thethermodynami ensemble? A natural hoie is the uniform measure on the subspae H = E, whih should bethought of as fattened in the usual way. Note that this hoie is quite distint from another one that people oftenhave in mind: a uniform distribution over a basis of energy eigenstates of the appropriate energy. Dependingupon the hoie made, we obtain di�erent notions of typial equilibrium wave funtion.
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7 Genuine MeasurementsWe have so far disussed various interations between a system and an apparatus relevant to thequantum measurement formalism, from the very speial ones formalized by \ideal measurements"to the general situation desribed in setion 5. It is important to reognize that nowhere in thisdisussion was there any impliation that anything was atually being measured. The fat thatan interation with an apparatus leads to a pointer orientation that we all the result of theexperiment or \measurement" in no way implies that this result reets anything of signi�aneonerning the system under investigation, let alone that it reveals some preexisting property ofthe system|and this is what is supposed to be meant by the word measurement. After all [72℄,\any old playing around with an indiating instrument in the viinity of another body, wherebyat any old time one then takes a reading, an hardly be alled a measurement of this body,"and the fat the experiment happens to be assoiated, say, with a self-adjoint operator in themanner we have desribed, so that the experiment is spoken of, in the quantum formalism, as ameasurement of the orresponding observable, ertainly o�ers little support for using languagein this way.We shall elaborate on this point later on. For now we wish to observe that the very gener-ality of our analysis, partiularly that of setion 5, overing as it does all possible interationsbetween system and apparatus, overs as well those partiular situations that in fat are genuinemeasurements. This allows us to make some de�nite statements about what an be measured inBohmian mehanis.For a physial quantity, desribing an objetive property of a system, to be measurable meansthat it is possible to perform an experiment on the system that measures the quantity, i.e.,an experiment whose result onveys its value. In Bohmian mehanis a physial quantity � isexpressed by a funtion � = f(X; ) (7.1)of the omplete state (X; ) of the system. An experiment E measuring � is thus one whoseresult Z = F (XT ; YT ) � Z(X; Y;	) equals � = f(X; ) � �(X; ),Z(X; Y;	) = �(X; ); (7.2)where X, Y ,  and 	 refer, as in Setion 5, to the initial state of system and apparatus, imme-diately prior to the measurement, and where the equality should be regarded as approximate,holding to any desired degree of auray.The most basi quantities are, of ourse, the state omponents themselves, namely X and  ,as well as the veloities vk = ~mk Imrk (X) (X) (7.3)of the partiles. One might also onsider quantities desribing the future behavior of the system,suh as the on�guration of an isolated system at a later time, or the time of esape of a partilefrom a spei�ed region, or the asymptoti veloity disussed in Setion 5.5. (Beause the dynamisis deterministi, all of these quantities are funtions of the initial state of the system and arethus of the form (7.1).)We wish to make a few remarks about the measurability of these quantities. In partiular,we wish to mention, as an immediate onsequene of the analysis at the beginning of Setion 5,a ondition that must be satis�ed by any quantity if it is to be measurable.53



7.1 A Neessary Condition for MeasurabilityConsider any experiment E measuring a physial quantity �. We showed in Setion 5 that thestatistis of the result Z of E must be governed by a POVM, i.e., that the probability distributionof Z must be given by a measure-valued quadrati map on the system Hilbert spae H. Thus,by (7.2),� is measurable only if its probability distribution � � is a measure-valued quadratimap on H. (7.4)As indiated earlier, the position X and the asymptoti veloity or momentum P have distri-butions quadrati in  , namely � X(dx) = j (x)j2 and � P(dp) = j ~ (p)j2, respetively. Moreover,they are both measurable, basially beause suitable loal interations exist to establish appro-priate orrelations with the relevant marosopi variables. For example, in a bubble hambera partile following a de�nite path triggers a hain of reations that leads to the formation of(marosopi) bubbles along the path.The point we wish to make now, however, is simply this: the measurability of these quantitiesis not a onsequene of the fat that these quantities obey this measurability ondition. We em-phasize that this ondition is merely a neessary ondition for measurability, and not a suÆientone. While it does follow that if � satis�es this ondition there exists a disrete experiment thatis an approximate formal measurement of � (in the sense that the distribution of the result ofthe experiment is approximately � � ), this experiment need not provide a genuine measurementof � beause the interations required for its implementation need not exist and beause, even ifthey did, the result Z of the experiment might not be related to the quantity � in the right way,i.e, via (7.2).We now wish to illustrate the use of this ondition, �rst transforming it into a weaker butmore onvenient form. Note that any quadrati map � must satisfy� 1+ 2 + � 1� 2 = 2(� 1 + � 2)and thus if � is also positive we have the inequality� 1+ 2 � 2(� 1 + � 2): (7.5)Thus it follows from (7.4) that a quantity35� must fail to be measurable if it has a possible value (one with nonvanishingprobability or probability density) when the wave funtion of the system is  1 +  2that is neither a possible value when the wave funtion is  1 nor a possible valuewhen the wave funtion is  2. (7.6)(Here neither  1 nor  2 need be normalized.)35This onlusion is also a more or less diret onsequene of the linearity of the Shr�odinger evolution: If i 
 �0 7! 	i for all i, then P i 
�0 7!P	i. But, again, our purpose here has been mainly to illustrate theuse of the measurability ondition itself.
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7.2 The Nonmeasurability of Veloity, Wave Funtion and Determin-isti QuantitiesIt is an immediate onsequene of (7.6) that neither the veloity nor the wave funtion is mea-surable, the latter beause the value \ 1+ 2" is neither \ 1" nor \ 2," and the former beauseevery wave funtion  may be written as  =  1 +  2 where  1 is the real part of  and  2 is itimes the imaginary part of  , for both of whih the veloity (of whatever partile) is 0.Note that this is a very strong and, in a sense, surprising onlusion, in that it establishes theimpossibility of measuring what is, after all, a most basi dynamial variable for a deterministimehanial theory of partiles in motion. It should probably be regarded as even more surprisingthat the proof that the veloity|or wave funtion|is not measurable seems to rely almost onnothing, in e�et just on the linearity of the evolution of the wave funtion. However, one shouldnot overlook the ruial role of quantum equilibrium.We observe that the nonmeasurability of the wave funtion is related to the impossibility ofopying the wave funtion. (This question arises sometimes in the form, \Can one lone the wavefuntion?" [36, 78, 37℄.) Copying would be aomplished, for example, by an interation leading,for all  , from  
�0
�0 to  
 
