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tBohmian me
hani
s is arguably the most naively obvious embedding imaginable ofS
hr�odinger's equation into a 
ompletely 
oherent physi
al theory. It des
ribes a world inwhi
h parti
les move in a highly non-Newtonian sort of way, one whi
h may at �rst appearto have little to do with the spe
trum of predi
tions of quantum me
hani
s. It turns out,however, that as a 
onsequen
e of the de�ning dynami
al equations of Bohmian me
hani
s,when a system has wave fun
tion  its 
on�guration is typi
ally random, with probabilitydensity � given by j j2, the quantum equilibrium distribution. It also turns out that theentire quantum formalism, operators as observables and all the rest, naturally emerges inBohmian me
hani
s from the analysis of \measurements." This analysis reveals the statusof operators as observables in the des
ription of quantum phenomena, and fa
ilitates a 
learview of the range of appli
ability of the usual quantum me
hani
al formulas.�Dedi
ated to Elliott Lieb on the o

asion of his 70th birthday. Elliott will be (we fear unpleasantly) surprisedto learn that he bears a greater responsibility for this paper than he 
ould possibly imagine. We would of 
ourselike to think that our work addresses in some way the 
on
ern suggested by the title of his re
ent talks, TheQuantum-Me
hani
al World View: A Remarkably Su

essful but Still In
omplete Theory, but we re
ognize thatour understanding of in
ompleteness is mu
h more naive than Elliott's. He did, however, en
ourage us in his
apa
ity as an editor of the Reviews of Modern Physi
s to submit a paper on the role of operators in quantumtheory. That was 12 year ago. Elliott is no longer an editor there and the paper that developed is not quite areview. 1
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tionIt is often argued that the quantum me
hani
al asso
iation of observables with self-adjoint oper-ators is a straightforward generalization of the notion of 
lassi
al observable, and that quantumtheory should be no more 
on
eptually problemati
 than 
lassi
al physi
s on
e this is appre-
iated. The 
lassi
al physi
al observables|for a system of parti
les, their positions q = (qk),their momenta p = (pk), and the fun
tions thereof, i.e., fun
tions on phase spa
e|form a 
om-mutative algebra. It is generally taken to be the essen
e of quantization, the pro
edure whi
h
onverts a 
lassi
al theory to a quantum one, that q, p, and hen
e all fun
tions f(q; p) thereofare repla
ed by appropriate operators, on a Hilbert spa
e (of possible wave fun
tions) asso
iatedwith the system under 
onsideration. Thus quantization leads to a non
ommutative operatoralgebra of \observables," the standard examples of whi
h are provided by matri
es and linear3



operators. Thus it seems perfe
tly natural that 
lassi
al observables are fun
tions on phase spa
eand quantum observables are self-adjoint operators.However, there is mu
h less here than meets the eye. What should be meant by \measuring"a quantum observable, a self-adjoint operator? We think it is 
lear that this must be spe
i�ed|without su
h spe
i�
ation it 
an have no meaning whatsoever. Thus we should be 
areful hereand use safer terminology by saying that in quantum theory observables are asso
iated with self-adjoint operators, sin
e it is diÆ
ult to see what 
ould be meant by more than an asso
iation, byan identi�
ation of observables, regarded as somehow having independent meaning relating to ob-servation or measurement (if not to intrinsi
 \properties"), with su
h a mathemati
al abstra
tionas a self-adjoint operator.We are insisting on \asso
iation" rather than identi�
ation in quantum theory, but not in
lassi
al theory, be
ause there we begin with a rather 
lear notion of observable (or property)whi
h is well-
aptured by the notion of a fun
tion on the phase spa
e, the state spa
e of 
ompletedes
riptions. If the state of the system were observed, the value of the observable would of
ourse be given by this fun
tion of the state (q; p), but the observable might be observed byitself, yielding only a partial spe
i�
ation of the state. In other words, measuring a 
lassi
alobservable means determining to whi
h level surfa
e of the 
orresponding fun
tion the state ofthe system, the phase point|whi
h is at any time de�nite though probably unknown|belongs.In the quantum realm the analogous notion 
ould be that of fun
tion on Hilbert spa
e, not self-adjoint operator. But we don't measure the wave fun
tion, so that fun
tions on Hilbert spa
eare not physi
ally measurable, and thus do not de�ne \observables."The problemati
al 
hara
ter of the way in whi
h measurement is treated in orthodox quantumtheory has been stressed by John Bell:The 
on
ept of `measurement' be
omes so fuzzy on re
e
tion that it is quite surprisingto have it appearing in physi
al theory at the most fundamental level. Less surpris-ing perhaps is that mathemati
ians, who need only simple axioms about otherwiseunde�ned obje
ts, have been able to write extensive works on quantum measurementtheory|whi
h experimental physi
ists do not �nd it ne
essary to read. . . . Doesnot any analysis of measurement require 
on
epts more fundamental than measure-ment? And should not the fundamental theory be about these more fundamental
on
epts? [8℄. . . in physi
s the only observations we must 
onsider are position observations, ifonly the positions of instrument pointers. It is a great merit of the de Broglie-Bohmpi
ture to for
e us to 
onsider this fa
t. If you make axioms, rather than de�nitionsand theorems, about the `measurement' of anything else, then you 
ommit redundan
yand risk in
onsisten
y. [9℄The Broglie-Bohm theory, Bohmian me
hani
s, is a physi
al theory for whi
h the 
on
eptof `measurement' does not appear at the most fundamental level|in the very formulation ofthe theory. It is a theory about 
on
epts more fundamental than `measurement,' in terms ofwhi
h an analysis of measurement 
an be performed. In a previous work [25℄ we have shownhow probabilities for positions of parti
les given by j j2 emerge naturally from an analysis of\equilibrium" for the deterministi
 dynami
al system de�ned by Bohmian me
hani
s, in mu
hthe same way that the Maxwellian velo
ity distribution emerges from an analysis of 
lassi
althermodynami
 equilibrium. Our analysis entails that Born's statisti
al rule � = j j2j shouldbe regarded as a lo
al manifestation of a global equilibrium state of the universe, what we 
all4



quantum equilibrium, a 
on
ept analogous to, but quite distin
t from, thermodynami
 equilib-rium: a universe in quantum equilibrium evolves so as to yield an appearan
e of randomness,with empiri
al distributions in agreement with all the predi
tions of the quantum formalism.While in our earlier work we have proven, from the �rst prin
iples of Bohmian me
hani
s,the \quantum equilibrium hypothesis" that when a system has wave fun
tion  , the distribution� of its 
on�guration satis�es � = j j2, our goal here is to show that it follows from thishypothesis, not merely that Bohmian me
hani
s makes the same predi
tions as does orthodoxquantum theory for the results of any experiment, but that the quantum formalism of operatorsas observables emerges naturally and simply as the very expression of the empiri
al import ofBohmian me
hani
s.More pre
isely, we shall show here that self-adjoint operators arise in asso
iation with spe
i�
experiments: insofar as the statisti
s for the values whi
h result from the experiment are 
on-
erned, the notion of self-adjoint operator 
ompa
tly expresses and represents the relevant data.It is the asso
iation \E 7! A" between an experiment E and an operator A|an asso
iation thatwe shall establish in Se
tion 2 and upon whi
h we shall elaborate in the other se
tions|that is the
entral notion of this paper. A

ording to this asso
iation the notion of operator-as-observablein no way implies that anything is measured in the experiment, and 
ertainly not the operatoritself. We shall nonetheless speak of su
h experiments as measurements, sin
e this terminologyis unfortunately standard. When we wish to emphasize that we really mean measurement|theas
ertaining of the value of a quantity|we shall often speak of genuine measurement.Mu
h of our analysis of the emergen
e and role of operators as observables in Bohmianme
hani
s, in
luding the von Neumann-type pi
ture of measurements at whi
h we shall arrive,applies as well to orthodox quantum theory. Indeed, the best way to understand the statusof the quantum formalism|and to better appre
iate the minimality of Bohmian me
hani
s|isBohr's way: What are 
alled quantum observables obtain meaning only through their asso
iationwith spe
i�
 experiments. We believe that Bohr's point has not been taken to heart by mostphysi
ists, even those who regard themselves as advo
ates of the Copenhagen interpretation.Indeed, it would appear that the argument provided by our analysis against taking operatorstoo seriously as observables has even greater for
e from an orthodox perspe
tive: Given theinitial wave fun
tion, at least in Bohmian me
hani
s the out
ome of the parti
ular experimentis determined by the initial 
on�guration of system and apparatus, while for orthodox quantumtheory there is nothing in the initial state whi
h 
ompletely determines the out
ome. Indeed, we�nd it rather surprising that most proponents of standard quantum measurement theory, that isthe von Neumann analysis of measurement [74℄, beginning with von Neumann, nonetheless seemto retain an un
riti
al identi�
ation of operators with properties. Of 
ourse, this is presumablybe
ause more urgent matters|the measurement problem and the suggestion of in
onsisten
y andin
oheren
e that it entails|soon for
e themselves upon one's attention. Moreover su
h diÆ
ultiesperhaps make it diÆ
ult to maintain mu
h 
on�den
e about just what should be 
on
luded fromthe \measurement" analysis, while in Bohmian me
hani
s, for whi
h no su
h diÆ
ulties arise,what should be 
on
luded is rather obvious.Moreover, a great many signi�
ant real-world experiments are simply not at all asso
iated withoperators in the usual way. Be
ause of these and other diÆ
ulties, it has been proposed that weshould go beyond operators-as-observables, to generalized observables, des
ribed by mathemati
alobje
ts (positive-operator-valuedmeasures, POVMs) even more abstra
t than operators (see, e.g.,the books of Davies [21℄, Holevo [50℄ and Kraus [55℄). It may seem that we would regard this5



development as a step in the wrong dire
tion, sin
e it supplies us with a new, mu
h larger 
lassof abstra
t mathemati
al entities about whi
h to be naive realists. We shall, however, show thatthese generalized observables for Bohmian me
hani
s form an extremely natural 
lass of obje
tsto asso
iate with experiments, and that the emergen
e and role these observables is merely anexpression of quantum equilibrium together with the linearity of S
hr�odinger's evolution. It istherefore rather dubious that the o

urren
e of generalized observables|the simplest 
ase ofwhi
h are self-adjoint operators|
an be regarded as suggesting any deep truths about reality orabout epistemology.As a byprodu
t of our analysis of measurement we shall obtain a 
riterion of measurability anduse it to examine the genuine measurability of some of the properties of a physi
al system. In thisregard, it should be stressed that measurability is theory-dependent: di�erent theories, thoughempiri
ally equivalent, may di�er on what should be regarded as genuinely measurable withinea
h theory. This important|though very often ignored|point was made long ago by Einsteinand has been repeatedly stressed by Bell. It is best summarized by Einstein's remark [49℄: \It isthe theory whi
h de
ides what we 
an observe."We note in passing that measurability and reality are di�erent issues. Indeed, for Bohmianme
hani
s most of what is \measurable" (in a sense that we will explain) is not real and most ofwhat is real is not genuinely measurable. (The main ex
eption, the position of a parti
le, whi
his both real and genuinely measurable, is, however, 
onstrained by absolute un
ertainty [25℄).In fo
using here on the role of operators as observables, we don't wish to suggest that thereare no other important roles played by operators in quantum theory. In parti
ular, in addition tothe familiar role played by operators as generators of symmetries and time-evolutions, we wouldlike to mention the rather di�erent role played by the �eld operators of quantum �eld theory: tolink abstra
t Hilbert-spa
e to spa
e-time and stru
tures therein, fa
ilitating the formulation oftheories des
ribing the behavior of an inde�nite number of parti
les [30, 29℄.Finally, we should mention what should be the most interesting sense of measurement for aphysi
ist, namely the determination of the 
oupling 
onstants and other parameters that de�neour physi
al theories. This has little to do with operators as observables in quantum theory andshall not be addressed here.Notations and ConventionsQ = (Q1; : : : ;QN) denotes the a
tual 
on�guration of a system of N parti
le with positionsQk; q = (q1; : : : ;qN ) is its generi
 
on�guration. Whenever we deal with a system-apparatus
omposite, x (X) will denote the generi
 (a
tual) 
on�guration of the system and y (Y ) thatof the apparatus. Sometimes we shall refer to the system as the x-system and the apparatusas the y-system. Sin
e the apparatus should be understood as in
luding all systems relevant tothe behavior of the system in whi
h we are interested, this notation and terminology is quite
ompatible with that of Se
tion 2.2, in whi
h y refers to the environment of the x-system.For a system in the state 	, �	 will denote the quantum equilibrium measure, �	(dq) =j	(q)j2dq. If Z = F (Q) then �Z	 denotes the measure indu
ed by F , i.e. �Z	 = �	 Æ F�1.
6



2 Bohmian ExperimentsA

ording to Bohmian me
hani
s, the 
omplete des
ription or state of an N -parti
le systemis provided by its wave fun
tion 	(q; t), where q = (q1; : : : ;qN) 2 R3N , and its 
on�gurationQ = (Q1; : : : ;QN) 2 R3N , where the Qk are the positions of the parti
les. The wave fun
tion,whi
h evolves a

ording to S
hr�odinger's equation,i~�	�t = H	 ; (2.1)
horeographs the motion of the parti
les: these evolve a

ording to the equationdQkdt = ~mk Im	�rk		�	 (Q1; : : : ;QN) (2.2)where rk = �=�qk: In equation (2.1), H is the usual nonrelativisti
 S
hr�odinger Hamiltonian;for spinless parti
les it is of the formH = �XNk=1 ~22mkr2k + V; (2.3)
ontaining as parameters the masses m1 : : : ; mN of the parti
les as well as the potential energyfun
tion V of the system. For an N -parti
le system of nonrelativisti
 parti
les, equations (2.1)and (2.2) form a 
omplete spe
i�
ation of the theory (magneti
 �elds1 and spin,2 as well as Fermiand Bose-Einstein statisti
s,3 
an easily be dealt with and in fa
t arise in a natural manner[6, 15, 64, 42, 28℄). There is no need, and indeed no room, for any further axioms, des
ribingeither the behavior of other observables or the e�e
ts of measurement.2.1 Equivarian
e and Quantum EquilibriumIt is important to bear in mind that regardless of whi
h observable one 
hooses to measure, theresult of the measurement 
an be assumed to be given 
on�gurationally, say by some pointerorientation or by a pattern of ink marks on a pie
e of paper. Then the fa
t that Bohmianme
hani
s makes the same predi
tions as does orthodox quantum theory for the results of anyexperiment|for example, a measurement of momentum or of a spin 
omponent|provided weassume a random distribution for the 
on�guration of the system and apparatus at the beginningof the experiment given by j	(q)j2|is a more or less immediate 
onsequen
e of (2.2). This isbe
ause of the quantum 
ontinuity equation�j	j2�t + div J	 = 0;whi
h is a simple 
onsequen
e of S
hr�odinger's equation. Here J	 = (J	1 ; : : : ;J	N) withJ	k = ~mk Im (	�rk	)1When a magneti
 �eld is present, the gradients rk in the equations (2.1 and (2.2) must be understood asthe 
ovariant derivatives involving the ve
tor potential A.2See Se
tion 2.5.3For indistinguishable parti
les, a 
areful analysis [28℄ of the natural 
on�guration spa
e, whi
h is no longerR3N , leads to the 
onsideration of wave fun
tions on R3N that are either symmetri
 or antisymmetri
 underpermutations. 7



the quantum probability 
urrent. This equation be
omes the 
lassi
al 
ontinuity equation���t + div � v = 0 (2.4)for the system of equations dQ=dt = v de�ned by (2.2)|governing the evolution of the probabilitydensity � under the motion de�ned by the guiding equation (2.2) for the parti
ular 
hoi
e � =j	j2 = 	�	. In other words, if the probability density for the 
on�guration satis�es �(q; t0) =j	(q; t0)j2 at some time t0, then the density to whi
h this is 
arried by the motion (2.2) at anytime t is also given by �(q; t) = j	(q; t)j2. This is an extremely important property of anyBohmian system, as it expresses a 
ertain 
ompatibility between the two equations of motionde�ning the dynami
s, whi
h we 
all the equivarian
e4 of j	j2.The above assumption guaranteeing agreement between Bohmian me
hani
s and quantumme
hani
s regarding the results of any experiment is what we 
all the \quantum equilibriumhypothesis":When a system has wave fun
tion 	 its 
on�guration Q is random with probabilitydistribution given by the measure �	(dq) = j	(q)j2dq. (2.5)When this 
ondition is satis�ed we shall say that the system is in quantum equilibrium and weshall 
all �	 the quantum equilibrium distribution. While the meaning and justi�
ation of (2.5)is a deli
ate matter, whi
h we have dis
ussed at length elsewhere [25℄, it is important to re
ognizethat, merely as a 
onsequen
e of (2.2) and (2.5), Bohmian me
hani
s is a 
ounterexample to allof the 
laims to the e�e
t that a deterministi
 theory 
annot a

ount for quantum randomnessin the familiar statisti
al me
hani
al way, as arising from averaging over ignoran
e: Bohmianme
hani
s is 
learly a deterministi
 theory, and, as we have just explained, it does a

ount forquantum randomness as arising from averaging over ignoran
e given by j	(q)j2.2.2 Conditional and E�e
tive Wave Fun
tionsWhi
h systems should be governed by Bohmian me
hani
s? An n-parti
le subsystem of an N -parti
le system (n < N) need not in general be governed by Bohmian me
hani
s, sin
e no wavefun
tion for the subsystem need exist. This will be so even with trivial intera
tion potential V ,if the wave fun
tion of the system does not properly fa
torize; for nontrivial V the S
hr�odingerevolution would in any 
ase qui
kly destroy su
h a fa
torization. Therefore in a universe governedby Bohmian me
hani
s there is a priori only one wave fun
tion, namely that of the universe, andthere is a priori only one system governed by Bohmian me
hani
s, namely the universe itself.4 Equivarian
e 
an be formulated in very general terms: 
onsider the transformations U : 	 ! U	 andf : Q ! f(Q), where U is a unitary transformation on L2(dq) and f is a transformation on 
on�guration spa
ethat may depend on 	. We say that the map 	 7! �	 from wave fun
tions to measures on 
on�guration spa
e isequivariant with respe
t to U and f if �U	 = �	 Æ f�1. The above argument based on the 
ontinuity equation(2.4) shows that 	 7! j	j2dq is equivariant with respe
t to U � Ut = e�i t~ H , where H is the S
hr�odingerHamiltonian (2.3) and f � ft is the solution map of (2.2). In this regard, it is important to observe that for aHamiltonian H whi
h is not of S
hr�odinger type we shouldn't expe
t (2.2) to be the appropriate velo
ity �eld, thatis, a �eld whi
h generates an evolution in 
on�guration spa
e having j	j2 as equivariant density. For example,for H = 
~i ��q , where 
 is a 
onstant (for simpli
ity we are assuming 
on�guration spa
e to be one-dimensional),we have that j	j2 is equivariant provided the evolution of 
on�gurations is given by dQ=dt = 
. In other words,for Ut = e
t ��q the map 	 7! j	j2dq is equivariant if ft : Q! Q+ 
t.8



Consider then an N -parti
le non relativisti
 universe governed by Bohmian me
hani
s, with(universal) wave fun
tion 	. Fo
us on a subsystem with 
on�guration variables x, i.e., on asplitting q = (x; y) where y represents the 
on�guration of the environment of the x-system. Thea
tual parti
le 
on�gurations at time t are a

ordingly denoted by Xt and Yt, i.e., Qt = (Xt; Yt).Note that 	t = 	t(x; y). How 
an one assign a wave fun
tion to the x-system? One obviouspossibility|a�orded by the existen
e of the a
tual 
on�guration|is given by what we 
all the
onditional wave fun
tion of the x-system t(x) = 	t(x; Yt): (2.6)To get familiar with this notion 
onsider a very simple one dimensional universe made of twoparti
les with Hamiltonian (~ = 1)H = H(x) +H(y) +H(xy) = �12� �2�x2 + �2�y2 � + 12(x� y)2:and initial wave fun
tion	0 =  
 �0 with  (x) = �� 14 e�x22 and �0(y) = �� 14 e� y22 :Then (2.1) and (2.2) are easily solved:	t(x; y) = �� 12 (1 + it)� 12 e� 14�(x�y)2+ (x+y)21+2it �;Xt = a(t)X + b(t)Y and Yt = b(t)X + a(t)Y;where a(t) = 12 [(1+ t2) 12 +1℄, b(t) = 12 [(1+ t2) 12 � 1℄, and X and Y are the initial positions of thetwo parti
les. Fo
us now on one of the two parti
les (the x-system) and regard the other one asits environment (the y-system). The 
onditional wave fun
tion of the x-system t(x) = �� 12 (1 + it)� 12 e� 14�(x�Yt)2+ (x+Yt)21+2it �;depends, through Yt, on both the initial 
ondition Y for the environment and the initial 
onditionX for the parti
le. As these are random, so is the evolution of  t, with probability law determinedby j	0j2. In parti
ular,  t does not satisfy S
hr�odinger's equation for any H(x).We remark that even when the x-system is dynami
ally de
oupled from its environment, its
onditional wave fun
tion will not in general evolve a

ording to S
hr�odinger's equation. Thusthe 
onditional wave fun
tion la
ks the dynami
al impli
ations from whi
h the wave fun
tion ofa system derives mu
h of its physi
al signi�
an
e. These are, however, 
aptured by the notion ofe�e
tive wave fun
tion:Suppose that 	(x; y) =  (x)�(y) + 	?(x; y) ; where � and 	? have ma
ros
op-i
ally disjoint y-supports. If Y 2 supp � we say that  is the e�e
tive wavefun
tion of the x-system. (2.7)Of 
ourse,  is also the 
onditional wave fun
tion sin
e nonvanishing s
alar multiples of wavefun
tions are naturally identi�ed.55Note that in Bohmian me
hani
s the wave fun
tion is naturally a proje
tive obje
t sin
e wave fun
tionsdi�ering by a multipli
ative 
onstant|possibly time-dependent|are asso
iated with the same ve
tor �eld, andthus generate the same dynami
s. 9



2.3 De
oheren
eOne might wonder why systems possess an e�e
tive wave fun
tion at all. In fa
t, in general theydon't! For example the x-system will not have an e�e
tive wave fun
tion when, for instan
e,it belongs to a larger mi
ros
opi
 system whose e�e
tive wave fun
tion doesn't fa
torize in theappropriate way. However, the larger the environment of the x-system, the greater is the potentialfor the existen
e of an e�e
tive wave fun
tion for this system, owing in e�e
t to the abundan
eof \measurement-like" intera
tion with a larger environment.6We remark that it is the relative stability of the ma
ros
opi
 disjointness employed in thede�nition of the e�e
tive wave fun
tion, arising from what are nowadays often 
alled me
hanismsof de
oheren
e|the destru
tion of the 
oherent spreading of the wave fun
tion, the e�e
tivelyirreversible 
ow of \phase information" into the (ma
ros
opi
) environment|whi
h a

ountsfor the fa
t that the e�e
tive wave fun
tion of a system obeys S
hr�odinger's equation for thesystem alone whenever this system is isolated. One of the best des
riptions of the me
hanisms ofde
oheren
e, though not the word itself, 
an be found in Bohm's 1952 \hidden variables" paper[15℄.De
oheren
e plays a 
ru
ial role in the very formulation of the various interpretations ofquantum theory loosely 
alled de
oheren
e theories(GriÆths [46℄, Omn�es [65℄, Leggett [60℄, Zurek[79℄, Joos and Zeh [51℄, Gell-Mann and Hartle [35℄). In this regard we wish to emphasize, however,as did Bell in his arti
le \Against Measurement" [11℄, that de
oheren
e in no way 
omes to gripswith the measurement problem itself, being arguably a ne
essary, but 
ertainly not a suÆ
ient,
ondition for its 
omplete resolution. In 
ontrast, for Bohmian me
hani
s de
oheren
e is purelyphenomenologi
al|it plays no role whatsoever in the formulation (or interpretation) of the theoryitself7|and the very notion of e�e
tive wave fun
tion a

ounts at on
e for the redu
tion of thewave pa
ket in quantum measurement.A

ording to orthodox quantum measurement theory [74, 14, 76, 77℄, after a measurement,or preparation, has been performed on a quantum system, the x-system, the wave fun
tion forthe 
omposite formed by system and apparatus is of the formX�  � 
 �� (2.8)with the di�erent �� supported by the ma
ros
opi
ally distin
t (sets of) 
on�gurations 
orre-sponding to the various possible out
omes of the measurement, e.g., given by apparatus pointerorientations. Of 
ourse, for Bohmian me
hani
s the terms of (2.8) are not all on the samefooting: one of them, and only one, is sele
ted, or more pre
isely supported, by the out
ome|
orresponding, say, to �0|whi
h a
tually o

urs. To emphasize this we may write (2.8) in the6To understand how this 
omes about one may suppose that initially the y-supports of � and 	? (
f. thede�nition above of e�e
tive wave fun
tion) are just \suÆ
iently" (but not ma
ros
opi
ally) disjoint. Then, dueto the intera
tion with the environment, the amount of y-disjointness will tend to in
rease dramati
ally as timegoes on, with, as in a 
hain rea
tion, more and more degrees of freedom parti
ipating in this disjointness. Whenthe e�e
t of this \de
oheren
e" is taken into a

ount, one �nds that even a small amount of y-disjointness willoften tend to be
ome \suÆ
ient," and qui
kly \more than suÆ
ient," and �nally ma
ros
opi
.7However, de
oheren
e plays an important role in the emergen
e of Newtonian me
hani
s as the des
ription ofthe ma
ros
opi
 regime for Bohmian me
hani
s, supporting a pi
ture of a ma
ros
opi
 Bohmian parti
le, in the
lassi
al regime, guided by a ma
ros
opi
ally well-lo
alized wave pa
ket with a ma
ros
opi
ally sharp momentummoving along a 
lassi
al traje
tory. It may, indeed, seem somewhat ironi
 that the gross features of our worldshould appear 
lassi
al be
ause of intera
tion with the environment and the resulting wave fun
tion entanglement,the 
hara
teristi
 quantum innovation. 10



