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I. INTRODUCTIONThe nonlocality inherent in the quantum mechanical description of nature is still a muchdebated subject, 30 years after the pioneering work by John Bell [1]. Bell's starting point wasthe argument of Einstein, Podolsky, and Rosen (EPR) [2], demonstrating the existence oflocal hidden variables implying the incompleteness of the quantum mechanical description ofa physical system by the wave function alone. The EPR argument is based on one essentialassumption: locality, or local causality. Bell derived an inequality which the distributions ofthese local hidden variables have to satisfy and showed that the quantum mechanical valuesfor these probabilities violate this inequality. Thus there cannot be a local hidden variablesmodel for quantum theory. But Bell's argument in conjunction with the EPR argumentactually shows much more: the quantum mechanical predictions cannot be explained bylocal physical laws. And since the quantum mechanical predictions are con�rmed by mostexperiments, see for example [3], one has to conclude that there are nonlocal physical actionsin nature.EPR argued by considering a thought experiment with a certain correlated 2-particlestate. Bohm transformed this thought experiment into one which is similar to actuallyperformed experiments, involving spin measurements on the singlet state [4]. Does thisEPR-Bell nonlocality arise only in such special situations, while most quantum systems arelocal? For most quantum states the EPR argument clearly does not apply since it requiresperfect correlation between lots of pairs of results of widely separated measurements. Bellhas introduced an alternative to the EPR-argument that applies to all quantum states: theconcept of stochastic local hidden variables [1]. As has been noted (in a special case) byFine [5], this concept actually leads to the same framework as the EPR argument, namelyto (deterministic) local hidden variables.Thus one may now ask which quantum states admit a local hidden variables model,i.e., are EPR-Bell-local. For pure quantum states one can rather easily see that for anyentangled state of 2 or more particles one can �nd observables whose correlations violate a3



Bell inequality (see for example [6,7]). This implies that no local hidden variables modelexists for such quantum states. Only pure product states  =  (1) 
 : : : 
  (N) are EPR-Bell-local. Now what do we expect for mixed states? A mixed 2-particle state describingan ensemble of pure product states, i.e, a convex sum of product density matrices � =P� p��(1)� 
 �(2)� , p� > 0, is also EPR-Bell-local. The question is whether any \entangled"density matrix, i.e., any density matrix that cannot be written as a mixture of productdensity matrices, is EPR-Bell-nonlocal. We certainly expect that such states exhibit nonlocalbehavior because in any representation of the density matrix as a convex sum of pure statesthere are entangled wave functions present. The problem is how to reveal this nonlocality.That this question is tricky is suggested by the existence of a class of density matricesdiscovered by Werner which are entangled but nevertheless admit a local hidden variablesmodel [8]. The Werner states W are states on the Hilbert space H = lCd 
 lCd and may bethought of as describing two spin (d � 1)=2 particles:W = d + 1d3 I � 1d2 F; (1)where F is the ip operator, F ( (1)
  (2)) =  (2)
  (1). Recently Popescu [9] pointed outan interesting property of Werner states. When we perform local measurements of the formP = T 
 I and Q = I 
 T on each subsystem, where T is a projector on a two-dimensionalsubspace of lCd, T = j1ih1j+ j2ih2j, we get nonlocal correlations in a sub-ensemble. The sub-ensemble for which P and Q both yield the outcome 1, described by the collapsed densitymatrix W 0 = (PQ)W (PQ)tr (WPQ) ; (2)violates a Bell inequality for d � 5; thus there are local observables whose correlationsin this new state can no longer be described by a local model. The nonlocality of W|intuitively corresponding to the property of W of being entangled, but \hidden" when onlya single measurement on each side is considered|can thus be revealed by sequences of local4



measurements.1Since in Popescu's example the observables leading to a violation of a Bell inequalitycommute with P and Q, these time sequences of measurements can be described by singleobservables, and Werner's model may be applied to it. However, the model thus obtainedviolates causality: later measurements inuence preceding ones [9,11]. Since such a modeldoes not appropriately represent the physical idea of locality|actions into the past are evenworse than actions at a distance|we propose, following Popescu [9] and Mermin [11], asa requirement for a local hidden variables model that it satisfy the locality and causalityconditions, de�ning an LCHV model, described here.2This is discussed in Section II: in subsection IIA for the deterministic case, and insubsection IIB for the stochastic case. It turns out however that any quantum state thatallows for a stochastic hidden variables model also allows for a deterministic model and viceversa. This is a generalization of a result of Fine (to causal models with arbitrary manyobservables).In Section III we shall discuss our main conjecture about the classi�cation of localstates|that for d > 2 no entangled density matrix on lCd 
 lCd admits an LCHV model.We can neither prove nor disprove this conjecture, but we shall discuss some partial resultswhich shed light on it. For pure product states and mixtures of product states there exists,as one would certainly expect, an LCHV model. This is shown in Section IIIA. Likewise, forpure entangled states there can be no LCHV model. In Section IIIB we discuss Popescu'sresult in our terms: the Werner states (for d � 5) do not admit LCHV models. In SectionIIIC we show that in d = 2 dimensions the conjecture is false. All the same, the case d = 21Gisin [10] has recently found entangled states in d = 2 which do not violate certain types of Bellinequalities for single measurements but do so for sequences of (generalized) measurements.2Recently, the causality condition for stochastic hidden variables models has also been discussedby Zukowski et al. [12]. 5