�, but this is learly inompatible with unitarity. We wishhere merely to remark that the impossibility of loning an also be regarded as a onsequene ofthe nonmeasurability of the wave funtion. In fat, were loning possible one ould|by makingmany opies|measure the wave funtion by performing suitable measurements on the variousopies. After all, any wave funtion  is determined by h ;A i for suÆiently many observablesA and these expetation values an of ourse be omputed using a suÆiently large ensemble.By a deterministi quantity we mean any funtion � = f( ) of the wave funtion alone (whihthus does not inherit any irreduible randomness assoiated with the random on�gurationX). Itfollows easily from (7.6) that no (nontrivial) deterministi quantity is measurable.36 In partiular,the mean value h ;A i of an observable A (not a multiple of the identity) is not measurable|though it would be were it possible to opy the wave funtion, and it an be measured by anonlinear experiment, see Setion 7.4.7.3 Initial Values and Final ValuesMeasurement is a triky business. In partiular, one may wonder how, if it is not measurable, weare ever able to know the wave funtion of a system|whih in orthodox quantum theory oftenseems to be the only thing that we do know about it.In this regard, it is important to appreiate that we were onerned in the previous setiononly with initial values, with the wave funtion and the veloity prior to the measurement. Weshall now briey omment upon the measurability of �nal values, produed by the experiment.The nonmeasurability argument of Setion 7.2 does not over �nal values. This may beappreiated by noting that the ruial ingredient in the analysis involves a fundamental time-asymmetry: The probability distribution � of the result of an experiment is a quadrati fun-tional of the initial wave funtion  , not the �nal one|of whih it is not a funtional at all.Moreover, the �nal veloity an indeed be measured, by a momentum measurement as desribedin Setion 5.5. (That suh a measurement yields also the �nal veloity follows from the formulain footnote 29 for the asymptoti wave funtion.) And the �nal wave funtion an be measured36Note also that � � (d�) = Æ(�� f( ))d� seems manifestly nonquadrati in  (unless f is onstant).55



by an ideal measurement of any nondegenerate observable, and more generally by any strongformal measurement whose subspaes H� are one-dimensional, see Setion 3.5: If the outome is�, the �nal wave funtion is R� = R�PH� , whih is independent of the initial wave funtion (up to a salar multiple).We also wish to remark that this distintion between measurements of initial values andmeasurements of �nal values has no genuine signi�ane for passive measurements, that merelyreveal preexisting properties without in any way a�eting the measured system. However, quan-tum measurements are usually ative; for example, an ideal measurement transforms the wavefuntion of the system into an eigenstate of the measured observable. But passive or ative, ameasurement, by its very meaning, is onerned stritly speaking with properties of a systemjust before its performane, i.e., with initial values. At the same time, to the extent that anyproperty of a system is onveyed by a typial quantum \measurement," it is a property de�nedby a �nal value.For example, aording to orthodox quantum theory a position measurement on a partilewith a spread-out wave funtion, to the extent that it measures anything at all, measures the�nal position of the partile, reated by the measurement, rather than the initial position, whihis generally regarded as not existing prior to the measurement. And even in Bohmian mehanis,in whih suh a measurement may indeed reveal the initial position, whih|if the measurementis suitably performed|will agree with the �nal position, this measurement will still be ativesine the wave funtion of the system must be transformed by the measurement into one that isompatible with the sharper knowledge of the position that it provides, see Setion 2.1.7.4 Nonlinear Measurements and the Role of Prior InformationThe basi idea of measurement is prediated on initial ignorane. We think of a measurement ofa property of a system as onveying that property by a proedure that does not seriously dependupon the state of the system,37 any details of whih must after all be unknown prior to at leastsome engagement with the system. Be that as it may, the notion of measurement as odi�edby the quantum formalism is indeed rooted in a standpoint of ignorane: the experimentalproedures involved in the measurement do not depend upon the state of the measured system.And our entire disussion of measurement up to now has been based upon that very assumption,that E itself does not depend on  (and ertainly not on X).If, however, some prior information on the initial system wave funtion  were available, weould exploit this information to measure quantities that would otherwise fail to be measurable.For example, for a single-partile system, if we somehow knew its initial wave funtion  thena measurement of the initial position of the partile would onvey its initial veloity as well,via (7.3)|even though, as we have shown, this quantity isn't measurable without suh priorinformation.By a nonlinear measurement or experiment E = E  we mean one in whih, unlike thoseonsidered so far, one or more of the de�ning harateristis of the experiment depends upon  .37This statement must be taken with a grain of salt. Some things must be known about the system prior tomeasurement, for example, that it is in the viinity the measurement apparatus, or that an atom whose angularmomentum we wish to measure is moving towards the relevant Stern Gerlah magnets, as well as a host of similar,often unnotied, piees of information. This sort of thing does not muh matter for our purposes in this paperand an be safely ignored. Taking them into aount would introdue pointless ompliations without a�etingthe analysis in an essential way. 56



For example, in the measurement of the initial veloity desribed in the previous paragraph, thealibration funtion F = F  depends upon  .38 More generally we might have that U = U or�0 = � 0 .The wave funtion an of ourse be measured by a nonlinear measurement|just let F  �  .Somewhat less trivially, the initial wave funtion an be measured, at least formally, if it isknown to be a member of a given orthonormal basis, by measuring any nondegenerate observablewhose eigenvetors form that basis. The proposals of Aharonov, Anandan and Vaidman [1℄for measuring the wave funtion, though very interesting, are of this harater|they involvenonlinear measurements that depend upon a hoie of basis ontaining  |and thus remainontroversial.397.5 A Position Measurement that Does not Measure PositionWe began this setion by observing that what is spoken of as a measurement in quantum theoryneed not really measure anything. We mentioned, however, that in Bohmian mehanis theposition an be measured, and the experiment that aomplishes this would of ourse be ameasurement of the position operator. We wish here to point out, by means of a very simpleexample, that the onverse is not true, i.e., that a measurement of the position operator neednot be a measurement of the position.Consider the harmoni osillator in 2 dimensions with HamiltonianH = � ~22m� �2�x2 + �2�y2 � + !2m2 (x2 + y2) :Exept for an irrelevant time-dependent phase fator, the evolution  t is periodi, with period� = 2�=!. The Bohm motion of the partile, however, need not have period � . For example, the(n = 1; m = 1)-state, whih in polar oordinates is of the form t(r; �) = m!~p�re�m!2~ r2ei�e�i 32!t; (7.7)generates a irular motion of the partile around the origin with angular veloity ~=(mr2), andhene with periodiity depending upon the initial position of the partile|the loser to the origin,the faster the rotation. Thus, in general, X� 6= X0:Nonetheless, X� and X0 are identially distributed random variables, sine j � j2 = j 0j2 � j j2.We may now fous on two di�erent experiments: Let E be a measurement of the atualposition X0, the initial position, and hene of the position operator, and let E 0 be an experimentbeginning at the same time as E but in whih it is the position X� at time � that is atuallymeasured. Sine for all  the result of E 0 has the same distribution as the result of E , E 0 is also ameasurement of the position operator. But E 0 is not a measurement of the initial position sine38Suppose that Z1 = F1(QT ) = X is the result of the measurement of the initial position. Then F = G Æ F1where G (�) = ~m Imr  (�).39In one of their proposals the wave funtion is \proteted" by a proedure that depends upon the basis; inanother, involving adiabati interations,  must be a nondegenerate eigenstate of the Hamiltonian H of thesystem, but it is not neessary that the latter be known.57