form  
 � +	?where  =  �0 , � = ��0 , and 	? = P�6=�0  � 
 ��. By 
omparison with (2.7) it follows thatafter the measurement the x-system has e�e
tive wave fun
tion  �0 . This is how 
ollapse (orredu
tion) of the e�e
tive wave fun
tion to the one asso
iated with the out
ome �0 arises inBohmian me
hani
s.While in orthodox quantum theory the \
ollapse" is merely superimposed upon the unitaryevolution|without a pre
ise spe
i�
ation of the 
ir
umstan
es under whi
h it may legitimatelybe invoked|we have now, in Bohmian me
hani
s, that the evolution of the e�e
tive wave fun
tionis a
tually given by a sto
hasti
 pro
ess, whi
h 
onsistently embodies both unitarity and 
ollapseas appropriate. In parti
ular, the e�e
tive wave fun
tion of a subsystem evolves a

ording toS
hr�odinger's equation when this system is suitably isolated. Otherwise it \pops in and out"of existen
e in a random fashion, in a way determined by the 
ontinuous (but still random)evolution of the 
onditional wave fun
tion  t. Moreover, it is the 
riti
al dependen
e on thestate of the environment and the initial 
onditions whi
h is responsible for the random behaviorof the (
onditional or e�e
tive) wave fun
tion of the system.2.4 Wave Fun
tion and StateAs an important 
onsequen
e of (2.6) we have, for the 
onditional probability distribution ofthe 
on�guration Xt of a system at time t, given the 
on�guration Yt of its environment, thefundamental 
onditional probability formula [25℄:Prob	0�Xt 2 dx �� Yt� = j t(x)j2 dx; (2.9)where Prob	0(dQ) = j	0(Q)j2 dQ;with Q = (X; Y ) the 
on�guration of the universe at the (initial) time t = 0. Formula (2.9) isthe 
ornerstone of our analysis [25℄ on the origin of randomness in Bohmian me
hani
s. Sin
ethe right hand side of (2.9) involves only the e�e
tive wave fun
tion, it follows that the wavefun
tion  t of a subsystem represents maximal information about its 
on�guration Xt. In otherwords, given the fa
t that its wave fun
tion is  t, it is in prin
iple impossible to know more aboutthe 
on�guration of a system than what is expressed by the right hand side of (2.9), even whenthe detailed 
on�guration Yt of its environment is taken into a

ount [25℄Prob	0�Xt 2 dx �� Yt� = Prob	0�Xt 2 dx ��  t� = j t(x)j2 dx: (2.10)The fa
t that the knowledge of the 
on�guration of a system must be mediated by its wavefun
tion may partially a

ount for the possibility of identifying the state of a system|its 
om-plete des
ription|with its wave fun
tion without en
ountering any pra
ti
al diÆ
ulties. This isprimarily be
ause of the wave fun
tion's statisti
al role, but its dynami
al role is also relevanthere. Thus it is natural, even in Bohmian me
hani
s, to regard the wave fun
tion as the \state"of the system. This attitude is supported by the asymmetri
 roles of 
on�guration and wavefun
tion: while the fa
t that the wave fun
tion is  entails that the 
on�guration is distributeda

ording to j j2, the fa
t that the 
on�guration is X has no impli
ations whatsoever for the11



wave fun
tion.8 Indeed, su
h an asymmetry is grounded in the dynami
al laws and in the initial
onditions.  is always assumed to be �xed, being usually under experimental 
ontrol, while Xis always taken as random, a

ording to the quantum equilibrium distribution.When all is said and done, it is important to bear in mind that regarding  as the \state"is only of pra
ti
al value, and shouldn't obs
ure the more important fa
t that the most de-tailed des
ription|the 
omplete state des
ription|is given (in Bohmian me
hani
s) by the wavefun
tion and the 
on�guration.2.5 The Stern-Gerla
h ExperimentInformation about a system does not spontaneously pop into our heads or into our (other)\measuring" instruments; rather, it is generated by an experiment : some physi
al intera
tionbetween the system of interest and these instruments, whi
h together (if there is more than one)
omprise the apparatus for the experiment. Moreover, this intera
tion is de�ned by, and mustbe analyzed in terms of, the physi
al theory governing the behavior of the 
omposite formedby system and apparatus. If the apparatus is well designed, the experiment should somehow
onvey signi�
ant information about the system. However, we 
annot hope to understand thesigni�
an
e of this \information"|for example, the nature of what it is, if anything, that hasbeen measured|without some su
h theoreti
al analysis.As an illustration of su
h an analysis we shall dis
uss the Stern-Gerla
h experiment fromthe standpoint of Bohmian me
hani
s. But �rst we must explain how spin is in
orporated intoBohmian me
hani
s: If 	 is spinor-valued, the bilinear forms appearing in the numerator anddenominator of (2.2) should be understood as spinor-inner-produ
ts; e.g., for a single spin 12parti
le the two-
omponent wave fun
tion	 � � 	+(x)	�(x) �generates the velo
ity v	 = ~mIm(	;r	)(	;	) (2.11)where ( � ; � ) denotes the s
alar produ
t in the spin spa
e C 2 . The wave fun
tion evolves via(2.1), where now the Hamiltonian H 
ontains the Pauli term, for a single parti
le proportionalto B ��, that represents the 
oupling between the \spin" and an external magneti
 �eld B; here� = (�x; �y; �z) are the Pauli spin matri
es whi
h 
an be taken to be�x = � 0 11 0 � �y = � 0 �ii 0 � �z = � 1 00 �1 �Let's now fo
us on a Stern-Gerla
h \measurement of the operator �z": An inhomogeneousmagneti
 �eldB is established in a neighborhood of the origin, by means of a suitable arrangementof magnets. This magneti
 �eld is oriented in the positive z-dire
tion, and is in
reasing in thisdire
tion. We also assume that the arrangement is invariant under translations in the x-dire
tion,i.e., that the geometry does not depend upon x-
oordinate. A parti
le with a fairly de�nite8The \fa
t" (that the 
on�guration is X) shouldn't be 
onfused with the \knowledge of the fa
t": the latterdoes have su
h impli
ations [25℄! 12



momentum is dire
ted towards the origin along the negative y-axis. For simpli
ity, we shall
onsider a neutral spin-1=2 parti
le whose wave fun
tion 	 evolves a

ording to the HamiltonianH = � ~22mr2 � ���B: (2.12)where � is a positive 
onstant (if one wishes, one might think of a �
titious ele
tron not feelingthe Lorentz for
e).The inhomogeneous �eld generates a verti
al de
e
tion of 	 away from the y-axis, whi
h forBohmian me
hani
s leads to a similar de
e
tion of the parti
le traje
tory a

ording to the velo
ity�eld de�ned by (2.11): if its wave fun
tion 	 were initially an eigenstate of �z of eigenvalue 1 or�1, i.e., if it were of the form	(+) =  (+) 
 �0(x) or 	(�) =  (�) 
 �0(x)where  (+) � � 10 � and  (�) � � 01 � (2.13)then the de
e
tion would be in the positive (negative) z-dire
tion (by a rather de�nite angle).This limiting behavior is readily seen for �0 = �0(z)�(x; y) and B = (0; 0; B), so that the z-motion is 
ompletely de
oupled from the motion along the other two dire
tions, and by makingthe standard (albeit unphysi
al) assumption [13℄, [14℄�B�z = 
onst > 0 : (2.14)when
e ���B = (b+ az)�zwhere a > 0 and b are 
onstants. Then	(+)t = � �(+)t (z)�t(x; y)0 � and 	(�)t = � 0�(�)t (z)�t(x; y) �where �(�)t are the solutions ofi~��t(�)�t = � ~22m�2�t(�)�z2 � (b+ a z)�t(�); (2.15)for initial 
onditions �0(�) = �0(z). Sin
e z generates translations of the z-
omponent of themomentum, the behavior des
ribed above follows easily. More expli
itly, the limiting behaviorfor t ! 1 readily follows by a stationary phase argument on the expli
it solution9 of (2.15).9Eq. (2.15) is readily solved: �(�)t (z) = Z G(�)(z; z0; t)�0(z0) dz0 ;where (by the standard rules for the Green's fun
tion of linear and quadrati
 Hamiltonians)G(�)(z; z0; t) =r m2�i~t e i~�m2t�z�z0�(�) at2m �2+ (�)at2 �z�z0�(�) at2m ��(�)(az0+b)t+ at33m �
13



More simply, we may 
onsider the initial Gaussian state�0 = e(� z24d2 )(2d2�) 14for whi
h j��t (z)j2, the probability density of the parti
le being at a point of z-
oordinate z, is,by the linearity of the intera
tion in (2.15), a Gaussian with mean and mean square deviationgiven respe
tively by �z(t) = (�)a t22m d(t) = dr1 + ~2t22m2d4 : (2.16)For a more general initial wave fun
tion,	 =  
 �0  = � (+) + � (�) (2.17)passage through the magneti
 �eld will, by linearity, split the wave fun
tion into an upward-de
e
ted pie
e (proportional to  (+)) and a downward-de
e
ted pie
e (proportional to  (�)),with 
orresponding de
e
tions of the traje
tories. The out
ome is registered by dete
tors pla
edin the paths of these two possible \beams." Thus of the four kinemati
ally possible out
omes(\pointer orientations") the o

urren
e of no dete
tion and of simultaneous dete
tion 
an beignored as highly unlikely, and the two relevant out
omes 
orrespond to registration by eitherthe upper or the lower dete
tor. A

ordingly, for a measurement of �z the experiment is equippedwith a \
alibration" (i.e., an assignment of numeri
al values to the out
omes of the experiment)�+ = 1 for upper dete
tion and �� = �1 for lower dete
tion (while for a measurement of thez-
omponent of the spin angular momentum itself the 
alibration is given by 12~��).Note that one 
an 
ompletely understand what's going on in this Stern-Gerla
h experimentwithout invoking any putative property of the ele
tron su
h as its a
tual z-
omponent of spinthat is supposed to be revealed in the experiment. For a general initial wave fun
tion there isno su
h property. What is more, the transparen
y of the analysis of this experiment makes it
lear that there is nothing the least bit remarkable (or for that matter \non
lassi
al") aboutthe nonexisten
e of this property. But the failure to pay attention to the role of operatorsas observables, i.e., to pre
isely what we should mean when we speak of measuring operator-observables, helps 
reate a false impression of quantum pe
uliarity.2.6 A Remark on the Reality of Spin in Bohmian Me
hani
sBell has said that (for Bohmian me
hani
s) spin is not real. Perhaps he should better havesaid: \Even spin is not real," not merely be
ause of all observables, it is spin whi
h is generallyregarded as quantum me
hani
ally most paradigmati
, but also be
ause spin is treated in ortho-dox quantum theory very mu
h like position, as a \degree of freedom"|a dis
rete index whi
hsupplements the 
ontinuous degrees of freedom 
orresponding to position|in the wave fun
tion.Be that as it may, his basi
 meaning is, we believe, this: Unlike position, spin is not primitive,i.e., no a
tual dis
rete degrees of freedom, analogous to the a
tual positions of the parti
les, areadded to the state des
ription in order to deal with \parti
les with spin." Roughly speaking, spinis merely in the wave fun
tion. At the same time, as explained in Se
tion 2.5, \spin measure-ments" are 
ompletely 
lear, and merely re
e
t the way spinor wave fun
tions are in
orporatedinto a des
ription of the motion of 
on�gurations.14



In this regard, it might be obje
ted that while spin may not be primitive, so that the result ofour \spin measurement" will not re
e
t any initial primitive property of the system, nonethelessthis result is determined by the initial 
on�guration of the system, i.e., by the position of ourele
tron, together with its initial wave fun
tion, and as su
h|as a fun
tion X�z(q;  ) of the stateof the system|it is some property of the system and in parti
ular it is surely real. We shalladdress this issue in Se
tions 8.3 and 8.4.2.7 The Framework of Dis
rete ExperimentsWe shall now 
onsider a generi
 experiment. Whatever its signi�
an
e, the information 
onveyedby the experiment is registered in the apparatus as an output, represented, say, by the orientationof a pointer. Moreover, when we speak of a generi
 experiment, we have in mind a fairly de�niteinitial state of the apparatus, the ready state �0 = �0(y), one for whi
h the apparatus shouldfun
tion as intended, and in parti
ular one in whi
h the pointer has some \null" orientation, aswell as a de�nite initial state of the system  =  (x) on whi
h the experiment is performed.Under these 
onditions it turns out [25℄ that the initial t = 0 wave fun
tion 	0 = 	0(q) of the
omposite system formed by system and apparatus, with generi
 
on�guration q = (x; y), has aprodu
t form, i.e., 	0 =  
 �0:Su
h a produ
t form is an expression of the independen
e of system and apparatus immediatelybefore the experiment begins.10For Bohmian me
hani
s we should expe
t in general, as a 
onsequen
e of the quantum equi-librium hypothesis, that the out
ome of the experiment|the �nal pointer orientation|will berandom: Even if the system and apparatus initially have de�nite, known wave fun
tions, so thatthe out
ome is determined by the initial 
on�guration of system and apparatus, this 
on�gu-ration is random, sin
e the 
omposite system is in quantum equilibrium, and the distributionof the �nal 
on�guration is given by j	T (x; y)j2, where 	T is the wave fun
tion of the system-apparatus 
omposite at the time t = T when the experiment ends, and x, respe
tively y, is thegeneri
 system, respe
tively apparatus, 
on�guration.Suppose now that 	T has the form (2.8), whi
h roughly 
orresponds to assuming that theexperiment admits, i.e., that the apparatus is so designed that there is, only a �nite (or 
ountable)set of possible out
omes, given, say, by the di�erent possible ma
ros
opi
ally distin
t pointerorientations of the apparatus and 
orresponding to a partition of the apparatus 
on�gurationspa
e into ma
ros
opi
ally disjoint regions G�, � = 1; 2; : : :.11 We arrive in this way at thenotion of dis
rete experiment, for whi
h the time evolution arising from the intera
tion of thesystem and apparatus from t = 0 to t = T is given by the unitary mapU : H
 �0 !M� H
 �� ;  
 �0 7! 	T =X�  � 
 �� (2.18)where H is the system Hilbert spa
e of square-integrable wave fun
tions with the usual inner10It might be argued that it is somewhat unrealisti
 to assume a sharp preparation of  , as well as the possibilityof resetting the apparatus always in the same initial state �0. We shall address this issue in Se
tion 611Note that to assume there are only �nitely, or 
ountably, many out
omes is really no assumption at all, sin
ethe out
ome should ultimately be 
onverted to digital form, whatever its initial representation may be.15



produ
t h ; �i = Z  �(x)�(x) dx:and the �� are a �xed set of (normalized) apparatus states supported by the ma
ros
opi
allydistin
t regions G� of apparatus 
on�gurations.The experiment usually 
omes equipped with an assignment of numeri
al values �� (or ave
tor of su
h values) to the various out
omes �. This assignment is de�ned by a \
alibration"fun
tion F on the apparatus 
on�guration spa
e assuming on ea
h region G� the 
onstant value��. If for simpli
ity we assume that these values are in one-to-one 
orresponden
e with theout
omes12 then p� = ZF�1(��) j	T (x; y)j2dx dy = ZG� j	T (x; y)j2dx dy (2.19)is the probability of �nding ��, for initial system wave fun
tion  . Sin
e ��0(y) = 0 for y 2 G�unless � = �0, we obtainp� = Z dx ZG� jX�0  �0(x)��0(y)j2 dy = Z j �(x)j2dx = k �k2: (2.20)Note that when the result �� is obtained, the e�e
tive wave fun
tion of the system undergoesthe transformation  !  �:A simple example of a dis
rete experiment is provided by the mapU :  
 �0 7!X� 
� 
 ��; (2.21)where the 
� are 
omplex numbers su
h that P� j
�j2 = 1; then p� = j
�j2. Note that theexperiment de�ned by (2.21) resembles a 
oin-
ip more than a measurement sin
e the out
ome� o

urs with a probability independent of  .2.8 Reprodu
ibility and its Consequen
esThough for a generi
 dis
rete experiment there is no reason to expe
t the sort of \measurement-like" behavior typi
al of familiar quantum measurements, there are, however, spe
ial experimentswhose out
omes are somewhat less random than we might have thought possible. A

ording toS
hr�odinger [72℄:The systemati
ally arranged intera
tion of two systems (measuring obje
t and mea-suring instrument) is 
alled a measurement on the �rst system, if a dire
tly-sensiblevariable feature of the se
ond (pointer position) is always reprodu
ed within 
ertainerror limits when the pro
ess is immediately repeated (on the same obje
t, whi
h inthe mean time must not be exposed to additional in
uen
es).To implement the notion of \measurement-like" experiment 
onsidered by S
hr�odinger, we�rst make some preliminary observations 
on
erning the unitary map (2.18). Let P[��℄ be the12We shall 
onsider the more general 
ase later on in Subse
tion 3.2.4.16



orthogonal proje
tion in the Hilbert spa
eL�H
�� onto the subspa
e H
�� and let fH� bethe subspa
es of H de�ned by P[��℄ [U(H
 �0)℄ = fH� 
 �� : (2.22)(Sin
e the ve
tors in eH� arise from proje
ting 	T = P�  � 
 �� onto its �-
omponent, fH� isthe spa
e of the \
ollapsed" wave fun
tions asso
iated with the o

urren
e of the out
ome �.)Then U(H
 �0) �M� fH� 
 ��: (2.23)Note, however, that it need not be the 
ase that U(H 
 �0) = L� fH� 
 ��, and that thespa
es fH� need be neither orthogonal nor distin
t; e.g., for (2.21) fH� = H and U(H 
 �0) =H
P� 
��� 6=L�H
 ��.13A \measurement-like" experiment is one whi
h is reprodu
ible in the sense that it will yieldthe same out
ome as originally obtained if it is immediately repeated. (This means in parti
ularthat the apparatus must be immediately reset to its ready state, or a fresh apparatus mustbe employed, while the system is not tampered with so that its initial state for the repeatedexperiment is its �nal state produ
ed by the �rst experiment.) Thus the experiment is reprodu
ibleif U(fH� 
 �0) � fH� 
 �� (2.24)or, equivalently, if there are spa
es H�0 � fH� su
h thatU(fH� 
 �0) = H�0 
 �� : (2.25)Note that it follows from the unitarity of U and the orthogonality of the subspa
es fH� 
 ��that the subspa
es fH� 
 �0 and hen
e the fH� are also orthogonal. Therefore, by taking theorthogonal sum over � of both sides of (2.25), we obtainM� U(fH� 
 �0) = U  M� fH� 
 �0! =M� H�0 
 ��: (2.26)If we now make the simplifying assumption that the subspa
es fH� are �nite dimensional, we havefrom unitarity that fH� = H�0, and thus, by 
omparing (2.23) and (2.26), that equality holds in(2.23) and that H =M� H� (2.27)with U(H� 
 �0) = H� 
 �� (2.28)for H� � fH� = H�0 :13Note that if H has �nite dimension n, and the number of out
omes � is m, dim [U(H 
 �0)℄ = n, whiledim [L�H
��℄ = n �m. 17



Therefore if the wave fun
tion of the system is initially inH�, out
ome � de�nitely o

urs andthe value �� is thus de�nitely obtained (assuming again for simpli
ity one-to-one 
orresponden
ebetween out
omes and results). It then follows that for a general initial system wave fun
tion =X� PH� ;where PH� is the proje
tion in H onto the subspa
e H�, that the out
ome �, with result ��, isobtained with (the usual) probabilityp� = kPH� k2 = h ; PH� i; (2.29)whi
h follows from (2.28), (2.20), and (2.18) sin
e U�PH� 
�0� =  �
�� and hen
e kPH� k =k �k by unitarity. In parti
ular, when the �� are real-valued, the expe
ted value obtained isX� p��� =X� ��kPH� k2 = h ;A i (2.30)where A =X� ��PH� (2.31)is the self-adjoint operator with eigenvalues �� and spe
tral proje
tions PH�.2.9 Operators as ObservablesWhat we wish to emphasize here is that, insofar as the statisti
s for the values whi
h result fromthe experiment are 
on
erned,the relevant data for the experiment are the 
olle
tion fH�g of spe
ial orthogonalsubspa
es, together with the 
orresponding 
alibration f��g; (2.32)and this data is 
ompa
tly expressed and represented by the self-adjoint operator A, on the systemHilbert spa
e H, given by (2.31). Thus, under the assumptions we have made, with a reprodu
ibleexperiment E we naturally asso
iate an operator A = AE , a single mathemati
al obje
t, de�nedon the system alone, in terms of whi
h an eÆ
ient des
ription (2.29) of the statisti
s of thepossible results is a
hieved; we shall denote this asso
iation byE 7! A : (2.33)If we wish we may speak of \operators as observables," and when an experiment E is asso
iatedwith a self-adjoint operator A, as des
ribed above, we may say that the experiment E is a\measurement" of the observable represented by the self-adjoint operator A. If we do so, however,it is important that we appre
iate that in so speaking we merely refer to what we have justderived: the role of operators in the des
ription of 
ertain experiments.14So understood, the notion of operator-as-observable in no way implies that anything is gen-uinely measured in the experiment, and 
ertainly not the operator itself! In a general experiment14Operators as observables also naturally 
onvey information about the system's wave fun
tion after the exper-iment. For example, for an ideal measurement, when the out
ome is � the wave fun
tion of the system after theexperiment is (proportional to) PH� . We shall elaborate upon this in the next se
tion.18



no system property is being measured, even if the experiment happens to be measurement-like.(Position measurements in Bohmian me
hani
s are of 
ourse an important ex
eption.) What ingeneral is going on in obtaining out
ome � is 
ompletely straightforward and in no way suggests,or assigns any substantive meaning to, statements to the e�e
t that, prior to the experiment,observable A somehow had a value ��|whether this be in some determinate sense or in thesense of Heisenberg's \potentiality" or some other ill-de�ned fuzzy sense|whi
h is revealed, or
rystallized, by the experiment. Even speaking of the observable A as having value �� whenthe system's wave fun
tion is in H�, i.e., when this wave fun
tion is an eigenstate of A of eigen-value ��|insofar as it suggests that something pe
uliarly quantum is going on when the wavefun
tion is not an eigenstate whereas in fa
t there is nothing the least bit pe
uliar about thesituation|perhaps does more harm than good.It might be obje
ted that we are 
laiming to arrive at the quantum formalism under some-what unrealisti
 assumptions, su
h as, for example, reprodu
ibility or �nite dimensionality. Weagree. But this obje
tion misses the point of the exer
ise. The quantum formalism itself is anidealization; when appli
able at all, it is only as an approximation. Beyond illuminating the roleof operators as ingredients in this formalism, our point was to indi
ate how naturally it emerges.In this regard we must emphasize that the following question arises for quantum orthodoxy, butdoes not arise for Bohmian me
hani
s: For pre
isely whi
h theory is the quantum formalism anidealization?We shall dis
uss how to go beyond the idealization involved in the quantum formalism inSe
tion 4|after having analyzed it thoroughly in Se
tion 3. First we wish to show that manymore experiments than those satisfying our assumptions 
an indeed be asso
iated with operatorsin exa
tly the manner we have des
ribed.2.10 The General Framework of Bohmian ExperimentsA

ording to (2.19) the statisti
s of the results of a dis
rete experiment are governed by theprobability measure �	T ÆF�1, where �	T (dq) = j	T (q)j2dq is the quantum equilibrium measure.Note that dis
reteness of the value spa
e of F plays no role in the 
hara
terization of thismeasure. This suggests that we may 
onsider a more general notion of experiment, not basedon the assumption of a 
ountable set of out
omes, but only on the unitarity of the operator U ,whi
h transforms the initial state  
 �0 into the �nal state 	T , and on a generi
 
alibrationfun
tion F from the 
on�guration spa
e of the 
omposite system to some value spa
e, e.g., R,or Rm , giving the result of the experiment as a fun
tion F (QT ) of the �nal 
on�guration QT ofsystem and apparatus. We arrive in this way at the notion of general experimentE � f�0; U; Fg; (2.34)where the unitary U embodies the intera
tion of system and apparatus and the fun
tion F 
ouldbe 
ompletely general. Of 
ourse, for appli
ation to the results of real-world experiments F mightrepresent the \orientation of the apparatus pointer" or some 
oarse-graining thereof.Performing E on a system with initial wave fun
tion  leads to the result Z = F (QT ) and sin
eQT is randomly distributed a

ording to the quantum equilibrium measure �	T , the probabilitydistribution of Z is given by the indu
ed measure�Z = �	T Æ F�1 : (2.35)19