is special, and the conjecture may well be correct for d � 3. We exhibit a larger class ofstates similar to the Werner states, which are entangled, admit a local hidden variablesmodel, and have the additional property that after the �rst measurement on one side theprojected states are mixtures of product states, i.e., local states. However, in contrast tothe 2-dimensional case we cannot conclude that there is an LCHV model for these states.This situation is interesting: Either these states have an LCHV model and hence arecounterexamples to our main conjecture, or they do not, in which case they possess a moredeeply hidden irreducible nonlocality, di�erent from that of the examples known so far, andsuggesting a new nonlocality classi�cation scheme, described in Section IIID.In Section IV we shall consider generalized measurements: since Werner's local hiddenvariables model is a model for standard observables only, it may be possible, as has beenconjectured by Popescu [9], to reveal the \hidden nonlocality" by generalized observablesassociated with positive operator valued (POV) measures. More generally, the existence ofa local hidden variables model for generalized observables might be equivalent to the statebeing non-entangled. However, we show in Section IVB that local hidden variables modelsfor standard observables can be extended to cover some POV measurements, which restrictsthe class of POV's that can be used to prove or disprove this conjecture.II. LOCAL CAUSAL HIDDEN VARIABLES MODELSA. Deterministic hidden variablesTo motivate our de�nition of hidden variables models we shall briey repeat the essentialsof the EPR argument in Bohm's version. Consider two spin-12 particles in the singlet state.If the spin of each particle is measured in some direction a the two outcomes are perfectlyanticorrelated, but the outcome of a particular measurement is completely random. If oneparticle has a-spin +1 the measurement of the a-spin of the other particle will yield �1.The assumption of locality now implies that the particles carry the information about their6



spin value in every direction with them. To account for the perfect anticorrelation as wellas for the randomness of the particular result, the adequate mathematical language is thatof random variables Xa;Xb for the spin in every direction a and b, respectively, for bothparticles on a probability space 
 with a probability measure IP.3 We shall sometimes callthis kind of hidden variables \deterministic hidden variables"|the hidden variable ! 2 
determines the results of all possible experiments|to distinguish them from the \stochastichidden variables" we shall introduce in the next subsection. Note, however, that determinismhas been inferred from locality.We shall consider the following general setup. The physical system is in a quantumstate �, which is a density matrix on a Hilbert space H. For the time being, we shallassume that only ideal (von Neumann) measurements are performed on the system, i.e., ameasurement is associated with an observable, which is a self-adjoint operator on H, andthe usual collapse rule for sequences of ideal measurements applies. Observables are denotedby Ok, their spectral values by o, and their spectrum by �(Ok). Furthermore, we denote by3The following analogy may be helpful. In classical statistical mechanics the microstate of asystem is a point in phase space and the statistical properties of macroscopic systems are ex-plained by considering macrostates, i.e., ensembles of systems in di�erent microstates which aremacroscopically indistinguishable. Observables are just random variables on phase space and theirdistributions are determined by the macrostate. Can the quantum mechanical observables be un-derstood in a similar way? Systems with the same wave function would, in this analogy, belongto the same macrostate and the individual properties of a particular system would be determinedby the microstate, a point in a yet unknown probability space, traditionally called the space ofhidden variables. Quantum mechanical observables would be random variables on this new prob-ability space and their distributions would agree with the quantum mechanical predictions forsuitably chosen ensembles of microstates. (In particular, there would be joint distributions for allobservables.) 7