the position at time � does not in general agree with the initial position: A measurement of theposition at time � is not a measurement of the position at time 0. Thus, while a measurementof position is always a measurement of the position operator,A measurement of the position operator is not neessarily a genuine measurement ofposition!7.6 Theory Dependene of MeasurementThe harmoni osillator example provides a simple illustration of an elementary point that isoften ignored: in disussions of measurement it is well to keep in mind the theory under onsid-eration. The theory we have been onsidering here has been Bohmian mehanis. If, instead,we were to analyze the harmoni osillator experiments desribed above using di�erent theoriesour onlusions about results of measurements would in general be rather di�erent, even if thedi�erent theories were empirially equivalent. So we shall analyze the above experiment E 0 interms of various other formulations or interpretations of quantum theory.In strit orthodox quantum theory there is no suh thing as a genuine partile, and thus thereis no suh thing as the genuine position of a partile. There is, however, a kind of operationalde�nition of position, in the sense of an experimental setup, where a measurement devie yieldsresults the statistis of whih are given by the position operator.In naive orthodox quantum theory one does speak loosely about a partile and its position,whih is thought of|in a somewhat unritial way|as being revealed by measuring the positionoperator. Any experiment that yields statistis given by the position operator is onsidered agenuine measurement of the partile's position.40 Thus E 0 would be onsidered as a measurementof the position of the partile at time zero.The deoherent (or onsistent) histories formulation of quantum mehanis [35, 65, 46℄ isonerned with the probabilities of ertain oarse-grained histories, given by the spei�ationof �nite sequenes of events, assoiated with projetion operators, together with their timesof ourrene. These probabilities are regarded as governing the ourrene of the histories,regardless of whether any of the events are measured or observed, but when they are observed,the probabilities of the observed histories are the same as those of the unobserved histories. Theexperiments E and E 0 are measurements of single-event histories orresponding to the positionof the partile at time 0 and at time � , respetively. Sine the Heisenberg position operatorsX̂� = X̂0 for the harmoni osillator, it happens to be the ase, aording to the deoherenthistories formulation of quantum mehanis, that for this system the position of the partile attime � is the same as its position at time 0 when the positions are unobserved, and that E 0 infat measures the position of the partile at time 0 (as well as the position at time �).The spontaneous loalization or dynamial redution models [38, 40℄ are versions of quantumtheory in whih there are no genuine partiles; in these theories reality is represented by thewave funtion alone (or, more aurately, by entities entirely determined by the wave funtion).In these models Shr�odinger's equation is modi�ed by the addition of a stohasti term thatauses the wave funtion to ollapse during measurement in a manner more or less onsistentwith the quantum formalism. In partiular, the performane of E or E 0 would lead to a randomollapse of the osillator wave funtion onto a narrow spatial region, whih might be spoken of40This, and the failure to appreiate the theory dependene of measurements, has been a soure of unfoundedritiisms of Bohmian mehanis(see [33, 24, 22℄). 58



as the position of the partile at the relevant time. But E 0 ould not be regarded in any sense asmeasuring the position at time 0, beause the loalization does not our for E 0 until time � .Finally we mention stohasti mehanis [64℄, a theory ontologially very similar to Bohmianmehanis in that the basi entities with whih it is onerned are partiles desribed by theirpositions. Unlike Bohmian mehanis, however, the positions evolve randomly, aording to adi�usion proess. Just as with Bohmian mehanis, for stohasti mehanis the experiment E 0is not a measurement of the position at time zero, but in ontrast to the situation in Bohmianmehanis, where the result of the position measurement at time � determines, given the wavefuntion, the position at time zero (via the Bohmian equation of motion), this is not so instohasti mehanis beause of the randomness of the motion.8 Hidden VariablesThe issue of hidden variables onerns the question of whether quantum randomness arises in aompletely ordinary manner, merely from the fat that in orthodox quantum theory we deal withan inomplete desription of a quantum system. Aording to the hidden-variables hypothesis,if we had at our disposal a suÆiently omplete desription of the system, provided by supple-mentary parameters traditionally alled hidden variables, the totality of whih is usually denotedby �, the behavior of the system would thereby be determined, as a funtion of � (and thewave funtion). In suh a hidden-variables theory, the randomness in results of measurementswould arise solely from randomness in the unknown variables �. On the basis of a variety of\impossibility theorems," the hidden-variables hypothesis has been widely regarded as havingbeen disredited.Note that Bohmian mehanis is just suh a hidden-variables theory, with the hidden variables� given by the on�guration Q of the total system. We have seen in partiular that in a Bohmianexperiment, the result Z is determined by the initial on�guration Q = (X; Y ) of the system andapparatus. Nonetheless, there remains muh onfusion about the relationship between Bohmianmehanis and the various theorems supposedly establishing the impossibility of hidden variables.In this setion we wish to make several omments on this matter.8.1 Experiments and Random VariablesIn Bohmian mehanis we understand very naturally how random variables arise in assoiationwith experiments: the initial omplete state (Q;	) of system and apparatus evolves deterministi-ally and uniquely determines the outome of the experiment; however, as the initial on�gurationQ is in quantum equilibrium, the outome of the experiment is random.A general experiment E is then always assoiated a random variable (RV) Z desribing itsresult. In other words, aording to Bohmian mehanis, there is a natural assoiationE 7! Z; (8.8)between experiments and RVs. Moreover, whenever the statistis of the result of E is governedby a self-adjoint operator A on the Hilbert spae of the system, with the spetral measure ofA determining the distribution of Z, for whih we shall write Z 7! A (see (2.37)), Bohmianmehanis establishes thereby a natural assoiation between E and AE 7! A: (8.9)59