(We have made expli
it only the dependen
e of the measure on  , sin
e the initial apparatusstate �0 is of 
ourse �xed, de�ned by the experiment E .) Note that this more general notion ofexperiment eliminates the slight vagueness arising from the impre
ise notion of ma
ros
opi
 uponwhi
h the notion of dis
rete experiment is based. Note also that the stru
ture (2.34) 
onveysinformation about the wave fun
tion (2.6) of the system after a 
ertain result F (QT ) is obtained.Note, however, that this somewhat formal notion of experiment may not 
ontain enoughinformation to determine the detailed Bohmian dynami
s, whi
h would require spe
i�
ationof the Hamiltonian of the system-apparatus 
omposite, that might not be 
aptured by U . Inparti
ular, the �nal 
on�guration QT may not be determined, for given initial wave fun
tion, asa fun
tion of the initial 
on�guration of system and apparatus. E does, however, determine whatis relevant for our purposes about the random variable QT , namely its distribution, and hen
ethat of Z = F (QT ).Let us now fo
us on the right had side of the equation (2.29), whi
h establishes the asso
iationof operators with experiments: h ; PH� i is the probability that \the operator A has value ��",and a

ording to standard quantum me
hani
s the statisti
s of the results of measuring a generalself-adjoint operator A, not ne
essarily with pure point spe
trum, in the (normalized) state  are des
ribed by the probability measure� 7! �A (�) � h ; PA(�) i (2.36)where � is a (Borel) set of real numbers and PA : � 7! PA(�) is the proje
tion-valued-measure(PVM) uniquely asso
iated with A by the spe
tral theorem. (We re
all [70℄ that a PVM isa normalized, 
ountably additive set fun
tion whose values are, instead of nonnegative reals,orthogonal proje
tions on a Hilbert spa
e H. Any PVM P onH determines, for any given  2 H,a probability measure � � �P : � 7! h ; P (�) i on R. Integration against proje
tion-valued-measure is analogous to integration against ordinary measures, so that B � R f(�)P (d�) is well-de�ned, as an operator on H. Moreover, by the spe
tral theorem every self-adjoint operator A isof the form A = R �P (d�), for a unique proje
tion-valued-measure P = PA, and R f(�)P (d�) =f(A). )It is then rather 
lear how (2.33) extends to general self-adjoint operators: a general exper-iment E is a measurement of the self-adjoint operator A if the statisti
s of the results of E aregiven by (2.36), i.e., E 7! A if and only if �Z = �A : (2.37)In parti
ular, if E 7! A, then the moments of the result of E are the moments of A:< Zn >= Z �nh ; P (d�) i = h ;An i:3 The Quantum FormalismThe spirit of this se
tion will be rather di�erent from that of the previous one. Here the fo
uswill be on the formal stru
ture of experiments measuring self-adjoint operators. Our aim is toshow that the standard quantum formalism emerges from a formal analysis of the asso
iationE 7! A between operator and experiment provided by (2.37). By \formal analysis" we mean notonly that the detailed physi
al 
onditions under whi
h might E 7! A hold (e.g., reprodu
ibility)20



will play no role, but also that the pra
ti
al requirement that E be physi
ally realizable will beof no relevan
e whatsoever.Note that su
h a formal approa
h is unavoidable in order to re
over the quantum formalism.In fa
t, within the quantum formalism one may 
onsider measurements of arbitrary self-adjointoperators, for example, the operator A = X̂2P̂ + P̂X2, where X̂ and P̂ are respe
tively theposition and the momentum operators. However, it may very well be the 
ase that no \realworld" experiment measuring A exists. Thus, in order to allow for measurements of arbitrary self-adjoint operators we shall regard (2.34) as 
hara
terizing an \abstra
t experiment"; in parti
ular,we shall not regard the unitary map U as arising ne
essarily from a (realizable) S
hr�odinger timeevolution. We may also speak of virtual experiments.In this regard one should observe that to resort to a formal analysis is indeed quite 
ommonin physi
s. Consider, e.g., the Hamiltonian formulation of 
lassi
al me
hani
s that arose from anabstra
tion of the physi
al des
ription of the world provided by Newtonian me
hani
s. Here wemay freely speak of 
ompletely general Hamiltonians, e.g. H(p; q) = p6, without being 
on
ernedabout whether they are physi
al or not. Indeed, only very few Hamiltonians 
orrespond tophysi
ally realizable motions!A warning: As we have stressed in the introdu
tion and in Se
tion 2.9, when we speak hereof a measurement we don't usually mean a genuine measurement|an experiment revealing thepre-existing value of a quantity of interest, the measured quantity or property. (We speak in thisunfortunate way be
ause it is standard.) Genuine measurement will be dis
ussed mu
h later, inSe
tion 7.3.1 Weak Formal MeasurementsThe �rst formal notion we shall 
onsider is that of weak formal measurement, formalizing therelevant data of an experiment measuring a self-adjoint operator:Any orthogonal de
omposition H =L�H�, i.e., any 
omplete 
olle
tion fH�g ofmutually orthogonal subspa
es, paired with any set f��g of distin
t real numbers,de�nes the weak formal measurement M� f(H�; ��)g � fH�; ��g. (3.1)(Compare (3.1) with (2.32) and note that now we are not assuming that the spa
es H� are�nite-dimensional.) The notion of weak formal measurement is aimed at expressing the minimalstru
ture that all experiments (some or all of whi
h might be virtual) measuring the same operatorA =P��PH� have in 
ommon (PH� is the orthogonal proje
tion onto the subspa
e H�). Then,\to perform M" shall mean to perform (at least virtually) any one of these experiments, i.e.,any experiment su
h that p� = h ; PH� i (3.2)is the probability of obtaining the result �� on a system initially in the state  . (This is of 
ourseequivalent to requiring that the result �� is de�nitely obtained if and only if the initial wavefun
tion  2 H�.)Given M� fH�; ��g 
onsider the set fun
tionP : � 7! P (�) � X��2�PH� ; (3.3)where � is a set of real numbers (te
hni
ally, a Borel set). Then21



1) P is normalized, i.e., P (R) = I, where I is the identity operator and R is the real line,2) P (�) is an orthogonal proje
tion, i.e., P (�)2 = P (�) = P (�)�,3) P is 
ountably additive, i.e., P (Sn�n) =Pn P (�n), for �n disjoint sets.Thus P is a proje
tion-valued-measure and therefore the notion of weak formal measurement isindeed equivalent to that of \dis
rete" PVM, that is, a PVM supported by a 
ountable set f��gof values.More general PVMs, e.g. PVMs supported by a 
ontinuous set of values, will arise if weextend (3.1) and base the notion of weak formal measurement upon the general asso
iation(2.37) between experiments and operators. If we stipulate thatany proje
tion-valued-measure P on H de�nes a weak formal measurement M� P , (3.4)then \to perform M" shall mean to perform any experiment E asso
iated with A = R �P (d�)in the sense of (2.37).Note that sin
e by the spe
tral theorem there is a natural one-to-one 
orresponden
e betweenPVMs and self-adjoint operators, we may speak equivalently of the operator A = AM, for givenM, or of the weak formal M =MA, for given A. In parti
ular, the weak formal measurementMA represents the equivalen
e 
lass of all experiments E ! A.3.2 Strong Formal MeasurementsWe wish now to 
lassify the di�erent experiments E asso
iated with the same self-adjoint operatorA by taking into a

ount the e�e
t of E on the state of the system, i.e., the state transformations !  � indu
ed by the o

urren
e of the various results �� of E . A

ordingly, unless otherwisestated, from now on we shall assume E to be a dis
rete experiment measuring A = P��PH� ,for whi
h the state transformation  !  � is de�ned by (2.18). This leads to the notion ofstrong formal measurements. For the most important types of strong formal measurements,ideal, normal and standard, there is a one-to-one 
orresponden
e between �'s and numeri
alresults ��.3.2.1 Ideal MeasurementsGiven a weak formal measurement of A, the simplest possibility for the transition  !  � isthat when the result �� is obtained, the initial state  is proje
ted onto the 
orresponding spa
eH�, i.e., that  !  � = PH� : (3.5)This pres
ription de�nes uniquely the ideal measurement of A. (The transformation  !  �should be regarded as de�ned only in the proje
tive sense:  !  � and  ! 
 � (
 6= 0) shouldbe regarded as the same transition.) \To perform an ideal measurement of A" shall then meanto perform a dis
rete experiment E whose results are statisti
ally distributed a

ording to (3.2)and whose state transformations (2.18) are given by (3.5).Under an ideal measurement the wave fun
tion 
hanges as little as possible: an initial  2 H�is un
hanged by the measurement. Ideal measurements have always played a privileged role inquantum me
hani
s. It is the ideal measurements that are most frequently dis
ussed in textbooks.22



It is for ideal measurements that the standard 
ollapse rule is obeyed. When Dira
 [23℄ wrote:\a measurement always 
auses the system to jump into an eigenstate of the dynami
al variablethat is being measured" he was referring to an ideal measurement.3.2.2 Normal MeasurementsThe rigid stru
ture of ideal measurements 
an be weakened by requiring only that H� as a whole,and not the individual ve
tors in H�, is un
hanged by the measurement and therefore that thestate transformations indu
ed by the measurement are su
h that when the result �� is obtainedthe transition  !  � = U�PH� (3.6)o

urs, where the U� are operators on H� ( U� : H� ! H�). Then for any su
h dis
reteexperiment E measuring A, the U� 
an be 
hosen so that (3.6) agrees with (2.18), i.e., so that for 2 H�, U( 
�0) = U� 
��, and hen
e so that U� is unitary (or at least a partial isometry).Su
h a measurement, with unitaries U� : H� !H�, will be 
alled a normal measurement of A.In 
ontrast with an ideal measurement, a normal measurement of an operator is not uniquelydetermined by the operator itself: additional information is needed to determine the transitions,and this is provided by the family fU�g. Di�erent families de�ne di�erent normal measurementsof the same operator. Note that ideal measurements are, of 
ourse, normal (with U� = I� � iden-tity on H�), and that normal measurements with one-dimensional subspa
es H� are ne
essarilyideal.Sin
e the transformations (3.6) leave invariant the subspa
es H�, the notion of normal mea-surement 
hara
terizes 
ompletely the 
lass of reprodu
ible measurements of self-adjoint oper-ators. Following the terminology introdu
ed by Pauli [66℄, normal measurement are sometimes
alledmeasurements of �rst kind . Normal measurements are also quantum non demolition (QND)measurements [18℄, de�ned as measurements su
h that the operators des
ribing the indu
edstate transformations, i.e, the operators R� � U�PH�, 
ommute with the measured operatorA =P��PH�. (This 
ondition is regarded as expressing that the measurement leaves the mea-sured observable A unperturbed).3.2.3 Standard MeasurementsWe may now drop the 
ondition that the H� are left invariant by the measurement and 
onsiderthe very general state transformations !  � = T�PH� (3.7)with operators T� : H� ! H. Then, exa
tly as for the 
ase of normal measurements, it followsthat T� 
an be 
hosen to be unitary from H� onto its range fH�. The subspa
es fH� need beneither orthogonal nor distin
t. We shall write R� = T�PH� for the general transition operators.With T� as 
hosen, R� is 
hara
terized by the equation R��R� = PH� (where R�� denotes theadjoint of R�).The state transformations (3.7), given by unitaries T� : H� ! fH�, or equivalently by boundedoperators R� on H satisfying R��R� = PH�, de�ne what we shall 
all a standard measurement ofA. Note that normal measurements are standard measurements with fH� = H� (or fH� � H�).Although standard measurements are in a sense more realisti
 than normal measurements (real23



world measurements are seldom reprodu
ible in a stri
t sense), they are very rarely dis
ussed intextbooks. We emphasize that the 
ru
ial data in a standard measurement is given by R�, whi
hgoverns both the state transformations ( ! Ra ) and the probabilities (p� = h ; PH� i =kR� k2).We shall illustrate the main features of standard measurements by 
onsidering a very simpleexample: Let fe0; e1; e2; : : :g, be a �xed orthonormal basis of H and 
onsider the standard mea-surement whose results are the numbers 0; 1; 2; : : : and whose state transformations are de�nedby the operators R� � je0ihe�j i.e., R� = he�;  ie0; � = 0; 1; 2; : : :With su
h R�'s are asso
iated the proje
tions P� = R��R� = je�ihe�j , i.e., the proje
tionsonto the one dimensional spa
es H� spanned respe
tively by the ve
tors e�. Thus, this is ameasurement of the operator A =P� �je�ihe�j. Note that the spa
es fH�, i.e. the ranges of theR�'s, are all the same and equal to the spa
e H0 generated by the ve
tor e0. The measurementis then not normal sin
e H� 6= fH�. Finally, note that this measurement 
ould be regarded asgiving a simple model for a photo dete
tion experiment, where any state is proje
ted onto the\va
uum state" e0 after the dete
tion.3.2.4 Strong Formal MeasurementsWe shall now relax the 
ondition that � 7! �� is one-to-one, as we would have to do for anexperiment having a general 
alibration � 7! ��, whi
h need not be invertible. This leads to(what we shall 
all) a strong formal measurement. Sin
e this notion provides the most generalformalization of the notion of a \measurement of a self-adjoint operator" that takes into a

ountthe e�e
t of the measurement on the state of the system, we shall spell it out pre
isely as follows:Any 
omplete (labelled) 
olle
tion fH�g of mutually orthogonal subspa
es, any (la-belled) set f��g of not ne
essarily distin
t real numbers, and any (labelled) 
olle
-tion fR�g of bounded operators on H, su
h that R��R� � PH� (the proje
tion ontoH�), de�nes a strong formal measurement. (3.8)A strong formal measurement will be 
ompa
tly denoted by M � f(H�; ��; R�)g �fH�; ��; R�g, or even more 
ompa
tly by M � f��; R�g (the spa
es H� 
an be extra
tedfrom the proje
tions PH� = R��R�). With M is asso
iated the operator A = P��PH�. Notethat sin
e the �� are not ne
essarily distin
t numbers, PH� need not be the spe
tral proje
tionPA(��) asso
iated with ��; in generalPA(�) = X�:��=�PH�;i.e., it is the sum of all the PH�'s that are asso
iated with the value �.15 \To perform themeasurement M" on a system initially in  shall a

ordingly mean to perform a dis
rete ex-periment E su
h that: 1) the probability p(�) of getting the result � is governed by A, i.e.,15It is for this reason that it would be pointless and inappropriate to similarly generalize weak measurements.It is only when the state transformation is taken into a

ount that the distin
tion between the out
ome � (whi
hdetermines the transformation) and the result �� (whose probability the formal measurement is to supply) be
omesrelevant. 24



p(�) = h ; PA(�) i, and 2) the state transformations of E are those pres
ribed by M, i.e., !  � = R� .Observe that strong formal measurements do provide a more realisti
 formalization of thenotion of measurement of an operator than standard measurements: the notion of dis
rete ex-periment does not imply a one-to-one 
orresponden
e between out
omes, i.e, �nal ma
ros
opi

on�gurations of the pointer, and the numeri
al results of the experiment.The relationship between (weak or strong) formal measurements, self-adjoint operators, andexperiments 
an be summarized by the following sequen
e of maps:E 7! M 7! A (3.9)The �rst map expresses thatM (weak or strong) is a formalization of E|it 
ontains the \relevantdata" about E|and it will be many-to-one if M is a weak formal measurement16; the se
ondmap expresses thatM is a formal measurement of A and it will be many-to-one ifM is (requiredto be) strong and one-to-one ifM is weak. Note that E 7! A is always many-to-one.3.3 From Formal Measurements to ExperimentsGiven a strong measurement M� fH�; ��; R�g one may easily 
onstru
t a map (2.18) de�ninga dis
rete experiment E = EM asso
iated with M:U :  
 �0 7!X� (R� )
 �� (3.10)The unitarity of U ( from H 
 �0 onto the range of U) follows then immediately from theorthonormality of the f��g sin
eX� kR� k2 =X� h ;R��R� i = h ;X� PH� i = h ;  i = k k2 (3.11)This experiment is abstra
tly 
hara
terized by: 1) the �nite or 
ountable set I of out
omes �,2) the apparatus ready state �0 and the set f��g of normalized apparatus states, 3) the unitarymap U : H
 �0 !L�H
 �� given by (3.10), 4) the 
alibration � 7! �� assigning numeri
alvalues (or a ve
tor of su
h values) to the various out
omes �. Note that U need not arise froma S
hr�odinger Hamiltonian governing the intera
tion between system and apparatus. Thus Eshould properly be regarded as an \abstra
t" experiment as we have already pointed out in theintrodu
tion to this se
tion.3.4 Von Neumann MeasurementsWe shall now brie
y 
omment on the relation between our approa
h, based on formal measure-ments, and the widely used formulation of quantum measurement in terms of von Neumannmeasurements [74℄.A von Neumann measurement of A = P��PH� on a system initially in the state  
an bedes
ribed as follows (while the nondegenera
y of the eigenvalues of A|i.e., that dim(H�) = 1|is usually assumed, we shall not do so): Assume that the (relevant) 
on�guration spa
e of the16There is an obvious natural unitary equivalen
e between the preimages E of a strong formal measurementM. 25



apparatus, whose generi
 
on�guration shall be denoted by y, is one-dimensional, so that itsHilbert spa
e HA ' L2(R), and that the intera
tion between system and apparatus is governedby the Hamiltonian H = HvN = 
A
 P̂y (3.12)where P̂y � i~�=�y is (minus) the momentum operator of the apparatus. Let �0 = �0(y) bethe ready state of the apparatus. Then for  = PH� one easily sees that the unitary operatorU � e�iTH=~ transforms the initial state  �
�0 into  �
�� where �� = �0(y���
T ), so thatthe a
tion of U on general  =PPH� isU :  
 �0 !X� (PH� )
 �� (3.13)If �0 has suÆ
iently narrow support, say around y = 0, the �� will have disjoint supportaround the \pointer positions" y� = ��
T , and thus will be orthogonal, so that, with 
alibrationF (y) = y=
T (more pre
isely, F (y) = y�=
T for y in the support of ��), the resulting vonNeumann measurement be
omes a dis
rete experiment measuring A; 
omparing (3.13) and (3.5)we see that it is an ideal measurement of A.17Thus, the framework of von Neumann measurements is less general than that of dis
reteexperiments, or equivalently of strong formal measurements; at the same time, sin
e the Hamil-tonian HvN is not of S
hr�odinger type, von Neumann measurements are just as formal. (We notethat more general von Neumann measurements of A 
an be obtained by repla
ing HvN with moregeneral Hamiltonians; for example, H 0vN = H0 +HvN, where H0 is a self-adjoint operator on thesystem Hilbert spa
e whi
h 
ommutes with A, gives rise to a normal measurement of A, withR� = e�iTH0=~PH�.Thus by proper extension of the von Neumann measurements one may arriveat a framework of measurements 
ompletely equivalent to that of strong formal measurements.)3.5 Preparation Pro
eduresBefore dis
ussing further extensions of the asso
iation between experiments and operators, weshall 
omment on an impli
it assumption apparently required for the measurement analysis tobe relevant: that the system upon whi
h measurements are to be performed 
an be prepared inany pres
ribed state  .Firstly, we observe that the system 
an be prepared in a pres
ribed state  by means ofan appropriate standard measurement M performed on the system when it is initially in anunknown state  0. We have to 
hoose M � fH�; ��; R�g in su
h a way that R�0 0 =  , forsome �0 and all  0, i.e., that Ran(R�0) = span( ); then from reading the result ��0 we mayinfer that the system has 
ollapsed to the state  . The simplest possibility is for M to be anideal measurement with at least a one-dimensional subspa
e H�0 that is spanned by  . Anotherpossibility is to perform a (nonideal) standard measurement like that of the example at the endof Se
tion 3.2.3, whi
h 
an be regarded as de�ning a preparation pro
edure for the state e0.Se
ondly, we wish to emphasize that the existen
e of preparation pro
edures is not as 
ru
ialfor relevan
e as it may seem. If we had only statisti
al knowledge about the initial state  ,nothing would 
hange in our analysis of Bohmian experiments of Se
tion 2, and in our 
on
lusions17It is usually required that von Neumann measurements be impulsive (
 large, T small) so that only theintera
tion term (3.12) 
ontributes signi�
antly to the total Hamiltonian over the 
ourse of the measurement.26




on
erning the emergen
e of self-adjoint operators, ex
ept that the un
ertainty about the �nal
on�guration of the pointer would originate from both quantum equilibrium and randomness in . We shall elaborate upon this later when we dis
uss Bohmian experiments for initial statesdes
ribed by a density matrix.3.6 Measurements of Commuting Families of OperatorsAs hinted in Se
tion 2.7, the result of an experiment E might be more 
omplex than we have sug-gested until now in Se
tion 3: it might be given by the ve
tor �� � (�(1)� ; : : : ; �(m)� ) 
orrespondingto the orientations of m pointers. For example, the apparatus itself may be a 
omposite of mdevi
es with the possible results �(i)� 
orresponding to the �nal state of the i-th devi
e. Nothingmu
h will 
hange in our dis
ussion of measurements if we now repla
e the numbers �� withthe ve
tors �� � (�(1)� ; : : : ; �(m)� ), sin
e the dimension of the value spa
e was not very relevant.However E will now be asso
iated, not with a single self-adjoint operator, but with a 
ommutingfamily of su
h operators. In other words, we arrive at the notion of an experiment E that is ameasurement of a 
ommuting family of self-adjoint operators,18 namely the familyA �X� ��PH� =  X� �(1)� PH�; : : : ;X� �(m)� PH�! � (A1; : : : ; Am): (3.14)Then the notions of the various kinds of formal measurements|weak, ideal, normal, standard,strong|extend straightforwardly to formal measurements of 
ommuting families of operators. Inparti
ular, for the general notion of weak formal measurement given by 3.4, P be
omes a PVM onRm , with asso
iated operators Ai = RRm �(i)P (d�) [� = (�(1); : : : ; �(m)) 2 Rm ℄. And just as forPVMs on R and self-adjoint operators, this asso
iation in fa
t yields, by the spe
tral theorem,a one-to-one 
orresponden
e between PVMs on Rm and 
ommuting families of m self-adjointoperators.The PVM 
orresponding to the 
ommuting family (A1; : : : ; Am) is in fa
t simply theprodu
t PVM P = PA = PA1 � � � � � PAm given on produ
t sets byPA(�1 � � � � ��m) = PA1(�1) � � �PAm(�m); (3.15)where PA1; : : : ; PAm are the PVMs of A1; : : : ; Am, and �i � R, with the asso
iated probabilitydistributions on Rm given by the spe
tral measures for A�A (�) = h ; PA(�) i (3.16)for any (Borel) set � � Rm .18We re
all some basi
 fa
ts about 
ommuting families of self-adjoint operators [74, 71, 68℄. The self-adjointoperators A1; : : : ; Am form a 
ommuting family if they are bounded and pairwise 
ommute, or, more generally,if this is so for their spe
tral proje
tions, i.e., if [PAi(�); PAj (�)℄ = 0 for all i; j = 1; : : : ;m and (Borel) sets�;� � R. A 
ommuting family A � (A1; : : : ; Am) of self-adjoint operators is 
alled 
omplete if every self-adjointoperator C that 
ommutes with all members of the family 
an be expressed as C = g(A1; A2; : : : ) for some fun
tiong. The set of all su
h operators 
annot be extended in any suitable sense (it is 
losed in all relevant operatortopologies). For any 
ommuting family (A1; : : : ; Am) of self-adjoint operators there is a self-adjoint operator Band measurable fun
tions fi su
h that Ai = fi(B). If the family is 
omplete, then this operator has simple (i.e.,nondegenerate) spe
trum. 27



In parti
ular, for a PVM on Rm , 
orresponding to A = (A1; : : : ; Am), the i-marginal distri-bution, i.e., the distribution of the i-th 
omponent �(i), is�A (R � � � �R ��i � R � � � � � R) = h ; PAi(�i) i = �Ai (�i);the spe
tral measure for Ai. Thus, by fo
using on the respe
tive pointer variables �(i), wemay regard an experiment measuring (or a weak formal measurement of) A = (A1; : : : ; Am) asproviding an experiment measuring (or a weak formal measurement of) ea
h Ai, just as wouldbe the 
ase for a genuine measurement of m quantities A1; : : : ; Am. Note also the following:If fH�; ��; R�g is a strong formal measurement of A = (A1; : : : ; Am), then fH�; �(i)� ; R�g is astrong formal measurement of Ai, but if fH�; ��; R�g is an ideal, resp. normal, resp. standard,measurement of A, fH�; �(i)� ; R�g need not be ideal, resp. normal, resp. standard.There is a 
ru
ial point to observe: the same operator may belong to di�erent 
ommuting fam-ilies. Consider, for example, a measurement of A = (A1; : : : ; Am) and one of B = (B1; : : : ; Bm),where A1 = B1 � C. Then while both measurements provide a measurement of C, they 
ould betotally di�erent: the operators Ai and Bi for i 6= 1 need not 
ommute and the PVMs of A andB, as well as any 
orresponding experiments E A and E B, will be in general essentially di�erent.To emphasize this point we shall re
all a famous example, the EPRB experiment [32, 14℄: Apair of spin one-half parti
les, prepared in a spin-singlet state = 1p2 � (+) 
  (�) +  (�) 
  (+)� ;are moving freely in opposite dire
tions. Measurements are made, say by Stern-Gerla
h magnets,on sele
ted 
omponents of the spins of the two parti
les. Let a; b; 
 be three di�erent unitve
tors in spa
e, let �1 � � 
 I and let �2 � I 
 �; where � = (�x; �y; �z) are the Paulimatri
es. Then we 
ould measure the operator �1�a by measuring either of the 
ommutingfamilies (�1�a ;�2�b) and (�1�a ;�2�
). However these measurements are di�erent, both as weakand as strong measurements, and of 
ourse as experiments. In Bohmian me
hani
s the resultobtained at one pla
e at any given time will in fa
t depend upon the 
hoi
e of the measurementsimultaneously performed at the other pla
e (i.e., on whether the spin of the other parti
le ismeasured along b or along 
). However, the statisti
s of the results won't be a�e
ted by the
hoi
e of measurement at the other pla
e be
ause both 
hoi
es yield measurements of the sameoperator and thus their results must have the same statisti
al distribution.3.7 Fun
tions of MeasurementsOne of the most 
ommon experimental pro
edures is to re
alibrate the s
ale of an experiment E :if Z is the original result and f an appropriate fun
tion, re
alibration by f leads to f(Z) as thenew result. Thus f(E ) has an obvious meaning. Moreover, if E 7! A a

ording to (2.37) then�f(Z) = �Z Æ f�1 = �A Æ f�1, and�A Æ f�1(d�) = h ; PA(f�1(d�)) i = h ; P f(A)(d�) iwhere the last equality follows from the very de�nition off(A) = Z f(�)PA(d�) = Z �PA(f�1(d�))28



provided by the spe
tral theorem. Thus,if �Z = �A then �f(Z) = �f(A) ; (3.17)i.e., if E 7! A then f(E ) 7! f(A): (3.18)The notion of fun
tion of a formal measurement has then an unequivo
al meaning: if Mis a weak formal measurement de�ned by the PVM P then f(M) is the weak formal mea-surement de�ned by the PVM P Æ f�1, so that if M is a measurement of A then f(M) is ameasurement of f(A); for a strong formal measurement M = fH�; ��; R�g the self-evident re-quirement that the re
alibration not a�e
t the wave fun
tion transitions indu
ed by M leads tof(M) = fH�; f(��); R�g. Note that ifM is a standard measurement, f(M) will in general notbe standard (sin
e in general f 
an be many{to{one).To highlight some subtleties of the notion of fun
tion of measurement we shall dis
uss twoexamples: Suppose that M and M0 are respe
tively measurements of the 
ommuting familiesA = (A1; A2) and B = (B1; B2), with A1A2 = B1B2 = C. Let f : R2 ! R, f(�1; �2) = �1�2.Then both f(M) and f(M0) are measurement of the same self-adjoint operator C. Nevertheless,as strong measurements or as experiments, they 
ould be very di�erent: if A2 and B2 do not
ommute they will be asso
iated with di�erent families of spe
tral proje
tions. (Even moresimply, 
onsider measurements Mx and My of �x and �y and let f(�) = �2. Then f(Mx) andf(My) are measurement of I|so that the result must be 1)|but the two strong measurements,as well as the 
orresponding experiments, are 
ompletely di�erent.)The se
ond example is provided by measurements designed to determine whether the operatorA = P��PH� (the ��'s are distin
t) has values in some given set �. This determination 
anbe a

omplished in at least two di�erent ways: Suppose that M is an ideal measurement of Aand let 1�(�) be the 
hara
teristi
 fun
tion of the set �. Then we 
ould perform 1�(M), thatis, we measure A and see whether \A 2 �". But we 
ould also perform an \ideal determinationof A 2 �", that is, an ideal measurement of 1�(A) = PA(�). Now, both measurements providea \measurement of A 2 �" (i.e., of the operator 1�(A)), sin
e in both 
ases the results 1 and 0get assigned the same probabilities. However, as strong measurements, they are di�erent: when1�(M) is performed, and the result 1 is obtained,  undergoes the transition ! PH� where � is the out
ome with �� 2 � that a
tually o

urs. On the other hand, for an idealmeasurement of 1�(A), the o

urren
e of the result 1 will generate the transition ! PA(�) = X��2�PH� :Note that in this 
ase the state of the system is 
hanged as little as possible. For example,suppose that two eigenvalues, say ��1 ; ��2, belong to � and  =  �1 +  �2 ; then determinationby performing 1�(M) will lead to either  �1 or  �2 , while the ideal determination of A 2 � willnot 
hange the state. 29