P ko the projection onto the eigenspace of the observable Ok corresponding to the eigenvalueo. For simplicity we shall explicitly focus only on observables with discrete spectrum.By a hidden variables model (HV model) for a quantum state � we shall mean aprobability space (
; IP) and a family X of random variables on (
; IP) such that for anytime-ordered sequence of (Heisenberg) observables (O1(t1); : : : ; On(tn)) with t1 < : : : < tnof arbitrary length n there is a corresponding random variable, a functionXO1(t1);:::;On(tn) : 
! �(O1) � : : :� �(On) � IRn;whose distribution agrees with the quantum mechanical distribution for the results of asequence of ideal measurements of the observables O1(t1); : : : ; On(tn):IP �XO1(t1);:::;On(tn) = (o1; : : : ; on)�= tr �P non(tn) � � �P 1o1(t1) �P 1o1(t1) � � �P non(tn)� : (3)This condition guarantees that the HV model captures all the quantum mechani-cal predictions for arbitrary (ideal) measurements in the state �. (If in the sequence(O1(t1); : : : ; On(tn)) some consecutive observables are jointly measurable, i.e., commute,we may allow the times of the consecutive commuting observables to be equal.)For any quantum state �, there is a HVmodel: for example, take (
; IP) to be the interval[0; 1] with uniform distribution (=Lebesgue measure), and de�ne the random variables bysplitting [0; 1] into pieces with lengths equal to the probabilities of the occurring values.Note that this trivial construction does not contradict the no-hidden-variables theorems.The proofs that there can be no hidden variables require additional properties of the hiddenvariables. One such property is that of \non-contextuality;" see [1,13] for a discussion ofthis property and its limited physical relevance. We shall now consider physically relevantadditional properties, namely locality and causality.We split the random variable XO1(t1);:::;On(tn) that describes a sequence of n measurementsinto an initial segment XOn(tn)O1(t1);:::;On�1(tn�1) of length n� 1 describing the outcome of the �rstn � 1 measurements which in general depends on the later measurement On(tn), and a8



�nal (\follow-up") random variable XO1(t1);:::;On�1(tn�1)On(tn) , describing the outcome of the lastexperiment On(tn) depending on the �rst n � 1 measurements:XO1(t1);:::;On(tn)=: �XOn(tn)O1(t1);:::;On�1(tn�1);XO1(t1);:::;On�1(tn�1)On(tn) � :A causal hidden variables model (CHV model) for a quantum state � is a HVmodel satisfying the causality condition that initial segments do not depend upon whatmeasurements are later performed, i.e., thatXOn(tn)O1(t1);:::;On�1(tn�1) = XO1(t1);:::;On�1(tn�1): (4)Equivalently, the HV model is causal ifXO1(t1);:::;On(tn)= �XO1(t1);XO1(t1)O2(t2) ; : : : ;XO1(t1);:::;On�1(tn�1)On(tn) � : (5)This condition captures the physical idea of causality: the description of an experimentassociated with Om(tm) may depend on those experiments performed earlier, but it is notchanged by experiments that are performed in the future. If, for example, two sequencesof observables are considered di�ering in the later observable, (O1(t1); O2(t2)), t1 < t2, and(O1(t1); O20(t02)), t1 < t02, thenXO1(t1);O2(t2) = �XO1(t1);XO1(t1)O2(t2)�and XO1(t1);O20(t02) = �XO1(t1);XO1(t1)O20(t02)� ;and the outcome of O1(t1) does not depend upon which, if any, measurements are performedlater.Just as for HV models, one can readily see, since the quantum probabilities (3) are, inan obvious sense, causal, that all quantum mechanical states admit a CHV model. Take9



(
; IP) to be [0; 1] with uniform distribution, de�ne the one-observable random variablesXO1(t1) for all O1(t1) as explained above, and de�ne then inductively on each of the subsetsfXO1(t1);:::;On�1(tn�1) = (o1; : : : ; on�1)g the follow-up random variables XO1(t1);:::;On�1(tn�1)On(tn) byfurther splitting according to the conditional probabilities of the occurring values [14].To discuss locality, we consider the following generalized EPR situation. The system isin a quantum state � on the Hilbert space H = H(1)
H(2), the factors of which correspondto two subsystems that are spatially separated such that no signal traveling at most atthe speed of light will be able to propagate between them while two observers are locallyconducting their experiments. Local measurements are described by observables of the formA = A(1) 
 I, on system 1, and B = I 
 B(2), on system 2. As a matter of convenience,when considering a sequence of local measurements we shall rearrange the random variablesdescribing the successive measurements, placing those for system 2 to the right of those forsystem 1 and writing XA1;:::;An;B1;:::;Bm accordingly, regardless of their relative time ordering.4(Note that since in this setup all the A's commute with all the B's, we may collect togetherthe A's and the B's in formula (3) as well.)A local hidden variables model (LHV model) is a HV model satisfying the localitycondition that the random variables describing the outcomes of local measurements on onesystem do not depend on the measurements performed on the other system, i.e.,XA1;:::;An;B1;:::;Bm = (XA1;:::;An ;XB1;:::;Bm):This condition says that while the results of local measurements in the two separated sub-systems may be correlated, as for example are the colors of Bertlmann's socks [1], the localmeasurements performed on one system do not themselves inuence those on the othersystem.For the case of one local observable for each subsystem, this condition reduces to thecondition that we have random variables XA and XB for all observables A and B for each4To simplify the notation we will sometimes drop the time variable of the Heisenberg operators.10