While for Bohmian mehanis the result Z depends in general on both X and Y , the initialon�gurations of the system and of the apparatus, for many real-world experiments Z dependsonly on X and the randomness in the result of the experiment is thus due solely to randomness inthe initial on�guration of the system alone. This is most obvious in the ase of genuine positionmeasurements (for whih Z(X; Y ) = X). That in fat the apparatus need not introdue any extrarandomness for many other real-world experiments as well follows then from the observation thatthe role of the apparatus in many real-world experiments is to provide suitable bakground �elds,whih introdue no randomness, as well as a �nal detetion, a measurement of the atual positionsof the partiles of the system. In partiular, this is the ase for those experiments most relevantto the issue of hidden variables, suh as Stern-Gerlah measurements of spin, as well as formomentum measurements and more generally sattering experiments, whih are ompleted by a�nal detetion of position.The result of these experiments is then given by a random variableZ = F (XT ) = G(X) ;where T is the �nal time of the experiment,41 on the probability spae f
;Pg, where 
 = fXgis the set of initial on�gurations of the system and P(dx) = j j2dx is the quantum equilibriumdistribution assoiated with the initial wave funtion  of the system. For these experiments(see Setion 5.4) the distribution of Z is always governed by a PVM, orresponding to someself-adjoint operator A, Z 7! A, and thus Bohmian mehanis provides in these ases a naturalmap E 7! A.8.2 Random Variables, Operators, and the Impossibility TheoremsWe would like to briey review the status of the so-alled impossibility theorems for hiddenvariables, the most famous of whih are due to von Neumann [74℄, Gleason [41℄, Kohen andSpeker [53℄, and Bell [5℄. Sine Bohmian mehanis exists, these theorems an't possibly estab-lish the impossibility of hidden variables, the widespread belief to the ontrary notwithstanding.What these theorems do establish, in great generality, is that there is no \good" map fromself-adjoint operators on a Hilbert spae H to random variables on a ommon probability spae,A 7! Z � ZA ; (8.10)where ZA = ZA(�) should be thought of as the result of \measuring A" when the hidden variables,that omplete the quantum desription and restore determinism, have value �. Di�erent sensesof \good" orrespond to di�erent impossibility theorems.For any partiular hoie of �, say �0, the map (8.10) is transformed to a value mapA 7! v(A) (8.11)41Conerning the most ommon of all real-world quantum experiments, sattering experiments, although theyare ompleted by a �nal detetion of position, this detetion usually ours, not at a de�nite time T , but at arandom time, for example when a partile enters a loalized detetor. Nonetheless, for omputational purposesthe �nal detetion an be regarded as taking plae at a de�nite time T . This is a onsequene of the ux-aross-surfaes theorem [19, 26, 27℄, whih establishes an asymptoti equivalene between ux aross surfaes (detetionat a random time) and sattering into ones (detetion at a de�nite time).60



from self-adjoint operators to real numbers (with v(A) = ZA(�0)). The stronger impossibilitytheorems establish the impossibility of a good value map, again with di�erent senses of \good"orresponding to di�erent theorems.Note that suh theorems are not very surprising. One would not expet there to be a \good"map from a nonommutative algebra to a ommutative one.One of von Neumann's assumptions was, in e�et, that the map (8.10) be linear. Whilemathematially natural, this assumption is physially rather unreasonable and in any ase isentirely unneessary. In order to establish that there is no good map (8.10), it is suÆient torequire that the map be good in the minimal sense that the following agreement ondition issatis�ed:Whenever the quantum mehanial joint distribution of a set of self-adjoint opera-tors (A1; : : : ; Am) exists, i.e., when they form a ommuting family, the joint distribu-tion of the orresponding set of random variables, i.e., of (ZA1; : : : ; ZAm), agrees withthe quantum mehanial joint distribution.The agreement ondition implies that all deterministi relationships among ommuting ob-servables must be obeyed by the orresponding random variables. For example, if A, B and Cform a ommuting family and C = AB, then we must have that ZC = ZAZB sine the jointdistribution of ZA, ZB and ZC must assign probability 0 to the set f(a; b; ) 2 R3 j 6= abg.This leads to a minimal ondition for a good value map A 7! v(A), namely that it preservefuntional relationships among ommuting observables: For any ommuting family A1; : : : ; Am,whenever f(A1; : : : ; Am) = 0 (where f : Rm ! R represents a linear, multipliative, or anyother relationship among the Ai's), the orresponding values must satisfy the same relationship,f(v(A1); : : : ; v(Am)) = 0.The various impossibility theorems orretly demonstrate that there are no maps, from self-adjoint operators to random variables or to values, that are good, merely in the minimal sensesdesribed above.42We note that while the original proofs of the impossibility of a good value map, in partiularthat of the Kohen-Speker theorem, were quite involved, in more reent years drastially simplerproofs have been found (for example, by Peres [67℄, by Greenberg, Horne, and Zeilinger [45℄, andby Mermin [62℄).In essene, one establishes the impossibility of a good map A 7! ZA or A 7! v(A) by show-ing that the v(A)'s, or ZA's, would have to satisfy impossible relationships. These impossiblerelationships are very muh like the following: ZA = ZB = ZC 6= ZA. However no impossiblerelationship an arise for only three quantum observables, sine they would have to form a om-muting family, for whih quantum mehanis would supply a joint probability distribution. Thusthe quantum relationships an't possibly lead to an inonsisteny for the values of the randomvariables in this ase.With four observables A;B;C, and D it may easily happen that [A;B℄ = 0, [B;C℄ = 0,[C;D℄ = 0, and [D;A℄ = 0 even though they don't form a ommuting family (beause, say,[A;C℄ 6= 0). It turns out, in fat, that four observables suÆe for the derivation of impossible42Another natural sense of good map A 7! v(A) is given by the requirement that v(A) 2 sp (A), whereA = (A1; : : : ; Am) is a ommuting family, v(A) = (v(A1); : : : ; v(Am)) 2 Rm and sp (A) is the joint spetrum ofthe family. That a map good in this sense is impossible follows from the fat that if � = (�1; : : : �m) 2 sp (A),then �1; : : : �m must obey all funtional relationships for A1; : : : ; Am.61



quantum relationships. Perhaps the simplest example of this sort is due to Hardy [48℄, whoshowed that for almost every quantum state for two spin 1/2 partiles there are four observablesA;B;C, and D (two of whih happen to be spin omponents for one of the partiles whilethe other two are spin omponents for the other partile) whose quantum mehanial pair-wisedistributions for ommuting pairs are suh that a good map to random variables must yieldrandom variables ZA; ZB; ZC , and ZD obeying the following relationships:(1) The event fZA = 1 and ZB = 1g has positive probability (with an optimal hoie of thequantum state, about :09).(2) If fZA = 1g then fZD = 1g.(3) If fZB = 1g then fZC = 1g.(4) The event fZD = 1 and ZC = 1g has probability 0.Clearly, there exist no suh random variables.The point we wish to emphasize here, however, is that although they are orret and althoughtheir hypotheses may seem minimal, these theorems are nonetheless far less relevant to thepossibility of a deterministi ompletion of quantum theory than one might imagine. In thenext subsetion we will elaborate on how that an be so. We shall explain why we believe suhtheorems have little physial signi�ane for the issues of determinism and hidden variables. Wewill separately omment later in this setion on Bell's related nonloality analysis [5℄, whih doeshave profound physial impliations.8.3 ContextualityIt is a simple fat there an be no map A 7! ZA, from self-adjoint operators onH (with dim (H) �3) to random variables on a ommon probability spae, that is good in the minimal sense that thejoint probability distributions for the random variables agree with the orresponding quantummehanial distributions, whenever the latter ones are de�ned. But does not Bohmian mehanisyield preisely suh a map? After all, have we not emphasized how Bohmian mehanis naturallyassoiates with any experiment a random variable Z giving its result, in a manner that is inomplete agreement with the quantum mehanial preditions for the result of the experiment?Given a quantum observable A, let ZA be then the result of a measurement of A. What gives?Before presenting what we believe to be the orret response, we mention some possible re-sponses that are o�-target. It might be objeted that measurements of di�erent observables willinvolve di�erent apparatuses and hene di�erent probability spaes. However, one an simul-taneously embed all the relevant probability spaes into a huge ommon probability spae. Itmight also be objeted that not all self-adjoint operators an be realistially be measured. Butto arrive at inonsisteny one need onsider, as mentioned in the last subsetion, only 4 observ-ables, eah of whih are spin omponents and are thus ertainly measurable, via Stern-Gerlahexperiments. Thus, in fat, no enlargement of probability spaes need be onsidered to arrive ata ontradition, sine as we emphasized at the end of Setion 8.1, the random variables giving theresults of Stern-Gerlah experiments are funtions of initial partile positions, so that for jointmeasurements of pairs of spin omponents for 2-partiles the orresponding results are randomvariables on the ommon probability spae of initial on�gurations of the 2 partiles, equippedwith the quantum equilibrium distribution determined by the initial wave funtion.62