3.8 Measurements of Operators with Continuous Spe
trumWe shall now re
onsider the status of measurements of self-adjoint operators with 
ontinuousspe
trum. First of all, we remark that while on the weak level su
h measurements arise verynaturally|and, as already stressed in Se
tion 3.1, are indeed the �rst to appear in Bohmianme
hani
s|there is no straightforward extension of the notion of strong measurement to opera-tors with 
ontinuous spe
trum.However, for given set of real numbers �, one may 
onsider any determination of A 2 �, thatis, any strong measurement of the spe
tral proje
tion PA(�). More generally, for any 
hoi
e ofa simple fun
tion f(�) = NXi=1 
i 1�i(�);one may 
onsider the strong measurements of f(A). In parti
ular, let ff (n)g be a sequen
e ofsimple fun
tions 
onverging to the identity, so that f (n)(A)! A, and let Mn be measurementsof f (n)(A). Then Mn are approximate measurements of A.Observe that the foregoing applies to operators with dis
rete spe
trum, as well as to operatorswith 
ontinuous spe
trum. But note that while on the weak level we always haveMn !M ;where M is a (general) weak measurement of A (in the sense of (3.4)), if A has 
ontinuousspe
trum M will not exist as a strong measurement (in any reasonable generalized sense, sin
ethis would imply the existen
e of a bounded-operator-valued fun
tion R� on the spe
trum of Asu
h that R��R� d� = PA(d�), whi
h is 
learly impossible). In other words, in this 
ase there
an be no a
tual (generalized) strong measurement that the approximate measurements Mnapproximate|whi
h is perfe
tly reasonable.3.9 Sequential MeasurementsSuppose that n measurements (with for ea
h i, the �(i)�i distin
t)M1 � fH(1)�1 ; �(1)�1 ; R(1)�1 g; : : : ; Mn � fH(n)�n ; �(n)�n ; R(n)�n gof operators (whi
h need not 
ommute)A1 =X�1 �(1)�1 P (1)�1 ; : : : ; An =X�n �(n)�n P (n)�nare su

essively performed on our system at times 0 < t1 < t2 < � � � < tN . Assume that theduration of any single measurement is small with respe
t to the time di�eren
es ti� ti�1, so thatthe measurements 
an be regarded as instantaneous. If in between two su

essive measurementsthe system's wave fun
tion 
hanges unitarily with the operators Ut then, using obvious notation,Prob (A1 = �(1)�1 ; : : : ; An = �(n)�n ) = kR(n)�n (tn) � � � R(1)�1 (t1) k2; (3.19)where R(i)�i (t) = U�1t R(i)�iUt and  is the initial (t = 0) wave fun
tion.30



To understand how (3.19) 
omes about 
onsider �rst the 
ase where n = 2 and t2 � t1 � 0.A

ording to standard probability rules, the probability of obtaining the results Z1 = �(1)�1 for the�rst measurement and Z2 = �(2)�2 for the se
ond one is the produ
t19Prob (Z2 = �(2)�2 jZ1 = �(1)�1 ) � Prob (Z1 = �(1)�1 )where the �rst term is the probability of obtaining �(2)�2 given that the result of the �rst measure-ment is �(1)�1 . Sin
e M1 then transforms the wave fun
tion  to R(1)�1  , the (normalized) initialwave fun
tion for M2 is R(1)�1  =kR(1)�1  k, this probability is equal tokR(2)�2R(1)�1  k2kR(1)�1  k2 :The se
ond term, the probability of obtaining �(1)�1 , is of 
ourse kR(1)�1  k2. ThusProb (A(1) = �(1)�1 ; A(2) = �(2)�2 ) = kR(2)�2R(1)�1  k2in this 
ase. Note that, in agreement with the analysis of dis
rete experiments (see Eq. (2.20)),the probability of obtaining the results �(1)�1 and �(2)�2 turns out to be the square of the norm of the�nal system wave fun
tion asso
iated with these results. Now, for general times t1 and t2 � t1between the preparation of  at t = 0 and the performan
e of M1 and between M1 and M2,respe
tively, the �nal system wave fun
tion is R(2)�2 Ut2�t1R(1)�1 Ut1 = R(2)�2 Ut2U�1t1 R(1)�1 Ut1 : ButkR(2)�2 Ut2U�1t1 R(1)�1 Ut1 k = kU�1t2 R(2)�2 Ut2U�1t1 R(1)�1 Ut1 k; and it is easy to see, just as for the simple
ase just 
onsidered, that the square of the latter is the probability for the 
orresponding result,when
e (3.19) for n = 2. Iterating, i.e., by indu
tion, we arrive at (3.19) for general n.We note that when the measurementsM1; : : :Mn are ideal, the operators R(i)�i are the orthog-onal proje
tions P (i)�i , and equation (3.19) be
omes the standard formula for the joint probabilitiesof the results of a sequen
e of measurements of quantum observables, usually known as Wigner'sformula [76℄.It is important to observe that, even for ideal measurements, the joint probabilitiesgiven by (3.19) are not in general a 
onsistent family of joint distributions: summationin (3.19) over the out
omes of the i-th measurement does not yield the joint probabil-ities for the results of the measurements of the operators A1; : : : ; Ai�1; Ai+1; : : : An per-formed at the times t1; : : : ; ti�1; ti+1; : : : tn. (By rewriting the right hand side of (3.19) ash ;R(1)�1 (tn)� � � �R(n)�n (tn)�R(n)�n (tn)R(1)�1 (t1) i one easily sees that the \sum rule" will be satis�edwhen i = n or if the operators R(i)�i (ti) 
ommute. More generally, the 
onsisten
y is guaranteedby the \de
oheren
e 
onditions" of GriÆths, Omn�es, Gell-Mann and Hartle, and Goldstein andPage [46, 35, 44℄.19This is so be
ause of the 
onditional independen
e of the out
omes of two su

essive measurements giventhe �nal 
onditional wave fun
tion for the �rst measurement. More generally, the out
ome of any measurementdepends only on the wave fun
tion resulting from the pre
eding one. For Bohmian experiments this independen
eis a dire
t 
onsequen
e of (2.10). One may wonder about the status of this independen
e for orthodox quantumtheory. We stress that while this issue might be problemati
al for orthodox quantum theory, it is not a problemfor Bohmian me
hani
s: the 
onditional independen
e of two su

essive measurements is a 
onsequen
e of thetheory. (For more on this point, see [25℄).) We also would like to stress that this independen
e assumption is infa
t 
ru
ial for orthodox quantum theory. Without it, it is hard to see how one 
ould ever be justi�ed in invokingthe quantum formalism. Any measurement we may 
onsider will follow many earlier measurements.31



This failure of 
onsisten
y means that the marginals of the joint probabilities given by (3.19)are not themselves given by the 
orresponding 
ase of the formula. This should, however, 
ome asno surprise: Sin
e performing the measurement Mi a�e
ts the state of the system, the out
omeof Mi+1 should in general depend on whether or not Mi has been performed. Note that thereis nothing parti
ularly quantum in the fa
t that measurements matter in this way: They mattereven for genuine measurements (unlike those we have been 
onsidering, in whi
h nothing needbe genuinely measured), and even in 
lassi
al physi
s, if the measurements are su
h that theya�e
t the state of the system.The sequen
es of results �� � (�(1)�1 ; : : : ; �(n)�n ); the asso
iated state transformations R� �R(n)�n Utn�tn�1R(n�1)�n�1 � � � R(1)�1 Ut1 ; and the probabilities (3.19) (i.e., given by p� = kR�k2) de�ne whatwe shall 
all a sequential measurement ofM1; � � �Mn, whi
h we shall denote byMn
 : : :
M1.A sequential measurement does not in general de�ne a formal measurement, neither weak norstrong, sin
e R��R� need not be a proje
tion. This fa
t might seem disturbing (see, e.g., [21℄);we shall take up this issue in the next se
tion.3.10 Some Summarizing RemarksThe notion of formal measurement we have explored in this se
tion is at the heart of the quantumformalism. It embodies the two essential ingredients of a quantum measurement: the self-adjointoperator A whi
h represents the measured observable and the set of state transformations R�asso
iated with the measured results. The operator always 
arries the information about thestatisti
s of possible results. The state transformations pres
ribe how the state of the system
hanges when the measurement is performed. For ideal measurement the latter information isalso provided by the operator, but in general additional stru
ture (the R�'s) is required.There are some important morals to draw. The asso
iation between measurements and oper-ators is many-to-one: the same operator A 
an be measured by many di�erent measurements,for example ideal, or normal but not ideal. Among the possible measurements of A, we must
onsider all possible measurements of 
ommuting families of operators that in
lude A, ea
h ofwhi
h may 
orrespond to entirely di�erent experimental setups.A related fa
t: not all measurements are ideal measurements.20 No argument, physi
al ormathemati
al, suggests that ideal measurements should be regarded as \more 
orre
t" than any20In this regard we observe that the vague belief in a universal 
ollapse rule is as old, almost, as quantumme
hani
s. It is re
e
ted in von Neumann's formulation of quantum me
hani
s [74℄, based on two distin
t dy-nami
al laws: a unitary evolution between measurements , and a nonunitary evolution when measurements areperformed. However, von Neumann's original proposal [74℄ for the nonunitary evolution|that when a measure-ment of A =P� ��PH� is performed upon a system in the state given by the density matrix W , the state of thesystem after the measurement is represented by the density matrixW 0 =X� X� h��� ;W���iP[��� ℄where, for ea
h �, f���g is a basis for H�|does not treat the general measurement as ideal. Moreover, thisexpression in general depends on the 
hoi
e of the basis f���g, and was thus 
riti
ized by L�uders [61℄, whoproposed the transformation W !W 0 =X� PH�WPH� ;as it gives a unique pres
ription. Note that for W = P[ ℄, where P[ ℄ is the proje
tion onto the initial pure state , W 0 =P� p�P[ �℄, where p� = jh ; PH� ij2 and  � = PH� , 
orresponding to an ideal measurement.32



other type. In parti
ular, the Wigner formula for the statisti
s of a sequen
e of ideal measure-ments is no more 
orre
t than the formula (3.19) for a sequen
e of more general measurement.Granting a privileged status to ideal measurements amounts to a drasti
 and arbitrary restri
-tion on the quantum formalism qua measurement formalism, sin
e many (in fa
t most) real worldmeasurements would be left out.In this regard we note that the arbitrary restri
tion to ideal measurements a�e
ts the resear
hprogram of \de
oherent" or \
onsistent" histories [35, 65, 46℄, sin
e Wigner's formula for a se-quen
e of ideal measurements is unquestionably at its basis. (It should be emphasized howeverthat the spe
ial status granted to ideal measurements is probably not the main diÆ
ulty withthis approa
h. The no-hidden-variables theorems, whi
h we shall dis
uss in Se
tion 7, show thatthe totality of di�erent families of weakly de
ohering histories, with their respe
tive probabilityformulas, is genuinely in
onsistent. While su
h in
onsisten
y is perfe
tly a

eptable for a mea-surement formalism, it is hard to see how it 
an be tolerated as the basis of what is 
laimed tobe a fundamental theory. For more on this, see [25, 43℄.4 The Extended Quantum FormalismAs indi
ated in Se
tion 2.9, the textbook quantum formalism is merely an idealization. Asjust stressed, not all real world measurements are ideal. In fa
t, in the real world the proje
tionpostulate|that when the measurement of an observable yields a spe
i�
 value, the wave fun
tionof the system is repla
ed by its proje
tion onto the 
orresponding eigenspa
e|is rarely obeyed.More importantly, a great many signi�
ant real-world experiments are simply not at all asso
iatedwith operators in the usual way. Consider for example an ele
tron with fairly general initial wavefun
tion, and surround the ele
tron with a \photographi
" plate, away from (the support of thewave fun
tion of) the ele
tron, but not too far away. This setup measures the position of \es
ape"of the ele
tron from the region surrounded by the plate. Noti
e that sin
e in general the time ofes
ape is random, it is not at all 
lear whi
h operator should 
orrespond to the es
ape position|it should not be the Heisenberg position operator at a spe
i�
 time, and a Heisenberg positionoperator at a random time has no meaning. In fa
t, there is presumably no su
h operator, so thatfor the experiment just des
ribed the probabilities for the possible results 
annot be expressedin the form (2.37), and in fa
t are not given by the spe
tral measure for any operator (on theHilbert spa
e of the system itself 21).Time measurements, for example es
ape times or de
ay times, are parti
ularly embarrassingfor the quantum formalism. This subje
t remains mired in 
ontroversy, with various resear
hgroups proposing their own favorite 
andidates for the \time operator" while paying little at-tention to the proposals of the other groups. For an analysis of time measurements within theframework of Bohmian me
hani
s, see [20℄; in this regard see also [57, 58, 59, 47℄.Be
ause of these and other diÆ
ulties, it has been proposed that we should go beyondoperators-as-observables, to \generalized observables," des
ribed by mathemati
al obje
ts evenmore abstra
t than operators (see, e.g., the books of Davies [21℄, Holevo [50℄ and Kraus [55℄). Thebasis of this generalization lies in the observation that, by the spe
tral theorem, the 
on
ept ofself-adjoint operator is 
ompletely equivalent to that of (a normalized) proje
tion-valued measure21There is of 
ourse an operator on the Hilbert spa
e of the 
omposite system 
onsisting of the ele
tron andthe photographi
 plate that 
orresponds to the dete
ted es
ape position, namely the operator asso
iated with theappropriate details of the state of the plate after the dete
tion.33



(PVM), an orthogonal-proje
tion-valued additive set fun
tion, on the value spa
e R. Orthogonalproje
tions are among the simplest examples of positive operators, and a natural generalizationof a \quantum observable" is provided by a positive-operator-valued measure (POVM): a nor-malized, 
ountably additive set fun
tion O whose values are positive operators on a Hilbert spa
eH. When a POVM is sandwi
hed by a wave fun
tion it generates a probability distribution�O : � 7! �O (�) � h ;O(�) i (4.1)in exa
tly the same manner as a PVM.4.1 POVMs and Bohmian ExperimentsFrom a fundamental perspe
tive, it may seem that we would regard this generalization, topositive-operator-valued measures, as a step in the wrong dire
tion, sin
e it supplies us witha new, mu
h larger 
lass of fundamentally unneeded abstra
t mathemati
al entities far removedfrom the basi
 ingredients of Bohmian me
hani
s. However from the perspe
tive of Bohmianphenomenology positive-operator-valued measures form an extremely natural 
lass of obje
ts|indeed more natural than proje
tion-valued measures.To see how this 
omes about observe that (2.18) de�nes a family of bounded linear operatorsR� by P[��℄ [U( 
 �0)℄ = (R� )
 ��; (4.2)in terms of whi
h we may rewrite the probability (2.20) of obtaining the result �� (distin
t) in ageneri
 dis
rete experiment asp� = k �k2 = kR� k2 = h ;R��R� i : (4.3)By the unitarity of the overall evolution of system and apparatus we have that P� k �k2 =P�h ;R��R� i = 1 for all  2 H, when
eX� R��R� = I : (4.4)The operators O� � R��R� are obviously positive, i.e.,h ;O� i � 0 for all  2 H (4.5)and by (4.4) sum up to the identity, X� O� = I : (4.6)Thus we may asso
iate with a generi
 dis
rete experiment E|with no assumptions about repro-du
ibility or anything else, but merely unitarity|a POVMO(�) = X��2�O� � X��2�R��R�; (4.7)in terms of whi
h the statisti
s of the results 
an be expressed in a 
ompa
t way: the probabilitythat the result of the experiment lies in a set � is given byX��2� p� = X��2�h ;O� i = h ;O(�) i : (4.8)Moreover, it follows from (2.18) and (4.2) that E generates state transformations !  � = R� : (4.9)34



4.2 Formal ExperimentsThe asso
iation between experiments and POVMs 
an be extended to a general experiment (2.34)in a straightforward way. In analogy with (2.37) we shall say that the POVM O is asso
iatedwith the experiment E whenever the probability distribution (2.35) of the results of E is equalto the probability measure (4.1) generated by O, i.e.,22E 7! O if and only if �Z = �O ; (4.10)We may now pro
eed as in Se
tion 3 and analyze on a formal level the asso
iation (4.10) byintrodu
ing the notions of weak and strong formal experiment as the obvious generalizations of(3.4) and (3.8):Any positive-operator-valued measure O de�nes the weak formal experiment E � O.Any set f��g of not ne
essarily distin
t real numbers (or ve
tors of real numbers)paired with any 
olle
tion fR�g of bounded operators on H su
h that PR��R� = Ide�nes the strong formal experiment E � f��; R�g with asso
iated POVM (4.7)and state transformations (4.9). (4.11)The notion of formal experiment is a genuine extension of that of formal measurement, thelatter being the spe
ial 
ase in whi
h O is a PVM and R��R� are the proje
tions.Formal experiments share with formal measurements many features. This is so be
ause allmeasure-theoreti
 properties of proje
tion-valued measures extend to positive-operator-valuedmeasures. For example, just as for PVMs, integration of real fun
tions against positive-operator-valued measure is a meaningful operation that generates self-adjoint operators: for given real(and measurable) fun
tion f , the operator B = R f(�)O(d�) is a self-adjoint operator de�ned,say, by its matrix elements h�;B i = R ���; (d�) for all � and  in H, where ��; is the 
omplexmeasure ��; (d�) = h�;O(d�) i. (We ignore the diÆ
ulties that might arise if f is not bounded.)In parti
ular, with O is asso
iated the self-adjoint operatorAO � Z �O(d�): (4.12)It is however important to observe that this asso
iation (unlike the 
ase of PVMs, for whi
hthe spe
tral theorem provides the inverse) is not invertible, sin
e the self-adjoint operator AO isalways asso
iated with the PVM provided by the spe
tral theorem. Thus, unlike PVMs, POVMsare not equivalent to self-adjoint operators. In general, the operator AO will 
arry informationonly about the mean value of the statisti
s of the results,Z � h ;O(d�) i = h ;AO i ;while for the higher moments we should expe
t thatZ �n h ;O(d�) i 6= h ;AnO i22Whenever (4.10) is satis�ed we may say that the experiment E is a measurement of the generalized observableO. We shall however avoid this terminology in 
onne
tion with generalized observables; even when it is standard(so that we use it), i.e., when O is a PVM and thus equivalent to a self-adjoint operator, it is in fa
t improper.35



unless O is a PVM.What we have just des
ribed is an important di�eren
e between general formal experimentsand formal measurements. This and other di�eren
es originate from the fa
t that a POVM is amu
h weaker notion than a PVM. For example, a POVM O on Rm|like ordinary measures andunlike PVMs|need not be a produ
t measure: If O1; : : : ; Om are the marginals of O,O1(�1) = O(�1 � Rm�1) ; : : : ; Om(�m) = O(Rm�1 ��m);the produ
t POVM O1 � � � � � Om will be in general di�erent from O. (This is trivial sin
e anyprobability measure on Rm times the identity is a POVM.)Another important di�eren
e between the notion of POVM and that of PVM is this: while theproje
tions P (�) of a PVM, for di�erent �'s, 
ommute, the operators O(�) of a generi
 POVMneed not 
ommute. An illustration of how this may naturally arise is provided by sequentialmeasurements.A sequential measurement (see Se
tion 3.9)Mn 
 : : :
M1 is indeed a very simple exampleof a formal experiment that in general is not a formal measurement (see also Davies [21℄). Wehave that Mn 
 : : :
M1 = f��; R�gwhere �� � (�(1)�1 ; : : : ; �(n)�n )and R� � R(n)�n Utn�tn�1R(n�1)�n�1 � � � R(1)�1 :Ut1 :Note that sin
e p� = kR� k2, we have thatX� R��R� = I, whi
h also follows dire
tly usingX�j R(j)�j �R(j)�j = I ; j = 1; : : : ; nNow, with Mn 
 : : :
M1 is asso
iated the POVMO(�) = X��2�R��R� :Note that O(�) and O(�0) in general don't 
ommute sin
e in general R� and R� may fail to doso. An interesting 
lass of POVMs for whi
h O(�) and O(�0) do 
ommute arises in asso
iationwith the notion of an \approximate measurement" of a self-adjoint operator: suppose that theresult Z of a measurement M = PA of a self-adjoint operator A is distorted by the addition ofan independent noise N with symmetri
 probability distribution �(�). Then the result Z +N ofthe experiment, for initial system wave fun
tion  , is distributed a

ording to� 7! Z� ZR �(�� �0)h ; PA(d�0) i d� ;36



whi
h 
an be rewritten as � 7! h ; Z� �(�� A)d�  i :Thus the result Z +N is governed by the POVMO(�) = Z� �(�� A) d� : (4.13)The formal experiment de�ned by this POVM 
an be regarded as providing an approximatemeasurement of A. For example, let �(�) = 1�p2�e� �22 �2 : (4.14)Then for � ! 0 the POVM (4.13) be
omes the PVM of A and the experiment be
omes ameasurement of A.Con
erning the POVM (4.13) we wish to make two remarks. The �rst is that the O(�)'s
ommute sin
e they are all fun
tions of A. The se
ond is that this POVM has a 
ontinuousdensity, i.e., O(d�) = o(�) d� where o(�) = �(�� A) :This is another di�eren
e between POVMs and PVMs: like ordinary measures and unlike PVMs,POVMs may have a 
ontinuous density. The reason this is possible for POVMs is that, for aPOVM O, unlike for a PVM, given  2 H, the ve
tors O(�) and O(�0) , for � and �0 disjointand arbitrarily small, need not be orthogonal. Otherwise, no density o(d�) 
ould exist, be
ausethis would imply that there is a 
ontinuous family fo(�) g of orthogonal ve
tors in H.Finally, we observe that unlike strong measurements, the notion of strong formal experiment
an be extended to POVM with 
ontinuous spe
trum (see Se
tion 3.8). One may in fa
t de�nea strong experiment by E = f�;R�g, where � 7! R� is a 
ontinuous bounded-operator-valuedfun
tion su
h that R R��R� d � = I. Then the statisti
s for the results of su
h an experiment isgoverned by the POVM O(d�) � R��R� d�. For example, letR� = � (�� A) where � (�) = 1p� 4p2�e� �24 �2 :Then O(d�) = R��R� d � is the POVM (4.13) with � given by (4.14). We observe that the statetransformations (
f. the de�nition (2.6) of the 
onditional wave fun
tion) ! R� = 1p� 4p2�e� (��A)24 �2  (4.15)
an be regarded as arising from a von Neumann intera
tion with Hamiltonian (3.12) (and 
T = 1)and ready state of the apparatus �0(y) = 1p� 4p2�e� y24 �2 :Experiments with state transformations (4.15), for large �, have been 
onsidered by Aharonov and
oworkers (see, e.g., Aharonov, Anandan, and Vaidman [1℄) as providing \weak measurements" ofoperators. (The e�e
t of the measurement on the state of the system is \small" if � is suÆ
ientlylarge). This terminology notwithstanding, it is important to observe that su
h experiments arenot measurements of A in the sense we have dis
ussed here. They give information about theaverage value of A, sin
e R � h ;R��R�  i d� = h ;A i, but presumably none about its highermoments. 37