subsystem|so that XA;B = (XA;XB)|such that the pair distributions agree with thequantum mechanical ones. This is the traditional framework of local hidden variables. Thecausality condition is obsolete in this case. We shall abbreviate by LHV1 model such anLHV model for single measurements, which we shall often speak of as measurements at asingle time.Finally we de�ne a local causal hidden variables model (LCHV model) as a HVmodel that is both local and causal; and an LCHVk model as a model for sequences ofmeasurements of length k on both sides. (LCHV1 = LHV1.)B. Stochastic hidden variablesBell has introduced also so-called \stochastic local hidden variables models," where thehidden variable doesn't determine the measurement results completely, so that given thehidden variable the results are still random. The role of the hidden variables is to ex-plain correlations between measurement results at distant places: Assuming locality, itmust be possible to identify su�ciently many causal factors=hidden variables, such thatthe residual uctuations of the outcomes of experiments will be independent if these causalfactors=hidden variables are held �xed (see Bell [1], pp. 150).A stochastic local causal HV model for a quantum state � consists of a probabilityspace (e
;fIP) and a family of maps QO1(t1);:::;On(tn): for any time-ordered sequence of arbitrarylength n of observables (O1(t1); : : : ; On(tn)) with t1 < : : : < tn there is a map from e
 intoprobability distributions on the product of the spectra �(O1)� : : :� �(On) denoted byQO1(t1);:::;On(tn) : e! 7! QO1(t1);:::;On(tn)(� ; : : : ; � j e!) (6)with the following properties: (a) By averaging over e
 the quantum mechanical probabilitiesare obtained Ze
QO1(t1);:::;On(tn)(o1; : : : ; onj e!) dfIP(e!)= tr �P non(tn) � � �P 1o1(t1) �P 1o1(t1) � � �P non(tn)� : (7)11



(b) Causality: The marginals do not depend on later measurementsQO1(t1);:::;On(tn)(o1; : : : ; on�1j e!)� Xon2�(On)QO1(t1);:::;On(tn)(o1; : : : ; on�1; onj e!)= QO1(t1);:::;On�1(tn�1)(o1; : : : ; on�1j e!);equivalently QO1(t1);:::;On(tn)(o1; : : : ; onj e!)= QO1(t1);:::;On�1(tn�1)(o1; : : : ; on�1j e!)�QO1(t1);:::;On(tn)(onj o1; : : : ; on�1; e!)= QO1(t1)(o1j e!)QO1(t1);O2(t2)(o2j o1; e!)� � � QO1(t1);:::;On(tn)(onj o1; : : : ; on�1; e!) (8)with the conditional probabilitiesQO1(t1);:::;On(tn)(ok+1; : : : ; onjo1; : : : ; ok; e!)= QO1(t1);:::;On(tn)(o1; : : : ; ok; ok+1; : : : ; onj e!)QO1(t1);:::;Ok(tk)(o1; : : : ; okj e!) :(c) Locality: In the same sort of EPR framework as described earlier, the separated sys-tems are conditionally independent given e!, i.e., for local measurements the probabilitiesQ:::(: : : je!) for �xed e! factorize,QA1;:::;An;B1;:::;Bm(a1; : : : ; an; b1; : : : ; bmj e!)= QA1;:::;An(a1; : : : ; anj e!)QB1;:::;Bm(b1; : : : ; bmj e!);where we have used the same rearrangement as earlier. Equivalently,QA1;:::;An;B1;:::;Bm(a1; : : : ; anj b1; : : : ; bm; e!)= QA1;:::;An;B1;:::;Bm(a1; : : : ; anj e!)= QA1;:::;An(a1; : : : ; anj e!)12



and analogously for the other system. (The �rst equality directly above is usually called\outcome independence" and the second one \parameter independence.") In the same spiritwe may de�ne stochastic HV, CHV, LHV1, LCHV, and LCHVk models.The existence of a deterministic model for a quantum state trivially implies the existenceof a stochastic model with the same locality and causality properties. Interestingly, theconverse is also true: From a stochastic model for a quantum state one may construct adeterministic model with the same locality and causality properties. Fine has proven theequivalence between the existence of deterministic and stochastic LHV1 models [5]. While heexplicitly considers models involving only 4 observables, the basic idea of his proof extendsto an arbitrary number, and in fact to all LHV models as well. We show in Appendix Athat the equivalence between the existence of deterministic and stochastic models holds alsofor LCHV models.This result is interesting for several reasons. Firstly, it reduces the complexity of aclassi�cation of states concerning nonlocality, since any state allowing for a stochastic modelof a certain kind automatically also allows for a deterministic model with the same propertiesand vice versa. Secondly, when proving the existence of a HV model for a certain quantumstate, we may use Werner's construction of a stochastic HV model and conclude that thereis also a deterministic model. We shall use similar reasoning in the following discussionseveral times. Thirdly, we wish to remark that the equivalence between the existence ofdeterministic and stochastic HV models is also conceptually interesting with respect tothe discussion of physical nonlocality. The EPR argument shows that locality implies theexistence of deterministic LHV, while Bell's argument, as explained at the beginning ofSection IIB, derives the concept of stochastic LHV from locality. These two seeminglydi�erent approaches are actually equivalent.
13