There must be a mistake. But where ould it be? The mistake ours, in fat, so early that itis diÆult to notie it. It ours at square one. The diÆulty lies not so muh in any onditionson the map A 7! ZA, but in the onlusion that Bohmian mehanis supplies suh a map at all.What Bohmian mehanis naturally supplies is a map E 7! ZE , from experiments to randomvariables. When ZE 7! A, so that we speak of E as a measurement of A (E 7! A), this verylanguage suggests that insofar as the random variable is onerned all that matters is that Emeasures A, and the map E 7! ZE beomes a map A 7! ZA. After all, if E were a genuinemeasurement of A, revealing, that is, the preexisting (i.e., prior to the experiment) value of theobservable A, then Z would have to agree with that value and hene would be an unambiguousrandom variable depending only on A.But this sort of argument makes sense only if we take the quantum talk of operators asobservables too seriously. We have emphasized in this paper that operators do naturally arise inassoiation with quantum experiments. But there is little if anything in this assoiation, beyondthe unfortunate language that is usually used to desribe it, that supports the notion that theoperator A assoiated with an experiment E is in any meaningful way genuinely measured bythe experiment. From the nature of the assoiation itself, it is diÆult to imagine what thisould possibly mean. And for those who think they imagine some meaning in this talk, theimpossibility theorems show they are mistaken.The bottom line is this: in Bohmian mehanis the random variables ZE giving the results ofexperiments E depend, of ourse, on the experiment, and there is no reason that this should notbe the ase when the experiments under onsideration happen to be assoiated with the sameoperator. Thus with any self-adjoint operator A, Bohmian mehanis naturally may assoiatemany di�erent random variables ZE , one for eah di�erent experiment E 7! A assoiated withA. A ruial point here is that the map E 7! A is many-to-one.43Suppose we de�ne a map A 7! ZA by seleting, for eah A, one of the experiments, allit E A, with whih A is assoiated, and de�ne ZA to be ZE A. Then the map so de�ned an'tbe good, beause of the impossibility theorems; moreover there is no reason to have expetedthe map to be good. Suppose, for example, that [A;B℄ = 0. Should we expet that the jointdistribution of ZA and ZB will agree with the joint quantum mehanial distribution of A andB? Only if the experiments E A and E B used to de�ne ZA and ZB both involved a ommonexperiment that \simultaneously measures A and B," i.e., an experiment that is assoiated withthe ommuting family (A;B). If we onsider now a third operator C suh that [A;C℄ = 0, but[B;C℄ 6= 0, then there is no hoie of experiment E that would permit the de�nition of a randomvariable ZA relevant both to a \simultaneous measurement of A and B" and a \simultaneousmeasurement of A and C" sine no experiment is a \simultaneous measurement of A, B, andC." In the situation just desribed we must onsider at least two random variables assoiatedwith A, ZA;B and ZA;C, depending upon whether we are onsidering an experiment \measuringA and B" or an experiment \measuring A and C." It should be lear that when the randomvariables are assigned to experiments in this way, the possibility of onit with the preditionsof orthodox quantum theory is eliminated. It should also be lear, in view of what we have43We wish to remark that, quite aside from this many-to-oneness, the random variables ZE annot generally beregarded as orresponding to any sort of natural property of the \measured" system. ZE , in general a funtionof the initial on�guration of the system-apparatus omposite, may fail to be a funtion of the on�guration ofthe system alone. And even when, as is often the ase, ZE does depend only on the initial on�guration of thesystem, owing to haoti dynamis this dependene ould have an extremely omplex harater.63



repeatedly stressed, that quite aside from the impossibility theorems, this way of assoiatingrandom variables with experiments is preisely what emerges in Bohmian mehanis.The dependene of the result of a \measurement of the observable A" upon the other ob-servables, if any, that are \measured simultaneously together with A"|e.g., that ZA;B and ZA;Cmay be di�erent|is alled ontextuality : the result of an experiment depends not just on \whatobservable the experiment measures" but on more detailed information that onveys the \on-text" of the experiment. The essential idea, however, if we avoid misleading language, is rathertrivial: that the result of an experiment depends on the experiment.To underline this triviality we remark that for two experiments, E and E 0, that \measureA and only A" and involve no simultaneous \measurement of another observable," the resultsZE and ZE 0 may disagree. For example in Setion 7.5 we desribed experiments E and E 0 bothof whih \measured the position operator" but only one of whih measured the atual initialposition of the relevant partile, so that for these experiments in general ZE 6= ZE 0 .One might feel, however, that in the example just desribed the experiment that does notmeasure the atual position is somewhat disreputable|even though it is in fat a \measurementof the position operator." We shall therefore give another example, due to D. Albert [2℄, in whihthe experiments are as simple and anonial as possible and are entirely on the same footing.Let E " and E # be Stern-Gerlah measurements of A = �z, with E # di�ering from E " only in thatthe polarity of the Stern-Gerlah magnet for E # is the reverse of that for E ". (In partiular, thegeometry of the magnets for E " and E # is the same.) If the initial wave funtion  symm and themagneti �eld �B have suÆient reetion symmetry with respet to a plane between the polesof the Stern-Gerlah magnets, the partile whose spin omponent is being \measured" annotross this plane of symmetry, so that if the partile is initially above, respetively below, thesymmetry plane, it will remain above, respetively below, that plane. But beause their magnetshave opposite polarity, E " and E # involve opposite alibrations: F" = �F#. It follows thatZ symmE " = �Z symmE #and the two experiments ompletely disagree about the \value of �z" in this ase.The essential point illustrated by the previous example is that instead of having in Bohmianmehanis a natural assoiation �z 7! Z�z , we have a rather di�erent pattern of relationships,given in the example by E " ! ZE "E # ! ZE # &% �z;8.4 Against \Contextuality"The impossibility theorems require the assumption of nonontextuality, that the random variableZ giving the result of a \measurement of quantum observable A" should depend on A alone,further experimental details being irrelevant. How big a deal is ontextuality, the violation ofthis assumption? Here are two ways of desribing the situation:1. In quantum mehanis (or quantum mehanis supplemented with hidden variables), ob-servables and properties have a novel, highly nonlassial aspet: they (or the result ofmeasuring them) depend upon whih other ompatible properties, if any, are measuredtogether with them.In this spirit, Bohm and Hiley [16℄ write that (page 109)64