4.3 From Formal Experiments to ExperimentsJust as with a formal measurement (see Se
tion 3.3), with a formal experiment E � f��; R�g,we may asso
iate a dis
rete experiment E . The unitary map (2.18) of E will be given again by(3.10), i.e., U :  
 �0 7!X� (R� )
 ��; (4.16)but now R��R� of 
ourse need not be proje
tion. The unitarity of U follows immediately fromthe orthonormality of the �� using PR��R� = I. (Note that with a weak formal experimentE � O = fO�g we may asso
iate many inequivalent dis
rete experiments, de�ned by (4.16) withoperators R� � U�pO�, for any 
hoi
e of unitary operators U�.)We shall now dis
uss a 
on
rete example of a dis
rete experiment de�ned by a formal exper-iment whi
h will allow us to make some more further 
omments on the issue of reprodu
ibilitydis
ussed in Se
tion 2.8.Let f: : : ; e�1; e0; e1; : : : g be an orthonormal basis in the system Hilbert spa
eH, let P� ; P0 ; P+be the orthogonal proje
tions onto the subspa
es eH�, H0, eH+ spanned by feg�<0, fe0g, feg�>0respe
tively, and let V+, V� be the right and left shift operators,V+e� = e�+1 ; V�e� = e��1 :Consider the strong formal experiment E with the two possible results �� = �1 and asso
iatedstate transformations R�1 = V�(P� + 1p2P0): (4.17)Then the unitary U of the 
orresponding dis
rete experiment E is given byU :  
 �0 ! R� 
 �� +R+ 
 �+;where �0 is the ready state of the apparatus and �� are the apparatus states asso
iated withthe results �1. If we now 
onsider the a
tion of U on the basis ve
tors e�,U(e� 
 �0) = e�+1 
 �+ for � > 0U(e� 
 �0) = e��1 
 �� for � < 0U(e0 
 �0) = 1p2(e1 
 �+ + e�1 
 ��) ;we see immediately that U( eH� 
 �0) � eH� 
 ��1:Thus (2.24) is satis�ed and E is a reprodu
ible experiment. Note however that the POVMO = fO�1; O+1g asso
iated with (4.17),O�1 = R��1R�1 = P� + 12P0 ;is not a PVM sin
e the positive operators O�1 are not proje
tions, i.e, O2�1 6= O�1. Thus Eis not a measurement of any self-adjoint operator, whi
h shows that without the assumption ofthe �nite dimensionality of the subspa
es eH� a reprodu
ible dis
rete experiment need not be ameasurement of a self-adjoint operator. 38



4.4 Measure-Valued Quadrati
 MapsWe 
on
lude this se
tion with a remark about POVMs. Via (4.1) every POVM O de�nes a\normalized quadrati
 map" fromH to measures on some spa
e (the value-spa
e for the POVM).Moreover, every su
h map 
omes from a POVM in this way. Thus the two notions are equivalent:(4.1) de�nes a 
anoni
al one-to-one 
orresponden
e between POVMs and normal-ized measure-valued quadrati
 maps on H. (4.18)To say that a measure-valued map on H  7! � (4.19)is quadrati
 means that � = B( ;  ) (4.20)is the diagonal part of a sesquilinear map B, from H � H to the 
omplex measures on somevalue spa
e �. If B( ;  ) is a probability measure whenever k k = 1, we say that the map isnormalized.23Proposition (4.18) is a 
onsequen
es of the following 
onsiderations: For a given POVM O themap  7! �O , where �O (�) � h ;O(�) i, is manifestly quadrati
, with B(�;  ) = h�;O(�) i,and it is obviously normalized. Conversely, let  7! � be a normalized measure-valued quadrati
map, 
orresponding to some B, and write B�(�;  ) = B(�;  )[�℄ for the 
omplex measure B atthe Borel set �. By the S
hwartz inequality, applied to the positive form B�(�;  ), we have thatjB�(�;  )j � k kk�k. Thus, using Riesz's lemma [70℄, there is a unique bounded operator O(�)on H su
h that B�(�;  ) = h�;O(�) i:Moreover, O(�), like B�, is 
ountably additive in �, and sin
e B( ;  ) is a (positive) measure,O is a positive-operator-valued measure, normalized be
ause B is.A simple example of a normalized measure-valued quadrati
 map is	 7! �	(dq) = j	j2dq ; (4.21)whose asso
iated POVM is the PVM P Q̂ for the position (
on�guration) operatorQ̂	(q) = q	(q) : (4.22)Note also that if the quadrati
 map � 
orresponds to the POVM O, then, for any unitaryU , the 
omposite map  7! �U 
orresponds to the POVM U�OU , sin
e hU ;O(�)U i =h ; U�O(�)U i. In parti
ular for the map (4.21) and U = UT , the 
omposite map 
orrespondsto the PVM P Q̂T , with Q̂T = U�Q̂U , the Heisenberg position (
on�guration) at time T , sin
eU�TP Q̂UT = PU�T Q̂UT .23A sesquilinear map B(�;  ) is one that is linear in the se
ond slot and 
onjugate linear in the �rst:B(�; � 1 + � 2) = �B(�;  1) + �B(�;  2)B(��1 + ��2;  ) = ��B(�1;  ) + ��B(�2;  ) :Clearly any su
h normalized B 
an be 
hosen to be 
onjugate symmetri
, B( ; �) = B(�;  ), without a�e
tingits diagonal, and it follows from polarization that any su
h B must in fa
t be 
onjugate symmetri
.39



5 The General Emergen
e of OperatorsFor Bohmian me
hani
s POVMs emerge naturally, not for dis
rete experiments, but for a generalexperiment (2.34). To see how this 
omes about 
onsider the probability measure (2.35) givingthe probability distribution of the result Z = F (QT ) of the experiment, where QT is the �nal
on�guration of system and apparatus and F is the 
alibration fun
tion expressing the numeri
alresult, for example the orientation � of a pointer. Then the map 7! �Z = �	T Æ F�1; (5.1)from the initial wave fun
tion of the system to the probability distribution of the result, isquadrati
 sin
e it arises from the sequen
e of maps 7! 	 =  
 �0 7! 	T = U( 
 �0) 7! �	T (dq) = 	�T	Tdq 7! �Z = �	T Æ F�1; (5.2)where the middle map, to the quantum equilibrium distribution, is obviously quadrati
, whileall the other maps are linear, all but the se
ond trivially so. Now, by (4.18), the notion ofsu
h a quadrati
 map (5.1) is 
ompletely equivalent to that of a POVM on the system Hilbertspa
e H. (The sesquilinear map B asso
iated with (5.2) is B( 1;  2) = 	�1T	2Tdq Æ F�1, where	i T = U( i 
 �0).)Thus the emergen
e and role of POVMs as generalized observables in Bohmian me
hani
s ismerely an expression of the sesquilinearity of quantum equilibrium together with the linearityof the S
hr�odinger evolution. Thus the fa
t that with every experiment is asso
iated a POVM,whi
h forms a 
ompa
t expression of the statisti
s for the possible results, is a near mathemati
altriviality. It is therefore rather dubious that the o

urren
e of POVMs|the simplest 
ase of whi
his that of PVMs|as observables 
an be regarded as suggesting any deep truths about reality orabout epistemology.An expli
it formula for the POVM de�ned by the quadrati
 map (5.1) follows immediatelyfrom (5.2):�Z (d�) = h 
 �0; U�P Q̂(F�1(d�))U  
 �0i = h 
 �0; P0U�P Q̂(F�1(d�))UP0  
 �0iwhere P Q̂ is the PVM for the position (
on�guration) operator (4.22) and P0 is the proje
tiononto H
 �0, when
e O(d�) = 1�1�0P0 U�P Q̂(F�1(d�))UP01�0 ; (5.3)where 1�0 =  
�0 is the natural identi�
ation of H with H
�0. This is the obvious POVMre
e
ting the essential stru
ture of the experiment.2424This POVM 
an also be written asO(d�) = trA hP0 U�P Q̂(F�1(d�))Ui ; (5.4)where trA is the partial tra
e over the apparatus variables. The partial tra
e is a map trA : W 7! trA(W ),from tra
e 
lass operators on the Hilbert spa
e HS 
 HA to tra
e 
lass operators on HS , uniquely de�ned bytr S(trA(W )B) = tr S+A(WB 
 I), where tr S+A and tr S are the usual (s
alar-valued) tra
es of operators onHS 
 HA and HS , respe
tively. For a tra
e 
lass operator B on L2(dx) 
 L2(dy) with kernel B(x; y; x0; y0) wehave trA (B) (x; x0) = R B(x; y; x0; y)dy: In (5.4) trA is applied to operators that need not be tra
e 
lass|norneed the operator on the left be tra
e 
lass|sin
e, e.g., O(�) = I . The formula nonetheless makes sense.40



Note that the POVM (5.3) is unitarily equivalent toP0P F (Q̂T )(d�)P0 (5.5)where Q̂T is the Heisenberg 
on�guration of system and apparatus at time T . This POVM, a
tingon the subspa
e H 
 �0, is the proje
tion to that subspa
e of a PVM, the spe
tral proje
tionsfor F (Q̂T ). Naimark has shown (see, e.g., [21℄) that every POVM is equivalent to one that arisesin this way, as the orthogonal proje
tion of a PVM to a subspa
e.25We shall now illustrate the asso
iation of POVMs with experiments by 
onsidering somespe
ial 
ases of (5.2).5.1 \No Intera
tion" ExperimentsLet U = US 
 UA in (5.2) (hereafter the indi
es \S" and \A" shall refer, respe
tively, to systemand apparatus). Then for F (x; y) = y the measure-valued quadrati
 map de�ned by (5.2) is 7! 
(y)k k2dywhere 
(y) = jUA�0j2(y), with POVM O1(dy) = 
(y)dy IS, while for F (q) = q = (x; y) the mapis  7! 
(y) jUS j2(x) dqwith 
orresponding POVM O2(dq) = 
(y)U�SP X̂(dx)US dy. Neither O1 nor O2 is a PVM. How-ever, if F is independent of y, F (x; y) = F (x), then the apparatus 
an be ignored in (5.2) or(5.3) and O = U�SP X̂US Æ F�1, i.e.,O(d�) = U�SP X̂(F�1(d�))US ;whi
h is manifestly a PVM|in fa
t 
orresponding to F (X̂T ), where X̂T is the Heisenberg 
on-�guration of the system at the end of the experiment.This 
ase is somewhat degenerate: with no intera
tion between system and apparatus ithardly seems anything like a measurement. However, it does illustrate that it is \true" POVMs(i.e., those that aren't PVMs) that typi
ally get asso
iated with experiments|i.e., unless somespe
ial 
onditions hold (here that F = F (x)).5.2 \No X" ExperimentsThe map (5.2) is well de�ned even when the system (the x-system) has no translational degrees offreedom, so that there is no x (or X). This will be the 
ase, for example, when the system Hilbertspa
e HS 
orresponds to the spin degrees of freedom. Then HS = C n is �nite dimensional.25If O(d�) is a POVM on � a
ting on H, then the Hilbert spa
e on whi
h the 
orresponding PVM a
ts isthe natural Hilbert spa
e asso
iated with the data at hand, namely L2(�;H; O(d�)), the spa
e of H-valuedfun
tions  (�) on �, with inner produ
t given by R h (�); O(d�)�(�)i. (If this is not, in fa
t, positive de�nite,then the quotient with its kernel should be taken| (�) should, in other words, be understood as the appropriateequivalen
e 
lass.) Then O(d�) is equivalent to PE(d�)P , where E(�) = 1̂�(�), multipli
ation by 1�(�), and Pis the orthogonal proje
tion onto the subspa
e of 
onstant H-valued fun
tions  (�) =  .41



In su
h 
ases, the 
alibration F of 
ourse is a fun
tion of y alone, sin
e there is no x. ForF = y the measure-valued quadrati
 map de�ned by (5.2) is 7! j[U( 
 �0)℄(y)j2dy ; (5.6)where j � � � j denotes the norm in C n .This 
ase is physi
ally more interesting than the previous one, though it might appear ratherpuzzling sin
e until now our measured systems have always involved 
on�gurations. After all,without 
on�gurations there is no Bohmian me
hani
s! However, what is relevant from a Bohmianperspe
tive is that the 
omposite of system and apparatus be governed by Bohmian me
hani
s,and this may well be the 
ase if the apparatus has 
on�gurational degrees of freedom, even ifwhat is 
alled the system doesn't. Moreover, this 
ase provides the prototype of many real-worldexperiments, e.g., spin measurements.For the measurement of a spin 
omponent of a spin{1=2 parti
le|re
all the des
ription of theStern-Gerla
h experiment given in Se
tion 2.5|we letHS = C 2 , the spin spa
e, with \apparatus"
on�guration y = x, the position of the parti
le, and with suitable 
alibration F (x). (For a realworld experiment there would also have to be a genuine apparatus|a dete
tor|that measureswhere the parti
le a
tually is at the end of the experiment, but this would not in any way a�e
tour analysis. We shall elaborate upon this below.) The unitary U of the experiment is theevolution operator up to time T generated by the Pauli Hamiltonian (2.12), whi
h under theassumption (2.14) be
omes H = � ~22mr2 � (b+ az)�z (5.7)Moreover, as in Se
tion 2.5, we shall assume that the initial parti
le wave fun
tion has theform �0(x) = �0(z)�(x; y).26 Then for F (x) = z the quadrati
 map (5.2) is 7! �jh +;  ij2j�(+)T (z)j2 + jh �;  ij2j�(�)T (z)j2� dz= D ; j +ih +jj�(+)T (z)j2 + j �ih �jj�(�)T (z)j2  E dzwith POVM O(dz) =  j�(+)T (z)j2 00 j�(�)T (z)j2 ! dz ; (5.8)where  � are the eigenve
tors (2.13) of �z and �(�)T are the solutions of (2.15) 
omputed at t = T ,for initial 
onditions �0(�) = �0(z).Consider now the appropriate 
alibration for the Stern-Gerla
h experiment, namely the fun
-tion F (x) = (+1 if z > 0;�1 if z < 0 (5.9)whi
h assigns to the out
omes of the experiment the desired numeri
al results: if the parti
legoes up in the z- dire
tion the spin is +1, while if the parti
le goes down the spin is -1. The
orresponding POVM OT is de�ned byOT (+1) = � p+T 00 p�T � OT (�1) = � 1� p+T 00 1� p�T �26We abuse notation here in using the notation y = x = (x; y; z). The y on the right should of 
ourse not be
onfused with the one on the left. 42



where p+T = Z 10 j�T (+)j2(z)dz; p�T = Z 10 j�T (�)j2(z)dz :It should be noted that OT is not a PVM. However, as indi
ated in Se
tion 2.5, as T !1,p+T ! 1 and p�T ! 0, and the POVM OT be
omes the PVM of the operator �z, i.e., OT ! P �z ,de�ned by P (+1) = � 1 00 0 � P (�1) = � 0 00 1 � (5.10)and the experiment be
omes a measurement of the operator �z.5.3 \No Y " ExperimentsSuppose now that the \apparatus"involves no translational degrees of freedom, i.e., that there isno y (or Y ). For example, suppose the apparatus Hilbert spa
e HA 
orresponds to 
ertain spindegrees of freedom, with HA = C n �nite dimensional. Then, of 
ourse, F = F (x).This 
ase illustrates what measurements are not. If the apparatus has no 
on�gurationaldegrees of freedom, then neither in Bohmian me
hani
s nor in orthodox quantum me
hani
s isit a bona �de apparatus: Whatever virtues su
h an apparatus might otherwise have, it 
ertainly
an't generate any dire
tly observable results (at least not when the system itself is mi
ros
opi
).A

ording to Bohr ([17℄, pages 73 and 90): \Every atomi
 phenomenon is 
losed in the sensethat its observation is based on registrations obtained by means of suitable ampli�
ation devi
eswith irreversible fun
tioning su
h as, for example, permanent marks on the photographi
 plate"and \the quantum-me
hani
al formalism permits well-de�ned appli
ations only to su
h 
losedphenomena." To stress this point, dis
ussing parti
le dete
tion Bell has said [7℄: \Let us supposethat a dis
harged 
ounter pops up a 
ag sayings `Yes' just to emphasize that it is a ma
ros
opi
allydi�erent thing from an undis
harged 
ounter, in a very di�erent region of 
on�guration spa
e."Experiments based on 
ertain mi
ro-apparatuses, e.g., \one-bit dete
tors" [73℄, provide a ni
eexample of \No Y" experiments. We may think of a one-bit dete
tor as a spin-1=2-like system(e.g., a two-level atom), with \down" state �0 (the ready state) and \up" state �1 and whi
h issu
h that its 
on�gurational degrees of freedom 
an be ignored. Suppose that this \spin-system,"in its \down" state, is pla
ed in a small spatial region �1 and 
onsider a parti
le whose wavefun
tion has been prepared in su
h a way that at t = 0 it has the form  =  1 +  2, where  1 issupported by �1 and  2 by �2 disjoint from �1. Assume that the parti
le intera
ts lo
ally withthe spin-system, in the sense that were  =  1 the \spin" would 
ip to the \up" state, while were =  2 it would remain in its \down" state, and that the intera
tion time is negligibly small,so that other 
ontributions to the Hamiltonian 
an be ignored. Then the initial state  
 �0undergoes the unitary transformationU :  
 �0!	 =  1 
 �1 +  2 
 �0 : (5.11)We may now ask whether U de�nes an experiment genuinely measuring whether the parti
le isin �1 or �2. The answer of 
ourse is no (sin
e in this experiment there is no apparatus property atall with whi
h the position of the parti
le 
ould be 
orrelated) unless the experiment is (qui
kly)
ompleted by a measurement of the \spin" by means of another (ma
ros
opi
) apparatus. Inother words, we may 
on
lude that the parti
le is in �1 only if the spin-system in e�e
t pops upa 
ag saying \up". 43



5.4 \No Y no �" ExperimentsSuppose there is no apparatus at all: no apparatus 
on�guration y nor Hilbert spa
e HA, or,what amounts to the same thing, HA = C . For 
alibration F = x the measure-valued quadrati
map de�ned by (5.2) is  7! jU (x)j2 ;with POVM U�P X̂U , while the POVM for general 
alibration F (x) isO(d�) = U�P X̂(F�1(d�))U : (5.12)O is a PVM, as mentioned in Se
tion 5.1, 
orresponding to the operator U�F (X̂)U = F (X̂T ),where X̂T is the Heisenberg position (
on�guration) operator at time T .It is important to observe that even though these experiments su�er from the defe
t that no
orrelation is established between the system and an apparatus, this 
an easily be remedied|byadding a �nal dete
tion measurement that measures the �nal a
tual 
on�guration XT|withoutin any way a�e
ting the essential formal stru
ture of the experiment. For these experimentsthe apparatus thus does not introdu
e any additional randomness, but merely re
e
ts what wasalready present in XT . All randomness in the �nal resultZ = F (XT ) (5.13)arises from randomness in the initial 
on�guration of the system.27For F = x and U = I the quadrati
 map is  7! j (x)j2 with PVM P X̂ , so that this (trivial)experiment 
orresponds to the simplest and most basi
 operator of quantum me
hani
s: theposition operator. How other basi
 operators arise from experiments is what we are going todis
uss next.5.5 The Basi
 Operators of Quantum Me
hani
sA

ording to Bohmian me
hani
s, a parti
le whose wave fun
tion is real (up to a global phase),for example an ele
tron in the ground state of an atom, has vanishing velo
ity, even though thequantum formalism assigns a nontrivial probability distribution to its momentum. It might thusseem that we are fa
ed with a 
on
i
t between the predi
tions of Bohmian me
hani
s and thoseof the quantum formalism. This, however, is not so. The quantum predi
tions about momentum
on
ern the results of an experiment that happens to be 
alled a momentum measurement anda 
on
i
t with Bohmian me
hani
s with regard to momentum must re
e
t disagreement aboutthe results of su
h an experiment.One may base su
h an experiment on free motion followed by a �nal measurement of posi-tion.28 Consider a parti
le of mass m whose wave fun
tion at t = 0 is  =  (x). Suppose no27Though passive, the apparatus here plays an important role in re
ording the �nal 
on�guration of the system.However, for experiments involving dete
tions at di�erent times, the apparatus plays an a
tive role: Consider su
han experiment, with dete
tions at times t1; : : : ; tn, and �nal result Z = F (Xt1 ; : : : ; Xtn). Though the apparatusintrodu
es no extra randomness, it plays an essential role by 
hanging the wave fun
tion of the system at thetimes t1; : : : ; tn and thus 
hanging the evolution of its 
on�guration. These 
hanges are re
e
ted in the POVMstru
ture that governs the statisti
al distribution of Z for su
h experiments (see Se
tion 3.9).28The emergen
e of the momentum operator in su
h so-
alled time-of-
ight measurements was dis
ussed byBohm in his 1952 arti
le [15℄. A similar derivation of the momentum operator 
an be found in Feynman andHibbs [34℄. 44



for
es are present, that is, that all the potentials a
ting on the parti
le are turned o�, and let theparti
le evolve freely. Then we measure the position XT that it has rea
hed at the time t = T .It is natural to regard VT = XT=T and PT = mXT=T as providing, for large T , approximationsto the asymptoti
 velo
ity and momentum of the parti
le. It turns out that the probabilitydistribution of PT , in the limit T ! 1, is exa
tly what quantum me
hani
s pres
ribes for themomentum, namely j ~ (p)j2, where~ (p) = (F )(p) = 1p(2�~)3 Z e� i~p�x (x) dxis the Fourier transform of  .This result 
an be easily understood: Observe that j T (x)j2 dx, the probability distributionof XT , is the spe
tral measure �X̂T (dx) = h ; P X̂T (dx) i of X̂T = U�T X̂UT , the (Heisenberg)position operator at time t = T ; here Ut is the free evolution operator and X̂ is, as usual, theposition operator at time t = 0. By elementary quantum me
hani
s (spe
i�
ally, the Heisenbergequations of motion), X̂T = 1mP̂T + X̂, where P̂ � �i~r is the momentum operator. Thusas T !1 the operator mX̂T=T 
onverges to the momentum operator P̂, sin
e X̂=T is O(1=T ),and the distribution of the random variable PT a

ordingly 
onverges to the spe
tral measure ofP̂, given by j ~ (p)j2.29The momentum operator arises from a (T !1) limit of \no Y no �" single-parti
le exper-iments, ea
h experiment being de�ned by the unitary operator UT (the free parti
le evolutionoperator up to time T ) and 
alibration FT (x) = mx=T . Other standard quantum-me
hani
aloperators emerge in a similar manner, i.e., from a T ! 1 limit of appropriate single-parti
leexperiments.This is the 
ase, for example, for the spin operator �z. As in Se
tion 5.2, 
onsider the evolu-tion operator UT generated by Hamiltonian (5.7), but instead of (5.9), 
onsider the 
alibrationFT (x) = 2mz= a T 2. This 
alibration is suggested by (2.16), as well as by the expli
it form ofthe z-
omponent of the position operator at time t = T ,ẐT = U�T ẐUT = Ẑ + P̂zm T + a2m�z T 2 ; (5.14)whi
h follows from the Heisenberg equationsmd2Ẑtd t2 = a �z ; d Ẑtd t �����t=0= P̂z � �i~ ��z ; Ẑ0 = Ẑ :29 This formal argument 
an be turned into a rigorous proof by 
onsidering the limit of the 
hara
teristi
fun
tion of PT , namely of the fun
tion fT (�) = R ei��p �T (dp), where �T is the distribution of mXT =T : fT (�) =D ; exp�i� �mX̂T =T�  E, and using the dominated 
onvergen
e theorem [70℄ this 
onverges as T ! 1 tof(�) = D ; exp�i �� P̂� E, implying the desired result. The same result 
an also be obtained using the wellknown asymptoti
 formula (see, e.g., [69℄) for the solution of the free S
hr�odinger equation with initial 
ondition =  (x),  T (x) � �miT � 32 eimx22~T ~ (mxT ) for T !1:
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Then, for initial state 	 =  
 �0 with suitable �0, where  = � (+) + � (�), the distributionof the random variable �zT = FT (XT ) = 2mZTa T 2
onverges as T ! 1 to the spe
tral measure of �z, with values +1 and �1 o

urring withprobabilities j�j2 and j�j2, respe
tively.30 This is so, just as with the momentum, be
ause asT !1 the operator 2m ẐTa T 2 
onverges to �z.We remark that we've made use above of the fa
t that simple algebrai
 manipulations on thelevel of random variables 
orrespond automati
ally to the same manipulations for the asso
iatedoperators. More pre
isely, suppose that Z 7! A (5.15)in the sense (of (2.37)) that the distribution of the random variable Z is given by the spe
tralmeasure for the self-adjoint operator A. Then it follows from (3.17) thatf(Z)! f(A) (5.16)for any (Borel) fun
tion f . For example, sin
e XT 7! X̂T , mXT=T 7! mX̂T=T , and sin
e ZT !ẐT , 2mZTa T 2 ! 2mẐTa T 2 . Similarly, if a random variable P 7! P̂ , then P 2=(2m) 7! H0 = P̂ 2=(2m).This is rather trivial, but it is not as trivial as the failure even to distinguish Z and Ẑ wouldmake it seem.5.6 From Positive-Operator-Valued Measures to ExperimentsWe wish here to point out that to a very 
onsiderable extent the asso
iation E 7! O(d�) ofexperiments with POVMs is onto. It is more or less the 
ase that every POVM arises from anexperiment.We have in mind two distin
t remarks. First of all, it was pointed out in the �rst paragraphof Se
tion 4.3 that every dis
rete POVM O� (weak formal experiment) arises from some dis
reteexperiment E . Thus, for every POVM O(d�) there is a sequen
e E (n) of dis
rete experiments forwhi
h the 
orresponding POVMs O(n) 
onverge to O.The se
ond point we wish to make is that to the extent that every PVM arises from anexperiment E = f�0; U; Fg, so too does every POVM. This is based on the fa
t, mentioned atthe end of the introdu
tion to Se
tion 5, that every POVM O(d�) 
an be regarded as arisingfrom the proje
tion of a PVM E(d�), a
ting on H(1), onto the subspa
e H � H(1). We mayassume without loss of generality that both H and H(1) 	 H are in�nite dimensional (by someotherwise irrelevant enlargements if ne
essary). Thus we 
an identify H(1) with H
Happaratus(1)and the subspa
e with H
�(1)0 , for any 
hoi
e of �(1)0 . Suppose now that there is an experimentE (1) = f�(2)0 ; U; Fg that measures the PVM E (i.e., that measures the observable A = R �E(d�))where �(2)0 2 Happaratus(2) , U a
ts on H
Happaratus where Happaratus = Happaratus(1) 
Happaratus(2)and F is a fun
tion of the 
on�guration of the 
omposite of the 3 systems: system, apparatus(1)and apparatus(2). Then, with �0 = �(1)0 
�(2)0 , E = f�0; U; Fg is asso
iated with the POVM O.30For the Hamiltonian (5.7) no assumption on the initial state 	 is required here; however (5.7) will be areasonably good approximation only when 	 has a suitable form, expressing in parti
ular that the parti
le isappropriately moving towards the magnet. 46