III. IS THE NONEXISTENCE OF AN LCHV MODEL EQUIVALENT TO THESTATE BEING ENTANGLED?A. The case of pure states and non-entangled density matricesPure entangled states do not admit a local hidden variables model [1,6,7]. Thus therecertainly can be no LCHV model for such states.For quantum states which are a mixture of product density matrices one can constructan LCHV model by appropriately \mixing" the LCHV models for the individual terms.For completeness, we briey give the natural construction. Consider for simplicity a �nitesum � = Pn�=1 p��(1)� 
 �(2)� with p� � 0 for all �, Pn�=1 p� = 1, and (
(1); IP(1);X(1;�)),(
(2); IP(2);X(2;�)) CHV models for �(1)� and �(2)� . (For all �, the probability space (
(i); IP(i))may be chosen to be [0; 1] with Lebesgue measure.) De�ne 
 := 
(1) � 
(2) � f1; : : : ; ngand IP := IP(1) � IP(2) � p; where p(f�g) = p� for � 2 f1; : : : ; ng. For sequences of localobservables Ai = A(1)i 
 I, Bj = I 
B(2)j letXA1;:::;An;B1;:::;Bm(!):= �X(1;�)A(1)1;:::;A(1)n(!(1));X(2;�)B(2)1;:::;B(2)m(!(2))� ;! = (!(1); !(2); �). One readily sees that this is an LCHV model for �. Thus all non-entangled density matrices are local in the sense that they admit an LCHV model. (This ofcourse covers non-entangled pure states.)By a construction similar to the one just given, one sees that the set of states (in some�xed Hilbert space) admitting an LCHV model, like the set of non-entangled states, isconvex, i.e., if �1 and �2 admit an LCHV model, then so does t�1 + (1 � t)�2 for 0 < t < 1.In section C below we exhibit for d = 2 an entangled density matrix that neverthelessadmits an LCHV model. However, as will be seen in section C, the case d = 2 is ratherspecial, so that we still �nd it reasonable to conjecture that for d > 2 no entangled densitymatrix admits an LCHV model. We can neither prove nor disprove this conjecture. Recently,necessary and su�cient criteria for the quantum state to be entangled have been found14



[15,16]. However, we are unable to use these criteria in our framework. In the following weshall present some partial results.B. Popescu's result: there is no LCHV model for the Werner states for d � 5A CHV model for a quantum state � naturally yields one for collapsed states arising from�. Consider a measurement of A, and suppose the outcome is a. The collapsed quantumstate is �0 = (Pa�Pa) =tr (�Pa). From a CHV model (
; IP;X) for � one constructs in theobvious way one for �0: Let 
0 := fXA = ag; IP0 = IPj
0IP(
0)and put on 
0 X 0A1 ;:::;An := XAA1;:::;An:= �XAA1 ;XA;A1A2 ; : : : ;XA;A1 ;:::;An�1An �This model gives the correct quantum probabilities (3) and satis�es the causality condition(4). Moreover, X 0A1;:::;An�1An = XA;A1;:::;An�1An :Furthermore, if (
; IP;X) is a local CHV model for �, then (
0; IP0;X 0) is a local CHVmodel for the collapsed state �0. In our framework, Popescu's result takes the followingform: There is no LCHV model for the Werner states W (Eq. (1)) for d � 5 since there isno such model for the collapsed state W 0 (Eq. (2)) for d � 5.We also wish to note the absolutely crucial role played by causality here: Regardless ofwhether or not it is local, if (
; IP;X) were not causal then (
0; IP0;X 0) need not be wellde�ned, since 
0 could then depend upon the later measurements.15