the quantum properties imply . . . that measured properties are not intrinsi butare inseparably related to the apparatus. It follows that the ustomary languagethat attributes the results of measurements . . . to the observed system alone anause onfusion, unless it is understood that these properties are atually depen-dent on the total relevant ontext.They later add that (page 122)The ontext dependene of results of measurements is a further indiation ofhow our interpretation does not imply a simple return to the basi priniplesof lassial physis. It also embodies, in a ertain sense, Bohr's notion of theindivisibility of the ombined system of observing apparatus and observed objet.2. The result of an experiment depends upon the experiment. Or, as expressed by Bell [10℄(pg.166),A �nal moral onerns terminology. Why did suh serious people take so seri-ously axioms whih now seem so arbitrary? I suspet that they were misled bythe perniious misuse of the word `measurement' in ontemporary theory. Thisword very strongly suggests the asertaining of some preexisting property of something, any instrument involved playing a purely passive role. Quantum exper-iments are just not like that, as we learned espeially from Bohr. The resultshave to be regarded as the joint produt of `system' and `apparatus,' the om-plete experimental set-up. But the misuse of the word `measurement' makes iteasy to forget this and then to expet that the `results of measurements' shouldobey some simple logi in whih the apparatus is not mentioned. The resultingdiÆulties soon show that any suh logi is not ordinary logi. It is my impres-sion that the whole vast subjet of `Quantum Logi' has arisen in this way fromthe misuse of a word. I am onvined that the word `measurement' has nowbeen so abused that the �eld would be signi�antly advaned by banning its usealtogether, in favour for example of the word `experiment.'With one aveat, we entirely agree with Bell's observation. The aveat is this: We do notbelieve that the di�erene between quantum mehanis and lassial mehanis is quite as ruialfor Bell's moral as his language suggests it is. For any experiment, quantum or lassial, it wouldbe a mistake to regard any instrument involved as playing a purely passive role, unless theexperiment is a genuine measurement of a property of a system, in whih ase the result isdetermined by the initial onditions of the system alone. However, a relevant di�erene betweenlassial and quantum theory remains: Classially it is usually taken for granted that it is inpriniple possible to measure any observable without seriously a�eting the observed system,whih is learly false in quantum mehanis (or Bohmian mehanis).44Mermin has raised a similar question [62℄ (pg. 811):Is nonontextuality, as Bell seemed to suggest, as silly a ondition as von Neu-mann's . . . ?To this he answers:44The assumption ould (and probably should) also be questioned lassially.
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I would not haraterize the assumption of nonontextuality as a silly onstraint ona hidden-variables theory. It is surely an important fat that the impossibility ofembedding quantum mehanis in a nonontextual hidden-variables theory rests notonly on Bohr's dotrine of the inseparability of the objets and the measuring instru-ments, but also on a straightforward ontradition, independent of one's philosophipoint of view, between some quantitative onsequenes of nonontextuality and thequantitative preditions of quantum mehanis.This is a somewhat strange answer. First of all, it applies to von Neumann's assumption (lin-earity), whih Mermin seems to agree is silly, as well as to the assumption of nonontextuality.And the statement has a rather question-begging avor, sine the importane of the fat towhih Mermin refers would seem to depend on the nonsilliness of the assumption whih the fatonerns.Be that as it may, Mermin immediately supplies his real argument for the nonsilliness ofnonontextuality. Conerning two experiments for \measuring observable A," he writes thatit is . . . an elementary theorem of quantum mehanis that the joint distribution . . .for the �rst experiment yields preisely the same marginal distribution (for A) asdoes the joint distribution . . . for the seond, in spite of the di�erent experimentalarrangements. . . . The obvious way to aount for this, partiularly when entertainingthe possibility of a hidden-variables theory, is to propose that both experiments reveala set of values for A in the individual systems that is the same, regardless of whihexperiment we hoose to extrat them from. . . . A ontextual hidden-variables aountof this fat would be as mysteriously silent as the quantum theory on the question ofwhy nature should onspire to arrange for the marginal distributions to be the samefor the two di�erent experimental arrangements.A bit later, Mermin refers to the \striking insensitivity of the distribution to hanges in theexperimental arrangement."For Mermin there is a mystery, something that demands an explanation. It seems to us,however, that the mystery here is very muh in the eye of the beholder. It is �rst of all somewhatodd that Mermin speaks of the mysterious silene of quantum theory onerning a question whoseanswer, in fat, emerges as an \elementary theorem of quantum mehanis." What better wayis there to answer questions about nature than to appeal to our best physial theories?More importantly, the \two di�erent experimental arrangements," say E 1 and E 2, onsideredby Mermin are not merely any two randomly hosen experimental arrangements. They obviouslymust have something in ommon. This is that they are both assoiated with the same self-adjointoperator A in the manner we have desribed: E 1 7! A and E 2 7! A. It is quite standard to say inthis situation that both E 1 and E 2 measure the observable A, but both for Bohmian mehanisand for orthodox quantum theory the very meaning of the assoiation with the operator A ismerely that the distribution of the result of the experiment is given by the spetral measuresfor A. Thus there is no mystery in the fat that E 1 and E 2 have results governed by the samedistribution, sine, when all is said and done, it is on this basis, and this basis alone, that we areomparing them.(One might wonder how it ould be possible that there are two di�erent experiments that arerelated in this way. This is a somewhat tehnial question, rather di�erent from Mermin's, and itis one that Bohmian mehanis and quantum mehanis readily answer, as we have explained inthis paper. In this regard it would probably be good to reet further on the simplest example ofsuh experiments, the Stern-Gerlah experiments E " and E # disussed in the previous subsetion.)66