5.7 Invarian
e Under Trivial ExtensionSuppose we 
hange an experiment E to E 0 by regarding its x-system as 
ontaining more of theuniverse that the x-system for E , without in any way altering what is physi
ally done in theexperiment and how the result is spe
i�ed. One would imagine that E 0 would be equivalent to E .This would, in fa
t, be trivially the 
ase 
lassi
ally, as it would if E were a genuine measurement,in whi
h 
ase E 0 would obviously measure the same thing as E . This remains true for the moreformal notion of measurement under 
onsideration here. The only sour
e of nontriviality inarriving at this 
on
lusion is the fa
t that with E 0 we have to deal with a di�erent, larger 
lassof initial wave fun
tions.We will say that E 0 is a trivial extension of E if the only relevant di�eren
e between E andE 0 is that the x-system for E 0 has generi
 
on�guration x0 = (x; x̂), whereas the x-system for Ehas generi
 
on�guration x. In parti
ular, the unitary operator U 0 asso
iated with E 0 has theform U 0 = U 
 Û , where U is the unitary asso
iated with E , implementing the intera
tion of thex-system and the apparatus, while Û is a unitary operator des
ribing the independent evolutionof the x̂-system, and the 
alibration F for E 0 is the same as for E . (Thus F does not dependupon x̂.)The asso
iation of experiments with (generalized) observables (POVMs) is invariant undertrivial extension: if E 7! O in the sense of (4.10) and E 0 is a trivial extension of E , thenE 0 7! O 
 I, where I is the identity on the Hilbert spa
e of the x̂-system.To see this note that if E 7! O then the sesquilinear map B arising from (5.2) for E 0 is of theform B( 1 
  ̂1;  2 
  ̂2) = h 1; O 2ih ̂1;  ̂2ion produ
t wave fun
tions  0 =  
  ̂, whi
h easily follows from the form of U 0 and the fa
tthat F doesn't depend upon x̂, so that the x̂-degrees of freedom 
an be integrated out. Thus thePOVM O0 for E 0 agrees with O 
 I on produ
t wave fun
tions, and sin
e su
h wave fun
tionsspan the Hilbert spa
e for the (x; x̂)-system, we have that O0 = O 
 I. Thus E 0 7! O 
 I.In other words, if E is a measurement of O, then E 0 is a measurement of O
 I. In parti
ular,if E is a measurement of the self-adjoint operator A, then E 0 is a measurement of A 
 I. Thisresult is not quite so trivial as it would be were it 
on
erned with genuine measurements, ratherthan with the more formal notion under 
onsideration here.Now suppose that E 0 is a trivial extension of a dis
rete experiment E , with state transforma-tions given by R�. Then the state transformations for E 0 are given by R0� = R� 
 Û . This is sobe
ause R0� must agree with R� 
 Û on produ
t wave fun
tions  0 =  
  ̂, and these span theHilbert spa
e of the (x; x̂)-system.5.8 POVMs and the Positions of Photons and Dira
 Ele
tronsWe have indi
ated how POVMs emerge naturally in asso
iation with Bohmian experiments.We wish here to indi
ate a somewhat di�erent role for a POVM: to des
ribe the probabilitydistribution of the a
tual (as opposed to measured31) position. The probability distribution ofthe position of a Dira
 ele
tron in the state  is  + . This is given by a PVM E(dx) on theone-parti
le Hilbert spa
e H spanned by positive and negative energy ele
tron wave fun
tions.However the physi
al one-parti
le Hilbert-spa
e H+ 
onsists solely of positive energy states, and31The a

urate measurement of the position of a Dira
 ele
tron is presumably impossible.47



this is not invariant under the proje
tions E. Nonetheless the probability distribution of theposition of the ele
tron is given by the POVM P+E(dx)P+ a
ting on H+, where P+ is theorthogonal proje
tion onto H+. Similarly, 
onstraints on the photon wave fun
tion require theuse of POVMs for the lo
alization of photons [54, 3℄.326 Density Matri
esThe notion of a density matrix, a positive (tra
e 
lass) operator with unit tra
e on the Hilbertspa
e of a system, is often regarded as providing the most general 
hara
terization of a quantumstate of that system. A

ording to the quantum formalism, when a system is des
ribed by thedensity matrix W , the expe
ted value of an observable A is given by tr (WA). If A has PVM O,and more generally for any POVM O, the probability that the (generalized) observable O hasvalue in � is given by Prob(O 2 �) = tr (WO(�)): (6.1)A density matrix that is a one-dimensional proje
tion, i.e., of the form j ih j where  is a unitve
tor in the Hilbert spa
e of the system, des
ribes a pure state (namely,  ), and a generaldensity matrix 
an be de
omposed into a mixture of pure states  k,W =Xk pkj kih kj where Xk pk = 1: (6.2)Naively, one might regard pk as the probability that the system is in the state  k. Thisinterpretation is, however, untenable, for a variety of reasons. First of all, the de
omposition(6.2) is not unique. A density matrix W that does not des
ribe a pure state 
an be de
omposedinto pure states in a variety of di�erent ways.It is always possible to de
ompose a density matrix W in su
h a way that its 
omponents  kare orthonormal. Su
h a de
omposition will be unique ex
ept when W is degenerate, i.e., whensome pk's 
oin
ide. For example, if p1 = p2 we may repla
e  1 and  2 by any other orthonormalpair of ve
tors in the subspa
e spanned by  1 and  2. And even if W were nondegenerate, itneed not be the 
ase that the system is in one of the states  k with probability pk, be
ause forany de
omposition (6.2), regardless of whether the  k are orthogonal, if the wave fun
tion of thesystem were  k with probability pk, this situation would be des
ribed by the density matrix W .Thus a general density matrix 
arries no information|not even statisti
al information|aboutthe a
tual wave fun
tion of the system. Moreover, a density matrix 
an des
ribe a system thathas no wave fun
tion at all! This happens when the system is a subsystem of a larger systemwhose wave fun
tion is entangled, i.e., does not properly fa
torize (in this 
ase one usually speaksof the redu
ed density matrix of the subsystem).This impossibility of interpreting density matri
es as real mixtures of pure states has beenregarded by many authors (e.g., von Neumann [74℄ and Landau [56℄) as a further indi
ation thatquantum randomness is inexpli
able within the realm of 
lassi
al logi
 and probability. However,from the point of view of Bohmian me
hani
s, there is nothing mysterious about density matri
es.Indeed, their role and status within the quantum formalism 
an be understood very easily in terms32For example, on the one-photon level, both the proposal 	 = E + iB (where E and B are the ele
tri
 andthe magneti
 free �elds) [12℄, and the proposal 	 = A (where A is the ve
tor potential in the Coulomb gauge)[3℄, require the 
onstraint r �	 = 0. 48



of the general framework of experiments of Se
tion 5. (It 
an, we believe, be reasonably arguedthat even from the perspe
tive of orthodox quantum theory, density matri
es 
an be understoodin a straightforward way.)6.1 Density Matri
es and Bohmian ExperimentsConsider a general experiment E 7! O (see equation (4.10)) and suppose that the initial wavefun
tion of the system is random with probability distribution p(d ) (on the set of unit ve
torsin H). Then nothing will 
hange in the general argument of Se
tion 5 ex
ept that now �Z in(4.10) and (5.2) should be interpreted as the 
onditional probability given  . It follows then from(6.1), using the fa
t that h ;O(�) i = tr (j ih jO(�)), that the probability that the result ofE lies in � is given byZ p(d ) h ;O(�) i = tr �Z p(d ) j ih jO(�)� = tr (WO(�)) (6.3)where33 W � Z p(d ) j ih j (6.4)is the ensemble density matrix arising from a random wave fun
tion with (ensemble) distribu-tion p.Now suppose that instead of having a random wave fun
tion, our system has no wave fun
tionat all be
ause it is entangled with another system. Then there is still an obje
t that 
an naturallybe regarded as the state of our system, an obje
t asso
iated with the system itself in terms ofwhi
h the results of experiments performed on our system 
an be simply expressed. This obje
tis a density matrix W and the results are governed by (6.1). W is the redu
ed density matrixarising from the state of the larger system. This is more or less an immediate 
onsequen
e ofinvarian
e under trivial extension, des
ribed in Se
tion 5.7:Consider a trivial extension E 0 of an experiment E 7! O on our system|pre
isely what wemust 
onsider if the larger system has a wave fun
tion  0 while our (smaller) system does not.The probability that the result of E 0 lies in � is given byh 0; O(�)
 I 0i = tr 0 (j 0ih 0jO(�)
 I) = tr (WO(�)) ; (6.5)where tr 0 is the tra
e for the x0-system (the big system) and tr is the tra
e for the x-system. Inagreement with standard quantum me
hani
s, the last equality of (6.5) de�nes W as the redu
eddensity matrix of the x-system, i.e, W � btr (j 0ih 0j) (6.6)where btr denotes the partial tra
e over the 
oordinates of the x̂-system.33Note that sin
e p is a probability measure on the unit sphere in H, W is a positive tra
e 
lass operator withunit tra
e.
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6.2 Strong Experiments and Density Matri
esA strong formal experiment E � f��; R�g generates state transformations  ! R� . Thissuggests the following a
tion on an initial state des
ribed by a density matrix W : When theout
ome is �, we have the transformationW ! R�Wtr (R�W ) � R�WR��tr (R�WR��) (6.7)where R�W = R�WR�� : (6.8)After all, (6.7) is a density matrix naturally asso
iated with R� and W , and it agrees with ! R� for a pure state, W = j ih j. In order to show that (6.7) is indeed 
orre
t, we mustverify it for the two di�erent ways in whi
h our system might be assigned a density matrix W ,i.e., for W an ensemble density matrix and for W a redu
ed density matrix.Suppose the initial wave fun
tion is random, with distribution p(d ). Then the initialstate of our system is given by the density matrix (6.4). When the out
ome � is obtained,two 
hanges must be made in (6.4) to re
e
t this information: j ih j must be repla
ed by(R�j ih jR��)=kR� k2, and p(d ) must be repla
ed by p(d j�), the 
onditional distribution ofthe initial wave fun
tion given that the out
ome is �. For the latter we havep(d j�) = kR� k2tr (R�WR��)p(d )(kR� k2p(d ) is the joint distribution of  and � and the denominator is the probability ofobtaining the out
ome �.) Therefore W undergoes the transformationW = Z p(d ) j ih j ! Z p(d j�) R�j ih jR��kR� k2 = Z p(d ) R�j ih jR��tr (R�WR��) = R�WR��tr (R�WR��) :We wish to emphasize that this demonstrates in parti
ular the nontrivial fa
t that the densitymatrixR�W=tr (R�W ) produ
ed by the experiment depends only upon the initial density matrixW . Though W 
an arise in many di�erent ways, 
orresponding to the multipli
ity of di�erentprobability distributions p(d ) yielding W via (6.4), insofar as the �nal state is 
on
erned, thesedi�eren
es don't matter.This does not, however, establish (6.7) when W arises not from a random wave fun
tion butas a redu
ed density matrix. To deal with this 
ase we 
onsider a trivial extension E 0 of a dis
reteexperiment E with state transformations R�. Then E 0 has state transformations R� 
 Û (seeSe
tion 5.7). Thus, when the initial state of the x0-system is  0, the �nal state of the x-systemis given by the partial tra
ebtr �R� 
 Û j 0ih 0jR�� 
 Û��tr 0 �R� 
 Û j 0ih 0jR�� 
 Û�� = btr (R� 
 Ij 0ih 0jR�� 
 I)tr 0 (R� 
 Ij 0ih 0jR�� 
 I) = R� btr (j 0ih 0j)R��tr �R� btr (j 0ih 0j)R���= R�WR��tr (R�WR��) ;where the 
y
li
ity of the tra
e has been used. 50



To sum up, when a strong experiment E � f��; R�g is performed on a system des
ribed bythe initial density matrix W and the out
ome � is obtained, the �nal density matrix is given by(6.7); moreover, from the results of the previous se
tion it follows that the out
ome � will o

urwith probability p� = tr (WO�) = tr (WR��R�) = tr (R�W ) ; (6.9)where the last equality follows from the 
y
li
ity of the tra
e.6.3 The Notion of InstrumentWe shall brie
y 
omment on the relationship between the notion of strong formal experimentand that of instrument (or e�e
t) dis
ussed by Davies [21℄.Consider an experiment E � f��; R�g on a system with initial density matrix W . Then anatural obje
t asso
iated with E is the set fun
tionR(�)W � X��2�R�W = X��2�R�WR�� : (6.10)The set fun
tion R : � 7! R(�) 
ompa
tly expresses both the statisti
s of E for a general initialsystem density matrix W and the e�e
t of E on W 
onditioned on the o

urren
e of the event\the result of E is in �".To see this, note �rst that it follows from (6.9) that the probability that the result of theexperiment lies in the set � is given byp(�) = tr (R(�)W ) :The 
onditional distribution p(�j�) that the out
ome is � given that the result �� 2 � is thentr (R�W )=tr (R(�)W ). The density matrix that re
e
ts the knowledge that the result is in �,obtained by averaging (6.7) over � using p(�j�), is thus R(�)W=tr (R(�)W ).It follows from (6.10) that R is a 
ountably additive set fun
tion whose values are positivity-preserving linear transformations in the spa
e of tra
e-
lass operators on H. Any map with theseproperties, not ne
essarily of the spe
ial form (6.10), is 
alled an instrument.6.4 On the State Des
ription Provided by Density Matri
esSo far we have followed the standard terminology and have spoken of a density matrix as de-s
ribing the state of a physi
al system. It is important to appre
iate, however, that this is merelya frequently 
onvenient way of speaking, for Bohmian me
hani
s as well as for orthodox quan-tum theory. Insofar as Bohmian me
hani
s is 
on
erned, the signi�
an
e of density matri
es isneither more nor less than what is implied by their role in the quantum formalism as des
ribedin Se
tions 6.1 and 6.2. While many aspe
ts of the notion of (e�e
tive) wave fun
tion extendto density matri
es, in parti
ular with respe
t to weak and strong experiments, density matri
esla
k the dynami
al impli
ations of wave fun
tions for the evolution of the 
on�guration, a pointthat has been emphasized by Bell [7℄:In the de Broglie-Bohm theory a fundamental signi�
an
e is given to the wave fun
-tion, and it 
annot be transferred to the density matrix. . . . Of 
ourse the densitymatrix retains all its usual pra
ti
al utility in 
onne
tion with quantum statisti
s.51



That this is so should be reasonably 
lear, sin
e it is the wave fun
tion that determines, inBohmian me
hani
s, the evolution of the 
on�guration, and the density matrix of a system doesnot determine its wave fun
tion, even statisti
ally. To underline the point we shall re
all theanalysis of Bell [7℄: Consider a parti
le des
ribed by a density matrixWt evolving autonomously,so that Wt = UtW0U�1t , where Ut is the unitary group generated by a S
hr�odinger Hamiltonian.Then �Wt(x) � Wt(x; x) � hxjWtjxi gives the probability distribution of the position of theparti
le. Note that �W satis�es the 
ontinuity equation��W�t + divJW = 0 where JW (x) = ~mIm [rxW (x; x0)℄x0=x :This might suggest that the velo
ity of the parti
le should be given by v = JW=�W , whi
hindeed agrees with the usual formula when W is a pure state (W (x; x0) =  (x) �(x0)). How-ever, this extension of the usual formula to arbitrary density matri
es, though mathemati-
ally \natural," is not 
onsistent with what Bohmian me
hani
s pres
ribes for the evolutionof the 
on�guration. Consider, for example, the situation in whi
h the wave fun
tion of aparti
le is random, either  1 or  2, with equal probability. Then the density matrix isW (x; x0) = 12 ( 1(x) �1(x0) +  2(x) �2(x0)). But the velo
ity of the parti
le will be always ei-ther v1 or v2 (a

ording to whether the a
tual wave fun
tion is  1 or  2), and|unless  1 and  2have disjoint supports|this does not agree with JW=�W , an average of v1 and v2.What we have just said is 
orre
t, however, only when spin is ignored. For parti
les with spin anovel kind of density matrix emerges, a 
onditional density matrix, analogous to the 
onditionalwave fun
tion (2.6) and with an analogous dynami
al role: Even though no 
onditional wavefun
tion need exist for a system entangled with its environment when spin is taken into a

ount,a 
onditional density matrixW always exists, and is su
h that the velo
ity of the system is indeedgiven by JW=�W . See [31℄ for details.A �nal remark: the statisti
al role of density matri
es is basi
ally di�erent from that providedby statisti
al ensembles, e.g, by Gibbs states in 
lassi
al statisti
al me
hani
s. This is be
ause,as mentioned earlier, even when it des
ribes a random wave fun
tion via (6.4), a density matrixW does not determine the ensemble p(d ) from whi
h it emerges. The map de�ned by (6.4)from probability measures p on the unit sphere in H to density matri
es W is many-to-one.34Consider, for example, the density matrix 1nI where I is the identity operator on an n-dimensionalHilbert spa
e H. Then a uniform distribution over the ve
tors of any given orthonormal basisof H leads to this density matrix, as well as does the 
ontinuous uniform measure on the spherek k = 1. However, sin
e the statisti
al distribution of the results of any experiment dependson p only through W , di�erent p's asso
iated with the same W are empiri
ally equivalent in thesense that they 
an't be distinguished by experiments performed on a system prepared somehowin the state W .34This is relevant to the foundations of quantum statisti
al me
hani
s, for whi
h the state of an isolatedthermodynami
 system is usually des
ribed by the mi
ro
anoni
al density matrix Z�1Æ(H � E), where Z =tr Æ(H � E) is the partition fun
tion. Whi
h ensemble of wave fun
tions should be regarded as forming thethermodynami
 ensemble? A natural 
hoi
e is the uniform measure on the subspa
e H = E, whi
h should bethought of as fattened in the usual way. Note that this 
hoi
e is quite distin
t from another one that people oftenhave in mind: a uniform distribution over a basis of energy eigenstates of the appropriate energy. Dependingupon the 
hoi
e made, we obtain di�erent notions of typi
al equilibrium wave fun
tion.
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7 Genuine MeasurementsWe have so far dis
ussed various intera
tions between a system and an apparatus relevant to thequantum measurement formalism, from the very spe
ial ones formalized by \ideal measurements"to the general situation des
ribed in se
tion 5. It is important to re
ognize that nowhere in thisdis
ussion was there any impli
ation that anything was a
tually being measured. The fa
t thatan intera
tion with an apparatus leads to a pointer orientation that we 
all the result of theexperiment or \measurement" in no way implies that this result re
e
ts anything of signi�
an
e
on
erning the system under investigation, let alone that it reveals some preexisting property ofthe system|and this is what is supposed to be meant by the word measurement. After all [72℄,\any old playing around with an indi
ating instrument in the vi
inity of another body, wherebyat any old time one then takes a reading, 
an hardly be 
alled a measurement of this body,"and the fa
t the experiment happens to be asso
iated, say, with a self-adjoint operator in themanner we have des
ribed, so that the experiment is spoken of, in the quantum formalism, as ameasurement of the 
orresponding observable, 
ertainly o�ers little support for using languagein this way.We shall elaborate on this point later on. For now we wish to observe that the very gener-ality of our analysis, parti
ularly that of se
tion 5, 
overing as it does all possible intera
tionsbetween system and apparatus, 
overs as well those parti
ular situations that in fa
t are genuinemeasurements. This allows us to make some de�nite statements about what 
an be measured inBohmian me
hani
s.For a physi
al quantity, des
ribing an obje
tive property of a system, to be measurable meansthat it is possible to perform an experiment on the system that measures the quantity, i.e.,an experiment whose result 
onveys its value. In Bohmian me
hani
s a physi
al quantity � isexpressed by a fun
tion � = f(X; ) (7.1)of the 
omplete state (X; ) of the system. An experiment E measuring � is thus one whoseresult Z = F (XT ; YT ) � Z(X; Y;	) equals � = f(X; ) � �(X; ),Z(X; Y;	) = �(X; ); (7.2)where X, Y ,  and 	 refer, as in Se
tion 5, to the initial state of system and apparatus, imme-diately prior to the measurement, and where the equality should be regarded as approximate,holding to any desired degree of a

ura
y.The most basi
 quantities are, of 
ourse, the state 
omponents themselves, namely X and  ,as well as the velo
ities vk = ~mk Imrk (X) (X) (7.3)of the parti
les. One might also 
onsider quantities des
ribing the future behavior of the system,su
h as the 
on�guration of an isolated system at a later time, or the time of es
ape of a parti
lefrom a spe
i�ed region, or the asymptoti
 velo
ity dis
ussed in Se
tion 5.5. (Be
ause the dynami
sis deterministi
, all of these quantities are fun
tions of the initial state of the system and arethus of the form (7.1).)We wish to make a few remarks about the measurability of these quantities. In parti
ular,we wish to mention, as an immediate 
onsequen
e of the analysis at the beginning of Se
tion 5,a 
ondition that must be satis�ed by any quantity if it is to be measurable.53



7.1 A Ne
essary Condition for MeasurabilityConsider any experiment E measuring a physi
al quantity �. We showed in Se
tion 5 that thestatisti
s of the result Z of E must be governed by a POVM, i.e., that the probability distributionof Z must be given by a measure-valued quadrati
 map on the system Hilbert spa
e H. Thus,by (7.2),� is measurable only if its probability distribution � � is a measure-valued quadrati
map on H. (7.4)As indi
ated earlier, the position X and the asymptoti
 velo
ity or momentum P have distri-butions quadrati
 in  , namely � X(dx) = j (x)j2 and � P(dp) = j ~ (p)j2, respe
tively. Moreover,they are both measurable, basi
ally be
ause suitable lo
al intera
tions exist to establish appro-priate 
orrelations with the relevant ma
ros
opi
 variables. For example, in a bubble 
hambera parti
le following a de�nite path triggers a 
hain of rea
tions that leads to the formation of(ma
ros
opi
) bubbles along the path.The point we wish to make now, however, is simply this: the measurability of these quantitiesis not a 
onsequen
e of the fa
t that these quantities obey this measurability 
ondition. We em-phasize that this 
ondition is merely a ne
essary 
ondition for measurability, and not a suÆ
ientone. While it does follow that if � satis�es this 
ondition there exists a dis
rete experiment thatis an approximate formal measurement of � (in the sense that the distribution of the result ofthe experiment is approximately � � ), this experiment need not provide a genuine measurementof � be
ause the intera
tions required for its implementation need not exist and be
ause, even ifthey did, the result Z of the experiment might not be related to the quantity � in the right way,i.e, via (7.2).We now wish to illustrate the use of this 
ondition, �rst transforming it into a weaker butmore 
onvenient form. Note that any quadrati
 map � must satisfy� 1+ 2 + � 1� 2 = 2(� 1 + � 2)and thus if � is also positive we have the inequality� 1+ 2 � 2(� 1 + � 2): (7.5)Thus it follows from (7.4) that a quantity35� must fail to be measurable if it has a possible value (one with nonvanishingprobability or probability density) when the wave fun
tion of the system is  1 +  2that is neither a possible value when the wave fun
tion is  1 nor a possible valuewhen the wave fun
tion is  2. (7.6)(Here neither  1 nor  2 need be normalized.)35This 
on
lusion is also a more or less dire
t 
onsequen
e of the linearity of the S
hr�odinger evolution: If i 
 �0 7! 	i for all i, then P i 
�0 7!P	i. But, again, our purpose here has been mainly to illustrate theuse of the measurability 
ondition itself.
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7.2 The Nonmeasurability of Velo
ity, Wave Fun
tion and Determin-isti
 QuantitiesIt is an immediate 
onsequen
e of (7.6) that neither the velo
ity nor the wave fun
tion is mea-surable, the latter be
ause the value \ 1+ 2" is neither \ 1" nor \ 2," and the former be
auseevery wave fun
tion  may be written as  =  1 +  2 where  1 is the real part of  and  2 is itimes the imaginary part of  , for both of whi
h the velo
ity (of whatever parti
le) is 0.Note that this is a very strong and, in a sense, surprising 
on
lusion, in that it establishes theimpossibility of measuring what is, after all, a most basi
 dynami
al variable for a deterministi
me
hani
al theory of parti
les in motion. It should probably be regarded as even more surprisingthat the proof that the velo
ity|or wave fun
tion|is not measurable seems to rely almost onnothing, in e�e
t just on the linearity of the evolution of the wave fun
tion. However, one shouldnot overlook the 
ru
ial role of quantum equilibrium.We observe that the nonmeasurability of the wave fun
tion is related to the impossibility of
opying the wave fun
tion. (This question arises sometimes in the form, \Can one 
lone the wavefun
tion?" [36, 78, 37℄.) Copying would be a

omplished, for example, by an intera
tion leading,for all  , from  
�0
�0 to  
 
�, but this is 
learly in
ompatible with unitarity. We wishhere merely to remark that the impossibility of 
loning 
an also be regarded as a 
onsequen
e ofthe nonmeasurability of the wave fun
tion. In fa
t, were 
loning possible one 
ould|by makingmany 
opies|measure the wave fun
tion by performing suitable measurements on the various
opies. After all, any wave fun
tion  is determined by h ;A i for suÆ
iently many observablesA and these expe
tation values 
an of 
ourse be 
omputed using a suÆ
iently large ensemble.By a deterministi
 quantity we mean any fun
tion � = f( ) of the wave fun
tion alone (whi
hthus does not inherit any irredu
ible randomness asso
iated with the random 
on�gurationX). Itfollows easily from (7.6) that no (nontrivial) deterministi
 quantity is measurable.36 In parti
ular,the mean value h ;A i of an observable A (not a multiple of the identity) is not measurable|though it would be were it possible to 
opy the wave fun
tion, and it 
an be measured by anonlinear experiment, see Se
tion 7.4.7.3 Initial Values and Final ValuesMeasurement is a tri
ky business. In parti
ular, one may wonder how, if it is not measurable, weare ever able to know the wave fun
tion of a system|whi
h in orthodox quantum theory oftenseems to be the only thing that we do know about it.In this regard, it is important to appre
iate that we were 
on
erned in the previous se
tiononly with initial values, with the wave fun
tion and the velo
ity prior to the measurement. Weshall now brie
y 
omment upon the measurability of �nal values, produ
ed by the experiment.The nonmeasurability argument of Se
tion 7.2 does not 
over �nal values. This may beappre
iated by noting that the 
ru
ial ingredient in the analysis involves a fundamental time-asymmetry: The probability distribution � of the result of an experiment is a quadrati
 fun
-tional of the initial wave fun
tion  , not the �nal one|of whi
h it is not a fun
tional at all.Moreover, the �nal velo
ity 
an indeed be measured, by a momentum measurement as des
ribedin Se
tion 5.5. (That su
h a measurement yields also the �nal velo
ity follows from the formulain footnote 29 for the asymptoti
 wave fun
tion.) And the �nal wave fun
tion 
an be measured36Note also that � � (d�) = Æ(�� f( ))d� seems manifestly nonquadrati
 in  (unless f is 
onstant).55