C. A counterexample in d = 2 and \almost counterexamples" in d � 3A possible way to come to grips with our conjecture is to �nd a counterexample. Weshall now discuss a family of generalized Werner states (compare Eq. (1))W = 1d �1d + c� I � c F (9)which may turn out to provide counterexamples. If the real parameter c varies between 0and 1d2�d these states are normalized (trW = 1) and positive. Werner has shown that thestates (9) are entangled if and only if tr (FW ) < 0, which translates to c > 1d(d2�1) . Forc = 1d2 we recover the original Werner states, for which Werner has constructed a stochasticLHV1 model. Since for c � 1d2 , W is a mixture of the original Werner state and a multiple ofthe identity, which clearly allows for an LHV1 model, by the mixing construction of sectionIIIA all W with c � 1d2 allow for an LHV1 model.For the d = 2 Werner state, Popescu has already remarked that his nonlocality argumentdoes not apply [9]. We will now in fact construct an LCHV model for the stateW with c � 14with the help of the LHV1 model just described. In a two-dimensional Hilbert space anynontrivial, i.e., 6= const.I, observable is nondegenerate, so that its projectors are onto one-dimensional subspaces. Therefore after the measurement of the �rst two local observables5A1 and B1 the collapsed state is a pure product state,W 0 = (P (1)A1=a 
 P (2)B1=b)W (P (1)A1=a 
 P (2)B1=b)tr (P (1)A1=a 
 P (2)B1=b)W= P (1)A1=a 
 P (2)B1=b;and hence has an LCHV model. Moreover, the states P (1)A1=a and P (2)B1=b describing thesubsystems after the measurements do not depend on what measurement has been performedon the other subsystem. Therefore given an LHV1 model (
(W ); IP(W );X(W )) for the state5We may assume without loss of generality that nontrivial measurements are performed on eachsubsystem. 16



W and, for all pure states � = P (1)A1=a and � = P (2)B1=b, CHV models (
(1); IP(1);X(1;�)) and(
(2); IP(2);X(2;�)) (where, without loss of generality, we have assumed that the probabilityspaces (
(1); IP(1)) and (
(2); IP(2)) don't depend on � and �, respectively) one can obtainan LCHV model by a simple coupling of the LHV1 model with the CHV models:Let 
 := 
(W ) � 
(1) � 
(2); IP := IP(W ) � IP(1) � IP(2)and XA1;:::;An(!) := �X(W )A1 (!(W ));XA1A2;:::;An(!(W ); !(1))� ;XB1;:::;Bm(!) := �X(W )B1 (!(W ));XB1B2;:::;Bm(!(W ); !(2))� ;with XA1A2;:::;An(!(W ); !(1)) := X(1;�A1(!(W )))A2(1) ;:::;An(1) (!(1))where �A1(!(W )) = P (1)A1=X(W )A1 (!(W ));and XB1B2;:::;Bm(!(W ); !(2)) := X(2;�B1(!(W )))B2(2);:::;Bm(2)(!(2))where �B1(!(W )) = P (2)B1=X(W )B1 (!(W )):It is easy to see that (
; IP;X) de�nes an LCHV model for W . Thus we have found afamily of entangled states, namely the generalized Werner states (9) with 16 < c � 14 in a2 � 2-dimensional Hilbert space, which nevertheless admit an LCHV model. We shall callthese states Wd=2 states.We shall next show that in dimension d � 3 the (entangled) Werner states with c 2� 1d(d2�1) ; 1d(d2�1)�d2 i become non-entangled already after one nontrivial local measurement17



(on one side). (This is trivially true in d = 2.) We shall later refer to these states asWd�3 states. To show that they are left in a non-entangled state after one nontrivial localmeasurement, note that if P is a projector on a (d � 1)-dimensional subspace of lCd, thecollapsed state W 0 = (P 
P )W (P 
P )=tr (W (P 
P )) on the subspace RanP 
RanP hasagain the form (9) with c0 = cd2(d� 1)(d � cd� 1) :For c0 � 1(d�1)((d�1)2�1) , c � 1d(d2�1)�d2 the state W 0 is non-entangled, and from this itfollows that the same thing is true when the range of P has dimension < (d� 1). Thus wecalculate (P 
 I)W (P 
 I)= (P 
 (P + P?))W (P 
 (P + P?))= (P 
 P )W (P 
 P )+1d �1d + c� (P 
 P?) I(P 
 P?)�c(P 
 P?)F (P 
 P?)�c(P 
 P?)F (P 
 P )�c(P 
 P )F (P 
 P?): (10)Here P? = I � P . The �rst term in the sum (10) is non-entangled due to the foregoingargument, the second term is obviously non-entangled, and a straightforward calculationshows that the last three terms vanish. Thus already after one local measurement thecollapsed state is non-entangled and therefore local.Thus for any d � 2 we have found states that are entangled, admit an LHV1 model, andare left after any local measurement in a non-entangled state, where there is of course anLCHV model for further measurements. However, we cannot extend our construction of anLCHV model for the original state from d = 2 to d � 3, since the range of the projectorsmay have dimension > 1, in which case the state after one local measurement on each side18