It is also diÆult to see how Mermin's proposed resolution of the mystery, \that both experi-ments reveal a set of values for A . . . that is the same, regardless of whih experiment we hooseto extrat them from," ould do muh good. He is faed with a ertain pattern of results in twoexperiments that would be explained if the experiments did in fat genuinely measure the samething. The experiments, however, as far as any detailed quantum mehanial analysis of themis onerned, don't appear to be genuine measurements of anything at all. He then suggeststhat the mystery would be resolved if, indeed, the experiments did measure the same thing, theanalysis to the ontrary notwithstanding. But this proposal merely replaes the original mysterywith a bigger one, namely, of how the experiments ould in fat be understood as measuring thesame thing, or anything at all for that matter. It is like explaining the mystery of a talking atby saying that the at is in fat a human being, appearanes to the ontrary notwithstanding.A �nal omplaint about ontextuality: the terminology is misleading. It fails to onvey withsuÆient fore the rather de�nitive harater of what it entails: \Properties" that are merelyontextual are not properties at all; they do not exist, and their failure to do so is in the strongestsense possible!8.5 Nonloality, Contextuality and Hidden VariablesThere is, however, a situation where ontextuality is physially relevant. Consider the EPRBexperiment, outlined at the end of Setion 3.6. In this ase the dependene of the result of ameasurement of the spin omponent �1 � a of a partile upon whih spin omponent of a distantpartile is measured together with it|the di�erene between Z�1�a; �2�b and Z�1�a; �2� (using thenotation desribed in the seventh paragraph of Setion 8.3)|is an expression of nonloality, of,in Einstein words, a \spooky ation at distane." More generally, whenever the relevant ontextis distant, ontextuality implies nonloality.Nonloality is an essential feature of Bohmian mehanis: the veloity, as expressed in theguiding equation (2.2), of any one of the partiles of a many-partile system will typially dependupon the positions of the other, possibly distant, partiles whenever the wave funtion of thesystem is entangled, i.e., not a produt of single-partile wave funtions. In partiular, this istrue for the EPRB experiment under examination. Consider the extension of the single partileHamiltonian (2.12) to the two-partile ase, namelyH = � ~22m1r21 � ~22m2r22 � �1�1�B(x1)� �2�2�B(x2):Then for initial singlet state, and spin measurements as desribed in Setions 2.5 and 5.2, iteasily follows from the laws of motion of Bohmian mehanis thatZ�1�a; �2�b 6= Z�1�a; �2� :This was observed long ago by Bell [6℄. In fat, Bell's examination of Bohmian mehanisled him to his elebrated nonloality analysis. In the ourse of his investigation of Bohmianmehanis he observed that ([10℄, p. 11)in this theory an expliit ausal mehanism exists whereby the disposition of one pieeof apparatus a�ets the results obtained with a distant piee.67



Bohm of ourse was well aware of these features of his sheme, and has given themmuh attention. However, it must be stressed that, to the present writer's knowledge,there is no proof that any hidden variable aount of quantum mehanis must havethis extraordinary harater. It would therefore be interesting, perhaps, to pursuesome further \impossibility proofs," replaing the arbitrary axioms objeted to aboveby some ondition of loality, or of separability of distant systems.In a footnote, Bell added that \Sine the ompletion of this paper suh a proof has been found."This proof was published in his 1964 paper [5℄, "On the Einstein-Podolsky-Rosen Paradox," inwhih he derives Bell's inequality, the basis of his onlusion of quantum nonloality.We �nd it worthwhile to reprodue here the analysis of Bell, deriving a simple inequalityequivalent to Bell's, in order to highlight the oneptual signi�ane of Bell's analysis and, atthe same time, its mathematial triviality. The analysis involves two parts. The �rst part, theEinstein-Podolsky-Rosen argument applied to the EPRB experiment, amounts to the observationthat for the singlet state the assumption of loality implies the existene of nonontextual hiddenvariables. More preisely, it implies, for the singlet state, the existene of random variablesZi� = Z���i , i = 1; 2, orresponding to all possible spin omponents of the two partiles, thatobey the agreement ondition desribed in Setion 8.2. In partiular, fousing on omponents inonly 3 diretions a, b and  for eah partile, loality implies the existene of 6 random variablesZi� i = 1; 2 � = a; b; suh that Zi� = �1 (8.12)Z1� = �Z2� (8.13)and, more generally, Prob(Z1� 6= Z2�) = q��; (8.14)the orresponding quantum mehanial probabilities. This onlusion amounts to the idea thatmeasurements of the spin omponents reveal preexisting values (the Zi�), whih, assuming loality,is implied by the perfet quantum mehanial antiorrelations [5℄:Now we make the hypothesis, and it seems one at least worth onsidering, that if thetwo measurements are made at plaes remote from one another the orientation of onemagnet does not inuene the result obtained with the other. Sine we an predit inadvane the result of measuring any hosen omponent of �2, by previously measuringthe same omponent of �1, it follows that the result of any suh measurement mustatually be predetermined.People very often fail to appreiate that the existene of suh variables, given loality, is notan assumption but a onsequene of Bell's analysis. Bell repeatedly stressed this point (bydeterminism Bell here means the existene of hidden variables):It is important to note that to the limited degree to whih determinism plays arole in the EPR argument, it is not assumed but inferred. What is held sared is thepriniple of `loal ausality' { or `no ation at a distane'. . . .It is remarkably diÆult to get this point aross, that determinism is not a pre-supposition of the analysis. ([10℄, p. 143)Despite my insistene that the determinism was inferred rather than assumed, youmight still suspet somehow that it is a preoupation with determinism that reates68



the problem. Note well then that the following argument makes no mention whateverof determinism. . . . Finally you might suspet that the very notion of partile, andpartile orbit . . . has somehow led us astray. . . . So the following argument willnot mention partiles, nor indeed �elds, nor any other partiular piture of whatgoes on at the mirosopi level. Nor will it involve any use of the words `quantummehanial system', whih an have an unfortunate e�et on the disussion. ThediÆulty is not reated by any suh piture or any suh terminology. It is reatedby the preditions about the orrelations in the visible outputs of ertain oneivableexperimental set-ups. ([10℄, p. 150)The seond part of the analysis, whih unfolds the \diÆulty . . . reated by the . . . orrela-tions," involves only very elementary mathematis. Clearly,Prob �fZ1a = Z1bg [ fZ1b = Z1g [ fZ1 = Z1ag� = 1 :sine at least two of the three (2-valued) variables Z1� must have the same value. Hene, byelementary probability theory,Prob �Z1a = Z1b�+ Prob �Z1b = Z1�+ Prob �Z1 = Z1a� � 1;and using the perfet antiorrelations (8.13) we have thatProb �Z1a = �Z2b�+ Prob �Z1b = �Z2�+ Prob �Z1 = �Z2a� � 1; (8.15)whih is equivalent to Bell's inequality and in onit with (8.14). For example, when the anglesbetween a, b and  are 1200 the 3 relevant quantum orrelations q�� are all 1=4.To summarize the argument, let H be the hypothesis of the existene of the nonontextualhidden variables we have desribed above. Then the logi of the argument is:Part 1: quantum mehanis + loality ) H (8.16)Part 2: quantum mehanis ) not H (8.17)Conlusion: quantum mehanis ) not loality (8.18)To fully grasp the argument it is important to appreiate that the identity of H|the existeneof the nonontextual hidden variables|is of little substantive importane. What is important isnot so muh the identity of H as the fat that H is inompatible with the preditions of quantumtheory. The identity of H is, however, of great historial signi�ane: It is responsible for themisoneption that Bell proved that hidden variables are impossible, a belief shared until reentlyby most physiists.Suh a misoneption has not been the only reation to Bell's analysis. Roughly speaking,we may group the di�erent reations into three main ategories, summarized by the followingstatements:1. Hidden variables are impossible.2. Hidden variables are possible, but they must be ontextual.3. Hidden variables are possible, but they must be nonloal.69