by an ideal measurement of any nondegenerate observable, and more generally by any strongformal measurement whose subspa
es H� are one-dimensional, see Se
tion 3.5: If the out
ome is�, the �nal wave fun
tion is R� = R�PH� , whi
h is independent of the initial wave fun
tion (up to a s
alar multiple).We also wish to remark that this distin
tion between measurements of initial values andmeasurements of �nal values has no genuine signi�
an
e for passive measurements, that merelyreveal preexisting properties without in any way a�e
ting the measured system. However, quan-tum measurements are usually a
tive; for example, an ideal measurement transforms the wavefun
tion of the system into an eigenstate of the measured observable. But passive or a
tive, ameasurement, by its very meaning, is 
on
erned stri
tly speaking with properties of a systemjust before its performan
e, i.e., with initial values. At the same time, to the extent that anyproperty of a system is 
onveyed by a typi
al quantum \measurement," it is a property de�nedby a �nal value.For example, a

ording to orthodox quantum theory a position measurement on a parti
lewith a spread-out wave fun
tion, to the extent that it measures anything at all, measures the�nal position of the parti
le, 
reated by the measurement, rather than the initial position, whi
his generally regarded as not existing prior to the measurement. And even in Bohmian me
hani
s,in whi
h su
h a measurement may indeed reveal the initial position, whi
h|if the measurementis suitably performed|will agree with the �nal position, this measurement will still be a
tivesin
e the wave fun
tion of the system must be transformed by the measurement into one that is
ompatible with the sharper knowledge of the position that it provides, see Se
tion 2.1.7.4 Nonlinear Measurements and the Role of Prior InformationThe basi
 idea of measurement is predi
ated on initial ignoran
e. We think of a measurement ofa property of a system as 
onveying that property by a pro
edure that does not seriously dependupon the state of the system,37 any details of whi
h must after all be unknown prior to at leastsome engagement with the system. Be that as it may, the notion of measurement as 
odi�edby the quantum formalism is indeed rooted in a standpoint of ignoran
e: the experimentalpro
edures involved in the measurement do not depend upon the state of the measured system.And our entire dis
ussion of measurement up to now has been based upon that very assumption,that E itself does not depend on  (and 
ertainly not on X).If, however, some prior information on the initial system wave fun
tion  were available, we
ould exploit this information to measure quantities that would otherwise fail to be measurable.For example, for a single-parti
le system, if we somehow knew its initial wave fun
tion  thena measurement of the initial position of the parti
le would 
onvey its initial velo
ity as well,via (7.3)|even though, as we have shown, this quantity isn't measurable without su
h priorinformation.By a nonlinear measurement or experiment E = E  we mean one in whi
h, unlike those
onsidered so far, one or more of the de�ning 
hara
teristi
s of the experiment depends upon  .37This statement must be taken with a grain of salt. Some things must be known about the system prior tomeasurement, for example, that it is in the vi
inity the measurement apparatus, or that an atom whose angularmomentum we wish to measure is moving towards the relevant Stern Gerla
h magnets, as well as a host of similar,often unnoti
ed, pie
es of information. This sort of thing does not mu
h matter for our purposes in this paperand 
an be safely ignored. Taking them into a

ount would introdu
e pointless 
ompli
ations without a�e
tingthe analysis in an essential way. 56



For example, in the measurement of the initial velo
ity des
ribed in the previous paragraph, the
alibration fun
tion F = F  depends upon  .38 More generally we might have that U = U or�0 = � 0 .The wave fun
tion 
an of 
ourse be measured by a nonlinear measurement|just let F  �  .Somewhat less trivially, the initial wave fun
tion 
an be measured, at least formally, if it isknown to be a member of a given orthonormal basis, by measuring any nondegenerate observablewhose eigenve
tors form that basis. The proposals of Aharonov, Anandan and Vaidman [1℄for measuring the wave fun
tion, though very interesting, are of this 
hara
ter|they involvenonlinear measurements that depend upon a 
hoi
e of basis 
ontaining  |and thus remain
ontroversial.397.5 A Position Measurement that Does not Measure PositionWe began this se
tion by observing that what is spoken of as a measurement in quantum theoryneed not really measure anything. We mentioned, however, that in Bohmian me
hani
s theposition 
an be measured, and the experiment that a

omplishes this would of 
ourse be ameasurement of the position operator. We wish here to point out, by means of a very simpleexample, that the 
onverse is not true, i.e., that a measurement of the position operator neednot be a measurement of the position.Consider the harmoni
 os
illator in 2 dimensions with HamiltonianH = � ~22m� �2�x2 + �2�y2 � + !2m2 (x2 + y2) :Ex
ept for an irrelevant time-dependent phase fa
tor, the evolution  t is periodi
, with period� = 2�=!. The Bohm motion of the parti
le, however, need not have period � . For example, the(n = 1; m = 1)-state, whi
h in polar 
oordinates is of the form t(r; �) = m!~p�re�m!2~ r2ei�e�i 32!t; (7.7)generates a 
ir
ular motion of the parti
le around the origin with angular velo
ity ~=(mr2), andhen
e with periodi
ity depending upon the initial position of the parti
le|the 
loser to the origin,the faster the rotation. Thus, in general, X� 6= X0:Nonetheless, X� and X0 are identi
ally distributed random variables, sin
e j � j2 = j 0j2 � j j2.We may now fo
us on two di�erent experiments: Let E be a measurement of the a
tualposition X0, the initial position, and hen
e of the position operator, and let E 0 be an experimentbeginning at the same time as E but in whi
h it is the position X� at time � that is a
tuallymeasured. Sin
e for all  the result of E 0 has the same distribution as the result of E , E 0 is also ameasurement of the position operator. But E 0 is not a measurement of the initial position sin
e38Suppose that Z1 = F1(QT ) = X is the result of the measurement of the initial position. Then F = G Æ F1where G (�) = ~m Imr  (�).39In one of their proposals the wave fun
tion is \prote
ted" by a pro
edure that depends upon the basis; inanother, involving adiabati
 intera
tions,  must be a nondegenerate eigenstate of the Hamiltonian H of thesystem, but it is not ne
essary that the latter be known.57



the position at time � does not in general agree with the initial position: A measurement of theposition at time � is not a measurement of the position at time 0. Thus, while a measurementof position is always a measurement of the position operator,A measurement of the position operator is not ne
essarily a genuine measurement ofposition!7.6 Theory Dependen
e of MeasurementThe harmoni
 os
illator example provides a simple illustration of an elementary point that isoften ignored: in dis
ussions of measurement it is well to keep in mind the theory under 
onsid-eration. The theory we have been 
onsidering here has been Bohmian me
hani
s. If, instead,we were to analyze the harmoni
 os
illator experiments des
ribed above using di�erent theoriesour 
on
lusions about results of measurements would in general be rather di�erent, even if thedi�erent theories were empiri
ally equivalent. So we shall analyze the above experiment E 0 interms of various other formulations or interpretations of quantum theory.In stri
t orthodox quantum theory there is no su
h thing as a genuine parti
le, and thus thereis no su
h thing as the genuine position of a parti
le. There is, however, a kind of operationalde�nition of position, in the sense of an experimental setup, where a measurement devi
e yieldsresults the statisti
s of whi
h are given by the position operator.In naive orthodox quantum theory one does speak loosely about a parti
le and its position,whi
h is thought of|in a somewhat un
riti
al way|as being revealed by measuring the positionoperator. Any experiment that yields statisti
s given by the position operator is 
onsidered agenuine measurement of the parti
le's position.40 Thus E 0 would be 
onsidered as a measurementof the position of the parti
le at time zero.The de
oherent (or 
onsistent) histories formulation of quantum me
hani
s [35, 65, 46℄ is
on
erned with the probabilities of 
ertain 
oarse-grained histories, given by the spe
i�
ationof �nite sequen
es of events, asso
iated with proje
tion operators, together with their timesof o

urren
e. These probabilities are regarded as governing the o

urren
e of the histories,regardless of whether any of the events are measured or observed, but when they are observed,the probabilities of the observed histories are the same as those of the unobserved histories. Theexperiments E and E 0 are measurements of single-event histories 
orresponding to the positionof the parti
le at time 0 and at time � , respe
tively. Sin
e the Heisenberg position operatorsX̂� = X̂0 for the harmoni
 os
illator, it happens to be the 
ase, a

ording to the de
oherenthistories formulation of quantum me
hani
s, that for this system the position of the parti
le attime � is the same as its position at time 0 when the positions are unobserved, and that E 0 infa
t measures the position of the parti
le at time 0 (as well as the position at time �).The spontaneous lo
alization or dynami
al redu
tion models [38, 40℄ are versions of quantumtheory in whi
h there are no genuine parti
les; in these theories reality is represented by thewave fun
tion alone (or, more a

urately, by entities entirely determined by the wave fun
tion).In these models S
hr�odinger's equation is modi�ed by the addition of a sto
hasti
 term that
auses the wave fun
tion to 
ollapse during measurement in a manner more or less 
onsistentwith the quantum formalism. In parti
ular, the performan
e of E or E 0 would lead to a random
ollapse of the os
illator wave fun
tion onto a narrow spatial region, whi
h might be spoken of40This, and the failure to appre
iate the theory dependen
e of measurements, has been a sour
e of unfounded
riti
isms of Bohmian me
hani
s(see [33, 24, 22℄). 58



as the position of the parti
le at the relevant time. But E 0 
ould not be regarded in any sense asmeasuring the position at time 0, be
ause the lo
alization does not o

ur for E 0 until time � .Finally we mention sto
hasti
 me
hani
s [64℄, a theory ontologi
ally very similar to Bohmianme
hani
s in that the basi
 entities with whi
h it is 
on
erned are parti
les des
ribed by theirpositions. Unlike Bohmian me
hani
s, however, the positions evolve randomly, a

ording to adi�usion pro
ess. Just as with Bohmian me
hani
s, for sto
hasti
 me
hani
s the experiment E 0is not a measurement of the position at time zero, but in 
ontrast to the situation in Bohmianme
hani
s, where the result of the position measurement at time � determines, given the wavefun
tion, the position at time zero (via the Bohmian equation of motion), this is not so insto
hasti
 me
hani
s be
ause of the randomness of the motion.8 Hidden VariablesThe issue of hidden variables 
on
erns the question of whether quantum randomness arises in a
ompletely ordinary manner, merely from the fa
t that in orthodox quantum theory we deal withan in
omplete des
ription of a quantum system. A

ording to the hidden-variables hypothesis,if we had at our disposal a suÆ
iently 
omplete des
ription of the system, provided by supple-mentary parameters traditionally 
alled hidden variables, the totality of whi
h is usually denotedby �, the behavior of the system would thereby be determined, as a fun
tion of � (and thewave fun
tion). In su
h a hidden-variables theory, the randomness in results of measurementswould arise solely from randomness in the unknown variables �. On the basis of a variety of\impossibility theorems," the hidden-variables hypothesis has been widely regarded as havingbeen dis
redited.Note that Bohmian me
hani
s is just su
h a hidden-variables theory, with the hidden variables� given by the 
on�guration Q of the total system. We have seen in parti
ular that in a Bohmianexperiment, the result Z is determined by the initial 
on�guration Q = (X; Y ) of the system andapparatus. Nonetheless, there remains mu
h 
onfusion about the relationship between Bohmianme
hani
s and the various theorems supposedly establishing the impossibility of hidden variables.In this se
tion we wish to make several 
omments on this matter.8.1 Experiments and Random VariablesIn Bohmian me
hani
s we understand very naturally how random variables arise in asso
iationwith experiments: the initial 
omplete state (Q;	) of system and apparatus evolves deterministi-
ally and uniquely determines the out
ome of the experiment; however, as the initial 
on�gurationQ is in quantum equilibrium, the out
ome of the experiment is random.A general experiment E is then always asso
iated a random variable (RV) Z des
ribing itsresult. In other words, a

ording to Bohmian me
hani
s, there is a natural asso
iationE 7! Z; (8.8)between experiments and RVs. Moreover, whenever the statisti
s of the result of E is governedby a self-adjoint operator A on the Hilbert spa
e of the system, with the spe
tral measure ofA determining the distribution of Z, for whi
h we shall write Z 7! A (see (2.37)), Bohmianme
hani
s establishes thereby a natural asso
iation between E and AE 7! A: (8.9)59



While for Bohmian me
hani
s the result Z depends in general on both X and Y , the initial
on�gurations of the system and of the apparatus, for many real-world experiments Z dependsonly on X and the randomness in the result of the experiment is thus due solely to randomness inthe initial 
on�guration of the system alone. This is most obvious in the 
ase of genuine positionmeasurements (for whi
h Z(X; Y ) = X). That in fa
t the apparatus need not introdu
e any extrarandomness for many other real-world experiments as well follows then from the observation thatthe role of the apparatus in many real-world experiments is to provide suitable ba
kground �elds,whi
h introdu
e no randomness, as well as a �nal dete
tion, a measurement of the a
tual positionsof the parti
les of the system. In parti
ular, this is the 
ase for those experiments most relevantto the issue of hidden variables, su
h as Stern-Gerla
h measurements of spin, as well as formomentum measurements and more generally s
attering experiments, whi
h are 
ompleted by a�nal dete
tion of position.The result of these experiments is then given by a random variableZ = F (XT ) = G(X) ;where T is the �nal time of the experiment,41 on the probability spa
e f
;Pg, where 
 = fXgis the set of initial 
on�gurations of the system and P(dx) = j j2dx is the quantum equilibriumdistribution asso
iated with the initial wave fun
tion  of the system. For these experiments(see Se
tion 5.4) the distribution of Z is always governed by a PVM, 
orresponding to someself-adjoint operator A, Z 7! A, and thus Bohmian me
hani
s provides in these 
ases a naturalmap E 7! A.8.2 Random Variables, Operators, and the Impossibility TheoremsWe would like to brie
y review the status of the so-
alled impossibility theorems for hiddenvariables, the most famous of whi
h are due to von Neumann [74℄, Gleason [41℄, Ko
hen andSpe
ker [53℄, and Bell [5℄. Sin
e Bohmian me
hani
s exists, these theorems 
an't possibly estab-lish the impossibility of hidden variables, the widespread belief to the 
ontrary notwithstanding.What these theorems do establish, in great generality, is that there is no \good" map fromself-adjoint operators on a Hilbert spa
e H to random variables on a 
ommon probability spa
e,A 7! Z � ZA ; (8.10)where ZA = ZA(�) should be thought of as the result of \measuring A" when the hidden variables,that 
omplete the quantum des
ription and restore determinism, have value �. Di�erent sensesof \good" 
orrespond to di�erent impossibility theorems.For any parti
ular 
hoi
e of �, say �0, the map (8.10) is transformed to a value mapA 7! v(A) (8.11)41Con
erning the most 
ommon of all real-world quantum experiments, s
attering experiments, although theyare 
ompleted by a �nal dete
tion of position, this dete
tion usually o

urs, not at a de�nite time T , but at arandom time, for example when a parti
le enters a lo
alized dete
tor. Nonetheless, for 
omputational purposesthe �nal dete
tion 
an be regarded as taking pla
e at a de�nite time T . This is a 
onsequen
e of the 
ux-a
ross-surfa
es theorem [19, 26, 27℄, whi
h establishes an asymptoti
 equivalen
e between 
ux a
ross surfa
es (dete
tionat a random time) and s
attering into 
ones (dete
tion at a de�nite time).60



from self-adjoint operators to real numbers (with v(A) = ZA(�0)). The stronger impossibilitytheorems establish the impossibility of a good value map, again with di�erent senses of \good"
orresponding to di�erent theorems.Note that su
h theorems are not very surprising. One would not expe
t there to be a \good"map from a non
ommutative algebra to a 
ommutative one.One of von Neumann's assumptions was, in e�e
t, that the map (8.10) be linear. Whilemathemati
ally natural, this assumption is physi
ally rather unreasonable and in any 
ase isentirely unne
essary. In order to establish that there is no good map (8.10), it is suÆ
ient torequire that the map be good in the minimal sense that the following agreement 
ondition issatis�ed:Whenever the quantum me
hani
al joint distribution of a set of self-adjoint opera-tors (A1; : : : ; Am) exists, i.e., when they form a 
ommuting family, the joint distribu-tion of the 
orresponding set of random variables, i.e., of (ZA1; : : : ; ZAm), agrees withthe quantum me
hani
al joint distribution.The agreement 
ondition implies that all deterministi
 relationships among 
ommuting ob-servables must be obeyed by the 
orresponding random variables. For example, if A, B and Cform a 
ommuting family and C = AB, then we must have that ZC = ZAZB sin
e the jointdistribution of ZA, ZB and ZC must assign probability 0 to the set f(a; b; 
) 2 R3 j
 6= abg.This leads to a minimal 
ondition for a good value map A 7! v(A), namely that it preservefun
tional relationships among 
ommuting observables: For any 
ommuting family A1; : : : ; Am,whenever f(A1; : : : ; Am) = 0 (where f : Rm ! R represents a linear, multipli
ative, or anyother relationship among the Ai's), the 
orresponding values must satisfy the same relationship,f(v(A1); : : : ; v(Am)) = 0.The various impossibility theorems 
orre
tly demonstrate that there are no maps, from self-adjoint operators to random variables or to values, that are good, merely in the minimal sensesdes
ribed above.42We note that while the original proofs of the impossibility of a good value map, in parti
ularthat of the Ko
hen-Spe
ker theorem, were quite involved, in more re
ent years drasti
ally simplerproofs have been found (for example, by Peres [67℄, by Greenberg, Horne, and Zeilinger [45℄, andby Mermin [62℄).In essen
e, one establishes the impossibility of a good map A 7! ZA or A 7! v(A) by show-ing that the v(A)'s, or ZA's, would have to satisfy impossible relationships. These impossiblerelationships are very mu
h like the following: ZA = ZB = ZC 6= ZA. However no impossiblerelationship 
an arise for only three quantum observables, sin
e they would have to form a 
om-muting family, for whi
h quantum me
hani
s would supply a joint probability distribution. Thusthe quantum relationships 
an't possibly lead to an in
onsisten
y for the values of the randomvariables in this 
ase.With four observables A;B;C, and D it may easily happen that [A;B℄ = 0, [B;C℄ = 0,[C;D℄ = 0, and [D;A℄ = 0 even though they don't form a 
ommuting family (be
ause, say,[A;C℄ 6= 0). It turns out, in fa
t, that four observables suÆ
e for the derivation of impossible42Another natural sense of good map A 7! v(A) is given by the requirement that v(A) 2 sp (A), whereA = (A1; : : : ; Am) is a 
ommuting family, v(A) = (v(A1); : : : ; v(Am)) 2 Rm and sp (A) is the joint spe
trum ofthe family. That a map good in this sense is impossible follows from the fa
t that if � = (�1; : : : �m) 2 sp (A),then �1; : : : �m must obey all fun
tional relationships for A1; : : : ; Am.61



quantum relationships. Perhaps the simplest example of this sort is due to Hardy [48℄, whoshowed that for almost every quantum state for two spin 1/2 parti
les there are four observablesA;B;C, and D (two of whi
h happen to be spin 
omponents for one of the parti
les whilethe other two are spin 
omponents for the other parti
le) whose quantum me
hani
al pair-wisedistributions for 
ommuting pairs are su
h that a good map to random variables must yieldrandom variables ZA; ZB; ZC , and ZD obeying the following relationships:(1) The event fZA = 1 and ZB = 1g has positive probability (with an optimal 
hoi
e of thequantum state, about :09).(2) If fZA = 1g then fZD = 1g.(3) If fZB = 1g then fZC = 1g.(4) The event fZD = 1 and ZC = 1g has probability 0.Clearly, there exist no su
h random variables.The point we wish to emphasize here, however, is that although they are 
orre
t and althoughtheir hypotheses may seem minimal, these theorems are nonetheless far less relevant to thepossibility of a deterministi
 
ompletion of quantum theory than one might imagine. In thenext subse
tion we will elaborate on how that 
an be so. We shall explain why we believe su
htheorems have little physi
al signi�
an
e for the issues of determinism and hidden variables. Wewill separately 
omment later in this se
tion on Bell's related nonlo
ality analysis [5℄, whi
h doeshave profound physi
al impli
ations.8.3 ContextualityIt is a simple fa
t there 
an be no map A 7! ZA, from self-adjoint operators onH (with dim (H) �3) to random variables on a 
ommon probability spa
e, that is good in the minimal sense that thejoint probability distributions for the random variables agree with the 
orresponding quantumme
hani
al distributions, whenever the latter ones are de�ned. But does not Bohmian me
hani
syield pre
isely su
h a map? After all, have we not emphasized how Bohmian me
hani
s naturallyasso
iates with any experiment a random variable Z giving its result, in a manner that is in
omplete agreement with the quantum me
hani
al predi
tions for the result of the experiment?Given a quantum observable A, let ZA be then the result of a measurement of A. What gives?Before presenting what we believe to be the 
orre
t response, we mention some possible re-sponses that are o�-target. It might be obje
ted that measurements of di�erent observables willinvolve di�erent apparatuses and hen
e di�erent probability spa
es. However, one 
an simul-taneously embed all the relevant probability spa
es into a huge 
ommon probability spa
e. Itmight also be obje
ted that not all self-adjoint operators 
an be realisti
ally be measured. Butto arrive at in
onsisten
y one need 
onsider, as mentioned in the last subse
tion, only 4 observ-ables, ea
h of whi
h are spin 
omponents and are thus 
ertainly measurable, via Stern-Gerla
hexperiments. Thus, in fa
t, no enlargement of probability spa
es need be 
onsidered to arrive ata 
ontradi
tion, sin
e as we emphasized at the end of Se
tion 8.1, the random variables giving theresults of Stern-Gerla
h experiments are fun
tions of initial parti
le positions, so that for jointmeasurements of pairs of spin 
omponents for 2-parti
les the 
orresponding results are randomvariables on the 
ommon probability spa
e of initial 
on�gurations of the 2 parti
les, equippedwith the quantum equilibrium distribution determined by the initial wave fun
tion.62