may depend irreducibly on both measurements, i.e., in such a manner that random variableson one side must have some dependence on what observable was �rst measured on the otherside: The LHV1 model for the state itself contains random variables XA1 andXB1 for the �rstmeasurements. The existence of an LCHV model for all collapsed states yields the follow-uprandom variables XA1 ;B1A2 ;:::;An and XA1;B1B2;:::;Bm, not the follow-up random variables XA1A2;:::;An andXB1B2;:::;Bm required for an LCHV model for the original state. Nevertheless, it does followthat it is impossible to reveal the nonlocality of these states by a Popescu-type argument,namely by producing a nonlocal state violating a Bell inequality by local measurements.D. A Nonlocality Classi�cation SchemeWe have shown that for d = 2 the main conjecture is wrong, i.e. there are entangled mixedstates allowing for an LCHV model. For the Wd�3 entangled mixed states allowing for anLHV1 model for the �rst measurement and an LCHV model for all further measurements,both possibilities, either the existence of an LCHV model or its nonexistence, are veryinteresting.In the �rst case the main conjecture is indeed wrong: entangledness is not equivalentto the nonexistence of an LCHV model. If, on the other hand, it turns out that thereis no LCHV model for these states, a new nonlocality complexity class emerges: a classof entangled mixed states with nonlocality that is more deeply hidden than that of thePopescu/Werner example.We are thus lead to a nonlocality classi�cation scheme which we shall briey describe.We classify the nonlocality of quantum states by means of a pair (N;n) of positive integers,the indices of nonlocality. Larger values of these indices correspond to more deeply hiddennonlocality. The �rst index N corresponds to the length of the sequence of measurementsnecessary to reveal the nonlocality, and the second index n conveys the degree to which thestate can be transformed, by performing local measurements upon the system, to one inwhich the nonlocality is more manifest. More precisely, the �rst index denotes the smallest19



integer N such that there is no LCHVN model (i.e., no local causal model for sequencesof maximal length N) for the states in this class. For example, entangled pure states haveN = 1 while Werner's states for d � 5 have N = 2. For states that have an LCHV modelwe put N =1.6Suppose a state has �nite �rst index of nonlocality N . After one measurement the statecollapses into one that clearly has �rst index at least N � 1. We say \at least" because itmay well be the case that the collapsed state has an LCHVk model for k � N � 1, i.e.,has index N or greater. For example, for our Wd�3 states, the state after one nontrivialmeasurement has index N = 1. In contrast, in Popescu's example the index N = 2 canbe reduced to N = 1 by one measurement. One may thus hope to reduce the �rst index ofnonlocality by performing a sequence of measurements. The smallest number to which itcan, with nonvanishing probability, be reduced will be denoted by n. Note that if there isno LCHV model for a Wd�3 state, the nonlocality of this state must be irreducible, i.e., wemust have that n = N .N = 1 for nonentangled states, which are completely local. But there are also en-tangled states allowing for an LCHV model, as is the case, for example, with the Wd=2states. It would seem natural to conclude that such states do not produce any nonlocale�ects. However, a recent result by Bennett et al. [17] shows that this conclusion is wrong.They found a nonlocality argument employing a sequence of local unitary operations andmeasurements on an ensemble of systems each in such a state|the unitary operations andmeasurements are performed on states of the form W 
W 
 � � � 
W on the Hilbert spacelC4 
 lC4 
 � � � 
 lC4. These states possess nonlocality that is even more deeply hidden thanwhat we have discussed so far. This suggests now as the second classi�cation index n in thecase N =1 the minimal number of copies of the system in the ensemble required for such6Abstract considerations show that the existence of an LCHVk model for all �nite k implies theexistence of an LCHV model. 20



a nonlocality argument. If there is no �nite n with this property, we put n =1.The following table contains the known results about this classi�cation:(N;n) examples(1; 1) entangled pure states(2; 1) Werner states for d � 5(k; k) for some k � 2 Wd�3 states having no LCHV model(1; k) with k <1 Wd=2 states(1; ?) Wd�3 states which have an LCHV model(1;1) nonentangled statesA natural conjecture|a weakening of our main conjecture|is that the only states in class(1;1) are the nonentangled ones.A further possibility to exhibit nonlocality is the use of generalized measurements, whichwe shall discuss below. It may turn out that analogous classi�cation indices are of interestalso for generalized measurements, but we have no results in that direction.IV. GENERALIZED OBSERVABLESA. Hidden variables models for generalized observablesWe shall now extend the allowed class of observables. In standard quantum theory themeasurement of an observable is associated with a self-adjoint operator, which correspondsby the spectral theorem to a projection-valued (PV) measure. But the concept of PVmeasure can be generalized in a natural way to that of positive operator valued (POV)measure. POV's have been employed to construct generalized quantum observables forwhich the usual framework of self-adjoint operators has been unsuccessful, mainly in the�elds of quantum optics and the theory of open quantum systems [18]. Moreover, POV'semerge naturally from an analysis of quantum experiments in Bohmian mechanics [19]. A21