Statement 1 is plainly wrong. Statement 2 is orret but not terribly signi�ant. Statement 3is orret, signi�ant, but nonetheless rather misleading. It follow from (8.16) and (8.17) thatany aount of quantum phenomena must be nonloal, not just any hidden variables aount.Bell's argument shows that nonloality is implied by the preditions of standard quantum theoryitself. Thus if nature is governed by these preditions, then nature is nonloal. (That nature isso governed, even in the ruial EPR-orrelation experiments, has by now been established by agreat many experiments, the most onlusive of whih is perhaps that of Aspet [4℄.)9 Against Naive Realism About OperatorsTraditional naive realism is the view that the world is pretty muh the way it seems, populated byobjets whih fore themselves upon our attention as, and whih in fat are, the lous of sensualqualities. A naive realist regards these \seondary qualities," for example olor, as objetive,as out there in the world, muh as pereived. A deisive diÆulty with this view is that onewe understand, say, how our pereption of what we all olor arises, in terms of the interationof light with matter, and the proessing of the light by the eye, and so on, we realize that thepresene out there of olor per se would play no role whatsoever in these proesses, that is, inour understanding what is relevant to our pereption of \olor." At the same time, we may alsoome to realize that there is, in the desription of an objet provided by the sienti� world-view,as represented say by lassial physis, nothing whih is genuinely \olor-like."A basi problem with quantum theory, more fundamental than the measurement problemand all the rest, is a naive realism about operators, a fallay whih we believe is far more seriousthan traditional naive realism: With the latter we are deluded partly by language but in themain by our senses, in a manner whih an sarely be avoided without a good deal of sienti�or philosophial sophistiation; with the former we are sedued by language alone, to aept aview whih an sarely be taken seriously without a large measure of (what often passes for)sophistiation.Not many physiists|or for that matter philosophers|have foused on the issue of naiverealism about operators, but Shr�odinger and Bell have expressed similar or related onerns:. . . the new theory [quantum theory℄ . . . onsiders the [lassial℄ model suitable forguiding us as to just whih measurements an in priniple be made on the relevantnatural objet. . . .Would it not be pre-established harmony of a peuliar sort if thelassial-epoh researhers, those who, as we hear today, had no idea of what measur-ing truly is, had unwittingly gone on to give us as legay a guidane sheme revealingjust what is fundamentally measurable for instane about a hydrogen atom!? [72℄Here are some words whih, however legitimate and neessary in appliation, have noplae in a formulation with any pretension to physial preision: system; apparatus;environment; mirosopi, marosopi; reversible, irreversible; observable; informa-tion; measurement.. . . The notions of \mirosopi" and \marosopi" defy preise de�nition.. . . Einstein said that it is theory whih deides what is \observable". I think hewas right. . . . \observation" is a ompliated and theory-laden business. Then thatnotion should not appear in the formulation of fundamental theory. . . .On this list of bad words from good books, the worst of all is \measurement". Itmust have a setion to itself. [11℄ 70



We agree almost entirely with Bell here. We insist, however, that \observable" is just as badas \measurement," maybe even a little worse. Be that as it may, after listing Dira's measurementpostulates Bell ontinues:It would seem that the theory is exlusively onerned about \results of measure-ment", and has nothing to say about anything else. What exatly quali�es somephysial systems to play the role of \measurer"? Was the wave funtion of the worldwaiting to jump for thousands of millions of years until a single-elled living reatureappeared? Or did it have to wait a little longer, for some better quali�ed system. . . with a Ph.D.? If the theory is to apply to anything but highly idealized labora-tory operations, are we not obliged to admit that more or less \measurement-like"proesses are going on more or less all the time, more or less everywhere. Do we nothave jumping then all the time?The �rst harge against \measurement", in the fundamental axioms of quantummehanis, is that it anhors the shifty split of the world into \system" and \appa-ratus". A seond harge is that the word omes loaded with meaning from everydaylife, meaning whih is entirely inappropriate in the quantum ontext. When it is saidthat something is \measured" it is diÆult not to think of the result as referring tosome preexisting property of the objet in question. This is to disregard Bohr's insis-tene that in quantum phenomena the apparatus as well as the system is essentiallyinvolved. If it were not so, how ould we understand, for example, that \measure-ment" of a omponent of \angular momentum" . . . in an arbitrarily hosen diretion. . . yields one of a disrete set of values? When one forgets the role of the appara-tus, as the word \measurement" makes all too likely, one despairs of ordinary logi. . . hene \quantum logi". When one remembers the role of the apparatus, ordinarylogi is just �ne.In other ontexts, physiists have been able to take words from ordinary languageand use them as tehnial terms with no great harm done. Take for example the\strangeness", \harm", and \beauty" of elementary partile physis. No one istaken in by this \baby talk". . . .Would that it were so with \measurement". But infat the word has had suh a damaging e�et on the disussion, that I think it shouldnow be banned altogether in quantum mehanis. (Ibid.)While Bell fouses diretly here on the misuse of the word \measurement" rather than onthat of \observable," it is worth noting that the abuse of \measurement" is in a sense inseparablefrom that of \observable," i.e., from naive realism about operators. After all, one would not bevery likely to speak of measurement unless one thought that something, some \observable" thatis, was somehow there to be measured.Operationalism, so often used without a full appreiation of its onsequenes, may lead manyphysiists to beliefs whih are the opposite of what one might expet. Namely, by believingsomehow that a physial property is and must be de�ned by an operational de�nition, manyphysiists ome to regard properties suh as spin and polarization, whih an easily be opera-tionally de�ned, as intrinsi properties of the system itself, the eletron or photon, despite all thediÆulties that this entails. If operational de�nitions were banished, and \real de�nitions" wererequired, there would be far less reason to regard these \properties" as intrinsi, sine they arenot de�ned in any sort of intrinsi way; in short, we have no idea what they really mean, andthere is no reason to think they mean anything beyond the behavior exhibited by the system ininteration with an apparatus.There are two primary soures of onfusion, mystery and inoherene in the foundations ofquantum mehanis: the insistene on the ompleteness of the desription provided by the wave71
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