There must be a mistake. But where 
ould it be? The mistake o

urs, in fa
t, so early that itis diÆ
ult to noti
e it. It o

urs at square one. The diÆ
ulty lies not so mu
h in any 
onditionson the map A 7! ZA, but in the 
on
lusion that Bohmian me
hani
s supplies su
h a map at all.What Bohmian me
hani
s naturally supplies is a map E 7! ZE , from experiments to randomvariables. When ZE 7! A, so that we speak of E as a measurement of A (E 7! A), this verylanguage suggests that insofar as the random variable is 
on
erned all that matters is that Emeasures A, and the map E 7! ZE be
omes a map A 7! ZA. After all, if E were a genuinemeasurement of A, revealing, that is, the preexisting (i.e., prior to the experiment) value of theobservable A, then Z would have to agree with that value and hen
e would be an unambiguousrandom variable depending only on A.But this sort of argument makes sense only if we take the quantum talk of operators asobservables too seriously. We have emphasized in this paper that operators do naturally arise inasso
iation with quantum experiments. But there is little if anything in this asso
iation, beyondthe unfortunate language that is usually used to des
ribe it, that supports the notion that theoperator A asso
iated with an experiment E is in any meaningful way genuinely measured bythe experiment. From the nature of the asso
iation itself, it is diÆ
ult to imagine what this
ould possibly mean. And for those who think they imagine some meaning in this talk, theimpossibility theorems show they are mistaken.The bottom line is this: in Bohmian me
hani
s the random variables ZE giving the results ofexperiments E depend, of 
ourse, on the experiment, and there is no reason that this should notbe the 
ase when the experiments under 
onsideration happen to be asso
iated with the sameoperator. Thus with any self-adjoint operator A, Bohmian me
hani
s naturally may asso
iatemany di�erent random variables ZE , one for ea
h di�erent experiment E 7! A asso
iated withA. A 
ru
ial point here is that the map E 7! A is many-to-one.43Suppose we de�ne a map A 7! ZA by sele
ting, for ea
h A, one of the experiments, 
allit E A, with whi
h A is asso
iated, and de�ne ZA to be ZE A. Then the map so de�ned 
an'tbe good, be
ause of the impossibility theorems; moreover there is no reason to have expe
tedthe map to be good. Suppose, for example, that [A;B℄ = 0. Should we expe
t that the jointdistribution of ZA and ZB will agree with the joint quantum me
hani
al distribution of A andB? Only if the experiments E A and E B used to de�ne ZA and ZB both involved a 
ommonexperiment that \simultaneously measures A and B," i.e., an experiment that is asso
iated withthe 
ommuting family (A;B). If we 
onsider now a third operator C su
h that [A;C℄ = 0, but[B;C℄ 6= 0, then there is no 
hoi
e of experiment E that would permit the de�nition of a randomvariable ZA relevant both to a \simultaneous measurement of A and B" and a \simultaneousmeasurement of A and C" sin
e no experiment is a \simultaneous measurement of A, B, andC." In the situation just des
ribed we must 
onsider at least two random variables asso
iatedwith A, ZA;B and ZA;C, depending upon whether we are 
onsidering an experiment \measuringA and B" or an experiment \measuring A and C." It should be 
lear that when the randomvariables are assigned to experiments in this way, the possibility of 
on
i
t with the predi
tionsof orthodox quantum theory is eliminated. It should also be 
lear, in view of what we have43We wish to remark that, quite aside from this many-to-oneness, the random variables ZE 
annot generally beregarded as 
orresponding to any sort of natural property of the \measured" system. ZE , in general a fun
tionof the initial 
on�guration of the system-apparatus 
omposite, may fail to be a fun
tion of the 
on�guration ofthe system alone. And even when, as is often the 
ase, ZE does depend only on the initial 
on�guration of thesystem, owing to 
haoti
 dynami
s this dependen
e 
ould have an extremely 
omplex 
hara
ter.63



repeatedly stressed, that quite aside from the impossibility theorems, this way of asso
iatingrandom variables with experiments is pre
isely what emerges in Bohmian me
hani
s.The dependen
e of the result of a \measurement of the observable A" upon the other ob-servables, if any, that are \measured simultaneously together with A"|e.g., that ZA;B and ZA;Cmay be di�erent|is 
alled 
ontextuality : the result of an experiment depends not just on \whatobservable the experiment measures" but on more detailed information that 
onveys the \
on-text" of the experiment. The essential idea, however, if we avoid misleading language, is rathertrivial: that the result of an experiment depends on the experiment.To underline this triviality we remark that for two experiments, E and E 0, that \measureA and only A" and involve no simultaneous \measurement of another observable," the resultsZE and ZE 0 may disagree. For example in Se
tion 7.5 we des
ribed experiments E and E 0 bothof whi
h \measured the position operator" but only one of whi
h measured the a
tual initialposition of the relevant parti
le, so that for these experiments in general ZE 6= ZE 0 .One might feel, however, that in the example just des
ribed the experiment that does notmeasure the a
tual position is somewhat disreputable|even though it is in fa
t a \measurementof the position operator." We shall therefore give another example, due to D. Albert [2℄, in whi
hthe experiments are as simple and 
anoni
al as possible and are entirely on the same footing.Let E " and E # be Stern-Gerla
h measurements of A = �z, with E # di�ering from E " only in thatthe polarity of the Stern-Gerla
h magnet for E # is the reverse of that for E ". (In parti
ular, thegeometry of the magnets for E " and E # is the same.) If the initial wave fun
tion  symm and themagneti
 �eld �B have suÆ
ient re
e
tion symmetry with respe
t to a plane between the polesof the Stern-Gerla
h magnets, the parti
le whose spin 
omponent is being \measured" 
annot
ross this plane of symmetry, so that if the parti
le is initially above, respe
tively below, thesymmetry plane, it will remain above, respe
tively below, that plane. But be
ause their magnetshave opposite polarity, E " and E # involve opposite 
alibrations: F" = �F#. It follows thatZ symmE " = �Z symmE #and the two experiments 
ompletely disagree about the \value of �z" in this 
ase.The essential point illustrated by the previous example is that instead of having in Bohmianme
hani
s a natural asso
iation �z 7! Z�z , we have a rather di�erent pattern of relationships,given in the example by E " ! ZE "E # ! ZE # &% �z;8.4 Against \Contextuality"The impossibility theorems require the assumption of non
ontextuality, that the random variableZ giving the result of a \measurement of quantum observable A" should depend on A alone,further experimental details being irrelevant. How big a deal is 
ontextuality, the violation ofthis assumption? Here are two ways of des
ribing the situation:1. In quantum me
hani
s (or quantum me
hani
s supplemented with hidden variables), ob-servables and properties have a novel, highly non
lassi
al aspe
t: they (or the result ofmeasuring them) depend upon whi
h other 
ompatible properties, if any, are measuredtogether with them.In this spirit, Bohm and Hiley [16℄ write that (page 109)64



the quantum properties imply . . . that measured properties are not intrinsi
 butare inseparably related to the apparatus. It follows that the 
ustomary languagethat attributes the results of measurements . . . to the observed system alone 
an
ause 
onfusion, unless it is understood that these properties are a
tually depen-dent on the total relevant 
ontext.They later add that (page 122)The 
ontext dependen
e of results of measurements is a further indi
ation ofhow our interpretation does not imply a simple return to the basi
 prin
iplesof 
lassi
al physi
s. It also embodies, in a 
ertain sense, Bohr's notion of theindivisibility of the 
ombined system of observing apparatus and observed obje
t.2. The result of an experiment depends upon the experiment. Or, as expressed by Bell [10℄(pg.166),A �nal moral 
on
erns terminology. Why did su
h serious people take so seri-ously axioms whi
h now seem so arbitrary? I suspe
t that they were misled bythe perni
ious misuse of the word `measurement' in 
ontemporary theory. Thisword very strongly suggests the as
ertaining of some preexisting property of something, any instrument involved playing a purely passive role. Quantum exper-iments are just not like that, as we learned espe
ially from Bohr. The resultshave to be regarded as the joint produ
t of `system' and `apparatus,' the 
om-plete experimental set-up. But the misuse of the word `measurement' makes iteasy to forget this and then to expe
t that the `results of measurements' shouldobey some simple logi
 in whi
h the apparatus is not mentioned. The resultingdiÆ
ulties soon show that any su
h logi
 is not ordinary logi
. It is my impres-sion that the whole vast subje
t of `Quantum Logi
' has arisen in this way fromthe misuse of a word. I am 
onvin
ed that the word `measurement' has nowbeen so abused that the �eld would be signi�
antly advan
ed by banning its usealtogether, in favour for example of the word `experiment.'With one 
aveat, we entirely agree with Bell's observation. The 
aveat is this: We do notbelieve that the di�eren
e between quantum me
hani
s and 
lassi
al me
hani
s is quite as 
ru
ialfor Bell's moral as his language suggests it is. For any experiment, quantum or 
lassi
al, it wouldbe a mistake to regard any instrument involved as playing a purely passive role, unless theexperiment is a genuine measurement of a property of a system, in whi
h 
ase the result isdetermined by the initial 
onditions of the system alone. However, a relevant di�eren
e between
lassi
al and quantum theory remains: Classi
ally it is usually taken for granted that it is inprin
iple possible to measure any observable without seriously a�e
ting the observed system,whi
h is 
learly false in quantum me
hani
s (or Bohmian me
hani
s).44Mermin has raised a similar question [62℄ (pg. 811):Is non
ontextuality, as Bell seemed to suggest, as silly a 
ondition as von Neu-mann's . . . ?To this he answers:44The assumption 
ould (and probably should) also be questioned 
lassi
ally.
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I would not 
hara
terize the assumption of non
ontextuality as a silly 
onstraint ona hidden-variables theory. It is surely an important fa
t that the impossibility ofembedding quantum me
hani
s in a non
ontextual hidden-variables theory rests notonly on Bohr's do
trine of the inseparability of the obje
ts and the measuring instru-ments, but also on a straightforward 
ontradi
tion, independent of one's philosophi
point of view, between some quantitative 
onsequen
es of non
ontextuality and thequantitative predi
tions of quantum me
hani
s.This is a somewhat strange answer. First of all, it applies to von Neumann's assumption (lin-earity), whi
h Mermin seems to agree is silly, as well as to the assumption of non
ontextuality.And the statement has a rather question-begging 
avor, sin
e the importan
e of the fa
t towhi
h Mermin refers would seem to depend on the nonsilliness of the assumption whi
h the fa
t
on
erns.Be that as it may, Mermin immediately supplies his real argument for the nonsilliness ofnon
ontextuality. Con
erning two experiments for \measuring observable A," he writes thatit is . . . an elementary theorem of quantum me
hani
s that the joint distribution . . .for the �rst experiment yields pre
isely the same marginal distribution (for A) asdoes the joint distribution . . . for the se
ond, in spite of the di�erent experimentalarrangements. . . . The obvious way to a

ount for this, parti
ularly when entertainingthe possibility of a hidden-variables theory, is to propose that both experiments reveala set of values for A in the individual systems that is the same, regardless of whi
hexperiment we 
hoose to extra
t them from. . . . A 
ontextual hidden-variables a

ountof this fa
t would be as mysteriously silent as the quantum theory on the question ofwhy nature should 
onspire to arrange for the marginal distributions to be the samefor the two di�erent experimental arrangements.A bit later, Mermin refers to the \striking insensitivity of the distribution to 
hanges in theexperimental arrangement."For Mermin there is a mystery, something that demands an explanation. It seems to us,however, that the mystery here is very mu
h in the eye of the beholder. It is �rst of all somewhatodd that Mermin speaks of the mysterious silen
e of quantum theory 
on
erning a question whoseanswer, in fa
t, emerges as an \elementary theorem of quantum me
hani
s." What better wayis there to answer questions about nature than to appeal to our best physi
al theories?More importantly, the \two di�erent experimental arrangements," say E 1 and E 2, 
onsideredby Mermin are not merely any two randomly 
hosen experimental arrangements. They obviouslymust have something in 
ommon. This is that they are both asso
iated with the same self-adjointoperator A in the manner we have des
ribed: E 1 7! A and E 2 7! A. It is quite standard to say inthis situation that both E 1 and E 2 measure the observable A, but both for Bohmian me
hani
sand for orthodox quantum theory the very meaning of the asso
iation with the operator A ismerely that the distribution of the result of the experiment is given by the spe
tral measuresfor A. Thus there is no mystery in the fa
t that E 1 and E 2 have results governed by the samedistribution, sin
e, when all is said and done, it is on this basis, and this basis alone, that we are
omparing them.(One might wonder how it 
ould be possible that there are two di�erent experiments that arerelated in this way. This is a somewhat te
hni
al question, rather di�erent from Mermin's, and itis one that Bohmian me
hani
s and quantum me
hani
s readily answer, as we have explained inthis paper. In this regard it would probably be good to re
e
t further on the simplest example ofsu
h experiments, the Stern-Gerla
h experiments E " and E # dis
ussed in the previous subse
tion.)66



It is also diÆ
ult to see how Mermin's proposed resolution of the mystery, \that both experi-ments reveal a set of values for A . . . that is the same, regardless of whi
h experiment we 
hooseto extra
t them from," 
ould do mu
h good. He is fa
ed with a 
ertain pattern of results in twoexperiments that would be explained if the experiments did in fa
t genuinely measure the samething. The experiments, however, as far as any detailed quantum me
hani
al analysis of themis 
on
erned, don't appear to be genuine measurements of anything at all. He then suggeststhat the mystery would be resolved if, indeed, the experiments did measure the same thing, theanalysis to the 
ontrary notwithstanding. But this proposal merely repla
es the original mysterywith a bigger one, namely, of how the experiments 
ould in fa
t be understood as measuring thesame thing, or anything at all for that matter. It is like explaining the mystery of a talking 
atby saying that the 
at is in fa
t a human being, appearan
es to the 
ontrary notwithstanding.A �nal 
omplaint about 
ontextuality: the terminology is misleading. It fails to 
onvey withsuÆ
ient for
e the rather de�nitive 
hara
ter of what it entails: \Properties" that are merely
ontextual are not properties at all; they do not exist, and their failure to do so is in the strongestsense possible!8.5 Nonlo
ality, Contextuality and Hidden VariablesThere is, however, a situation where 
ontextuality is physi
ally relevant. Consider the EPRBexperiment, outlined at the end of Se
tion 3.6. In this 
ase the dependen
e of the result of ameasurement of the spin 
omponent �1 � a of a parti
le upon whi
h spin 
omponent of a distantparti
le is measured together with it|the di�eren
e between Z�1�a; �2�b and Z�1�a; �2�
 (using thenotation des
ribed in the seventh paragraph of Se
tion 8.3)|is an expression of nonlo
ality, of,in Einstein words, a \spooky a
tion at distan
e." More generally, whenever the relevant 
ontextis distant, 
ontextuality implies nonlo
ality.Nonlo
ality is an essential feature of Bohmian me
hani
s: the velo
ity, as expressed in theguiding equation (2.2), of any one of the parti
les of a many-parti
le system will typi
ally dependupon the positions of the other, possibly distant, parti
les whenever the wave fun
tion of thesystem is entangled, i.e., not a produ
t of single-parti
le wave fun
tions. In parti
ular, this istrue for the EPRB experiment under examination. Consider the extension of the single parti
leHamiltonian (2.12) to the two-parti
le 
ase, namelyH = � ~22m1r21 � ~22m2r22 � �1�1�B(x1)� �2�2�B(x2):Then for initial singlet state, and spin measurements as des
ribed in Se
tions 2.5 and 5.2, iteasily follows from the laws of motion of Bohmian me
hani
s thatZ�1�a; �2�b 6= Z�1�a; �2�
 :This was observed long ago by Bell [6℄. In fa
t, Bell's examination of Bohmian me
hani
sled him to his 
elebrated nonlo
ality analysis. In the 
ourse of his investigation of Bohmianme
hani
s he observed that ([10℄, p. 11)in this theory an expli
it 
ausal me
hanism exists whereby the disposition of one pie
eof apparatus a�e
ts the results obtained with a distant pie
e.67



Bohm of 
ourse was well aware of these features of his s
heme, and has given themmu
h attention. However, it must be stressed that, to the present writer's knowledge,there is no proof that any hidden variable a

ount of quantum me
hani
s must havethis extraordinary 
hara
ter. It would therefore be interesting, perhaps, to pursuesome further \impossibility proofs," repla
ing the arbitrary axioms obje
ted to aboveby some 
ondition of lo
ality, or of separability of distant systems.In a footnote, Bell added that \Sin
e the 
ompletion of this paper su
h a proof has been found."This proof was published in his 1964 paper [5℄, "On the Einstein-Podolsky-Rosen Paradox," inwhi
h he derives Bell's inequality, the basis of his 
on
lusion of quantum nonlo
ality.We �nd it worthwhile to reprodu
e here the analysis of Bell, deriving a simple inequalityequivalent to Bell's, in order to highlight the 
on
eptual signi�
an
e of Bell's analysis and, atthe same time, its mathemati
al triviality. The analysis involves two parts. The �rst part, theEinstein-Podolsky-Rosen argument applied to the EPRB experiment, amounts to the observationthat for the singlet state the assumption of lo
ality implies the existen
e of non
ontextual hiddenvariables. More pre
isely, it implies, for the singlet state, the existen
e of random variablesZi� = Z���i , i = 1; 2, 
orresponding to all possible spin 
omponents of the two parti
les, thatobey the agreement 
ondition des
ribed in Se
tion 8.2. In parti
ular, fo
using on 
omponents inonly 3 dire
tions a, b and 
 for ea
h parti
le, lo
ality implies the existen
e of 6 random variablesZi� i = 1; 2 � = a; b; 
su
h that Zi� = �1 (8.12)Z1� = �Z2� (8.13)and, more generally, Prob(Z1� 6= Z2�) = q��; (8.14)the 
orresponding quantum me
hani
al probabilities. This 
on
lusion amounts to the idea thatmeasurements of the spin 
omponents reveal preexisting values (the Zi�), whi
h, assuming lo
ality,is implied by the perfe
t quantum me
hani
al anti
orrelations [5℄:Now we make the hypothesis, and it seems one at least worth 
onsidering, that if thetwo measurements are made at pla
es remote from one another the orientation of onemagnet does not in
uen
e the result obtained with the other. Sin
e we 
an predi
t inadvan
e the result of measuring any 
hosen 
omponent of �2, by previously measuringthe same 
omponent of �1, it follows that the result of any su
h measurement musta
tually be predetermined.People very often fail to appre
iate that the existen
e of su
h variables, given lo
ality, is notan assumption but a 
onsequen
e of Bell's analysis. Bell repeatedly stressed this point (bydeterminism Bell here means the existen
e of hidden variables):It is important to note that to the limited degree to whi
h determinism plays arole in the EPR argument, it is not assumed but inferred. What is held sa
red is theprin
iple of `lo
al 
ausality' { or `no a
tion at a distan
e'. . . .It is remarkably diÆ
ult to get this point a
ross, that determinism is not a pre-supposition of the analysis. ([10℄, p. 143)Despite my insisten
e that the determinism was inferred rather than assumed, youmight still suspe
t somehow that it is a preo

upation with determinism that 
reates68



the problem. Note well then that the following argument makes no mention whateverof determinism. . . . Finally you might suspe
t that the very notion of parti
le, andparti
le orbit . . . has somehow led us astray. . . . So the following argument willnot mention parti
les, nor indeed �elds, nor any other parti
ular pi
ture of whatgoes on at the mi
ros
opi
 level. Nor will it involve any use of the words `quantumme
hani
al system', whi
h 
an have an unfortunate e�e
t on the dis
ussion. ThediÆ
ulty is not 
reated by any su
h pi
ture or any su
h terminology. It is 
reatedby the predi
tions about the 
orrelations in the visible outputs of 
ertain 
on
eivableexperimental set-ups. ([10℄, p. 150)The se
ond part of the analysis, whi
h unfolds the \diÆ
ulty . . . 
reated by the . . . 
orrela-tions," involves only very elementary mathemati
s. Clearly,Prob �fZ1a = Z1bg [ fZ1b = Z1
g [ fZ1
 = Z1ag� = 1 :sin
e at least two of the three (2-valued) variables Z1� must have the same value. Hen
e, byelementary probability theory,Prob �Z1a = Z1b�+ Prob �Z1b = Z1
�+ Prob �Z1
 = Z1a� � 1;and using the perfe
t anti
orrelations (8.13) we have thatProb �Z1a = �Z2b�+ Prob �Z1b = �Z2
�+ Prob �Z1
 = �Z2a� � 1; (8.15)whi
h is equivalent to Bell's inequality and in 
on
i
t with (8.14). For example, when the anglesbetween a, b and 
 are 1200 the 3 relevant quantum 
orrelations q�� are all 1=4.To summarize the argument, let H be the hypothesis of the existen
e of the non
ontextualhidden variables we have des
ribed above. Then the logi
 of the argument is:Part 1: quantum me
hani
s + lo
ality ) H (8.16)Part 2: quantum me
hani
s ) not H (8.17)Con
lusion: quantum me
hani
s ) not lo
ality (8.18)To fully grasp the argument it is important to appre
iate that the identity of H|the existen
eof the non
ontextual hidden variables|is of little substantive importan
e. What is important isnot so mu
h the identity of H as the fa
t that H is in
ompatible with the predi
tions of quantumtheory. The identity of H is, however, of great histori
al signi�
an
e: It is responsible for themis
on
eption that Bell proved that hidden variables are impossible, a belief shared until re
entlyby most physi
ists.Su
h a mis
on
eption has not been the only rea
tion to Bell's analysis. Roughly speaking,we may group the di�erent rea
tions into three main 
ategories, summarized by the followingstatements:1. Hidden variables are impossible.2. Hidden variables are possible, but they must be 
ontextual.3. Hidden variables are possible, but they must be nonlo
al.69



Statement 1 is plainly wrong. Statement 2 is 
orre
t but not terribly signi�
ant. Statement 3is 
orre
t, signi�
ant, but nonetheless rather misleading. It follow from (8.16) and (8.17) thatany a

ount of quantum phenomena must be nonlo
al, not just any hidden variables a

ount.Bell's argument shows that nonlo
ality is implied by the predi
tions of standard quantum theoryitself. Thus if nature is governed by these predi
tions, then nature is nonlo
al. (That nature isso governed, even in the 
ru
ial EPR-
orrelation experiments, has by now been established by agreat many experiments, the most 
on
lusive of whi
h is perhaps that of Aspe
t [4℄.)9 Against Naive Realism About OperatorsTraditional naive realism is the view that the world is pretty mu
h the way it seems, populated byobje
ts whi
h for
e themselves upon our attention as, and whi
h in fa
t are, the lo
us of sensualqualities. A naive realist regards these \se
ondary qualities," for example 
olor, as obje
tive,as out there in the world, mu
h as per
eived. A de
isive diÆ
ulty with this view is that on
ewe understand, say, how our per
eption of what we 
all 
olor arises, in terms of the intera
tionof light with matter, and the pro
essing of the light by the eye, and so on, we realize that thepresen
e out there of 
olor per se would play no role whatsoever in these pro
esses, that is, inour understanding what is relevant to our per
eption of \
olor." At the same time, we may also
ome to realize that there is, in the des
ription of an obje
t provided by the s
ienti�
 world-view,as represented say by 
lassi
al physi
s, nothing whi
h is genuinely \
olor-like."A basi
 problem with quantum theory, more fundamental than the measurement problemand all the rest, is a naive realism about operators, a falla
y whi
h we believe is far more seriousthan traditional naive realism: With the latter we are deluded partly by language but in themain by our senses, in a manner whi
h 
an s
ar
ely be avoided without a good deal of s
ienti�
or philosophi
al sophisti
ation; with the former we are sedu
ed by language alone, to a

ept aview whi
h 
an s
ar
ely be taken seriously without a large measure of (what often passes for)sophisti
ation.Not many physi
ists|or for that matter philosophers|have fo
used on the issue of naiverealism about operators, but S
hr�odinger and Bell have expressed similar or related 
on
erns:. . . the new theory [quantum theory℄ . . . 
onsiders the [
lassi
al℄ model suitable forguiding us as to just whi
h measurements 
an in prin
iple be made on the relevantnatural obje
t. . . .Would it not be pre-established harmony of a pe
uliar sort if the
lassi
al-epo
h resear
hers, those who, as we hear today, had no idea of what measur-ing truly is, had unwittingly gone on to give us as lega
y a guidan
e s
heme revealingjust what is fundamentally measurable for instan
e about a hydrogen atom!? [72℄Here are some words whi
h, however legitimate and ne
essary in appli
ation, have nopla
e in a formulation with any pretension to physi
al pre
ision: system; apparatus;environment; mi
ros
opi
, ma
ros
opi
; reversible, irreversible; observable; informa-tion; measurement.. . . The notions of \mi
ros
opi
" and \ma
ros
opi
" defy pre
ise de�nition.. . . Einstein said that it is theory whi
h de
ides what is \observable". I think hewas right. . . . \observation" is a 
ompli
ated and theory-laden business. Then thatnotion should not appear in the formulation of fundamental theory. . . .On this list of bad words from good books, the worst of all is \measurement". Itmust have a se
tion to itself. [11℄ 70



We agree almost entirely with Bell here. We insist, however, that \observable" is just as badas \measurement," maybe even a little worse. Be that as it may, after listing Dira
's measurementpostulates Bell 
ontinues:It would seem that the theory is ex
lusively 
on
erned about \results of measure-ment", and has nothing to say about anything else. What exa
tly quali�es somephysi
al systems to play the role of \measurer"? Was the wave fun
tion of the worldwaiting to jump for thousands of millions of years until a single-
elled living 
reatureappeared? Or did it have to wait a little longer, for some better quali�ed system. . . with a Ph.D.? If the theory is to apply to anything but highly idealized labora-tory operations, are we not obliged to admit that more or less \measurement-like"pro
esses are going on more or less all the time, more or less everywhere. Do we nothave jumping then all the time?The �rst 
harge against \measurement", in the fundamental axioms of quantumme
hani
s, is that it an
hors the shifty split of the world into \system" and \appa-ratus". A se
ond 
harge is that the word 
omes loaded with meaning from everydaylife, meaning whi
h is entirely inappropriate in the quantum 
ontext. When it is saidthat something is \measured" it is diÆ
ult not to think of the result as referring tosome preexisting property of the obje
t in question. This is to disregard Bohr's insis-ten
e that in quantum phenomena the apparatus as well as the system is essentiallyinvolved. If it were not so, how 
ould we understand, for example, that \measure-ment" of a 
omponent of \angular momentum" . . . in an arbitrarily 
hosen dire
tion. . . yields one of a dis
rete set of values? When one forgets the role of the appara-tus, as the word \measurement" makes all too likely, one despairs of ordinary logi
. . . hen
e \quantum logi
". When one remembers the role of the apparatus, ordinarylogi
 is just �ne.In other 
ontexts, physi
ists have been able to take words from ordinary languageand use them as te
hni
al terms with no great harm done. Take for example the\strangeness", \
harm", and \beauty" of elementary parti
le physi
s. No one istaken in by this \baby talk". . . .Would that it were so with \measurement". But infa
t the word has had su
h a damaging e�e
t on the dis
ussion, that I think it shouldnow be banned altogether in quantum me
hani
s. (Ibid.)While Bell fo
uses dire
tly here on the misuse of the word \measurement" rather than onthat of \observable," it is worth noting that the abuse of \measurement" is in a sense inseparablefrom that of \observable," i.e., from naive realism about operators. After all, one would not bevery likely to speak of measurement unless one thought that something, some \observable" thatis, was somehow there to be measured.Operationalism, so often used without a full appre
iation of its 
onsequen
es, may lead manyphysi
ists to beliefs whi
h are the opposite of what one might expe
t. Namely, by believingsomehow that a physi
al property is and must be de�ned by an operational de�nition, manyphysi
ists 
ome to regard properties su
h as spin and polarization, whi
h 
an easily be opera-tionally de�ned, as intrinsi
 properties of the system itself, the ele
tron or photon, despite all thediÆ
ulties that this entails. If operational de�nitions were banished, and \real de�nitions" wererequired, there would be far less reason to regard these \properties" as intrinsi
, sin
e they arenot de�ned in any sort of intrinsi
 way; in short, we have no idea what they really mean, andthere is no reason to think they mean anything beyond the behavior exhibited by the system inintera
tion with an apparatus.There are two primary sour
es of 
onfusion, mystery and in
oheren
e in the foundations ofquantum me
hani
s: the insisten
e on the 
ompleteness of the des
ription provided by the wave71



fun
tion, despite the dramati
 diÆ
ulties entailed by this dogma, as illustrated most famously bythe measurement problem; and naive realism about operators. While the se
ond seems to pointin the opposite dire
tion from the �rst, the dogma of 
ompleteness is in fa
t nourished by naiverealism about operators. This is be
ause naive realism about operators tends to produ
e thebelief that a more 
omplete des
ription is impossible be
ause su
h a des
ription should involvepreexisting values of the quantum observables, values that are revealed by measurement. Andthis is impossible. But without naive realism about operators|without being misled by all thequantum talk of the measurement of observables|most of what is shown to be impossible by theimpossibility theorems would never have been expe
ted to begin with.A
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