POV measure is a set function M , which maps measurable subsets � � IR to boundedpositive operators M(�), such that for any quantum state �� 7! ��M (�) := tr �M(�)is an ordinary probability measure on IR, i.e., M(IR) = I and for any sequence of disjointmeasurable sets (�i)i2IN, �i � IR,M� [i2IN�i� = Xi2INM(�i):��M (�) is the probability in the quantum state � for the outcome of the measurement asso-ciated with the POV M to be in �. The complete formal description of a measurement ofa generalized observable, whose outcome statistics are given by a POV M , is provided bythe so-called operations R�, a family of bounded linear operators, describing the change ofquantum state during the measurement if the outcome � 2 IR is obtained:� ! ~� = R��Ry�tr �Ry�R� :The operations R� determine the POV M viaM(�) = X�2�Ry�R�:POV measures include as a special case the PV measures where all the positive operatorsare orthogonal projections. (In an \ideal" measurement of a PV M the operations R� areequal to the projections P� = M(�) := M(f�g) corresponding to the usual collapse rule.However, in general there are huge classes of possible operations R� giving rise to the samePOV or PV via M(�) = Ry�R�.)As with ordinary observables, we consider here only generalized observables having adiscrete set of possible values �, and we denote by R the corresponding family of operationsfR�g.Our de�nitions of the various kinds of hidden variables models may without e�ort begeneralized to cover measurements of generalized observables: just consider, instead of se-22



quences of observables O1(t1); : : : ; On(tn), sequences R1(t1); : : : ;Rn(tn). �(Rk) is the gen-eralized spectrum of the generalized measurement Rk, i.e., the set of possible outcomesf� j Rk� 6= 0g. Eq. (3) for the quantum mechanical probabilities gets replaced byIP �XR1(t1);:::;Rn(tn) = (�1; : : : ; �n)�= tr �Rn�n(tn) � � �R1�1(t1) �R1y�1(t1) � � �Rny�n(tn)� : (11)The causality and locality condition do not change at all, and similarly the de�nition ofa stochastic local causal hidden variables model may be trivially extended to cover mea-surements of generalized observables. We shall denote models which apply to generalizedmeasurements by a G at the end of their abbreviation.The equivalence theorem mentioned in Section II, as well as its proof in Appendix A,holds just as well for models for generalized observables, as do the results in Sections IIIAand IIIB. However, our d = 2 counterexample in Section IIIC to the conjecture that onlynon-entangled states admit LCHV models does not generalize to LCHVG models, sinceWerner's model is only for standard observables,7 as well as because the state resultingfrom the �rst local measurements of generalized observables on the two sides may dependirreducibly on both measurements, just as discussed in the second to the last paragraph ofSection IIIC. Thus the conjecture for generalized observables, i.e., the conjecture that onlynon-entangled states admit LCHVG models, may be true in all dimensions d � 2.However, in this context it would appear natural to �rst analyze a simpler conjecturewhich has been raised by Popescu [9]: Is the existence of an LHV1G model equivalent to thestate being non-entangled? Is it possible to reveal the nonlocality of any entangled state byconsidering measurements at only a single time, at least if generalized observables are takeninto account? Here again the Werner states serve as the �rst check: can Werner's model beextended to cover also generalized measurements? A positive answer to this question would7Actually only the �rst two measurements (one on each side) have to be ideal measurements; thefollowing ones may also be generalized measurements.23



answer Popescu's conjecture to the negative. In the following section we provide a partialpositive answer.B. Extension of LHV1 models for standard observables to certain generalizedobservablesThe LHV1 model constructed by Werner [8] for the states (1) covers only measurementsof ordinary observables. In this section we will show that any LHV1 model for ideal mea-surements can be extended to a model for certain special generalized observables, namelythose given by a POV involving only commuting operators M(�),8 which we shall call com-muting POV's. This covers for example all two-valued POV's: If M(�1) +M(�2) = I, thenM(�1) = I �M(�2) commutes with M(�2). Moreover, many of the standard examples ofPOV's are commuting POV's. For example, given an observable O = Pi oiPoi in its spectralrepresentation , we may consider the \smeared-out" projectionsM(oi) = Xj tijPoj ;with tij � 0 andPi tij = 1, clearly a commuting POV. Here tij is the probability of obtainingthe result oi when the system is in an eigenstate corresponding to the eigenvalue oj . Also,the model of Gisin [10] for a �ltering process is described by a commuting POV.We will now construct from an LHV1 model on (
; IP) for ordinary observables a stochas-tic LHV1 model, also on (
; IP), for all generalized observables governed by commutingPOV's. By the equivalence result of Appendix A we have simultaneously a deterministicLHV1 model for these generalized observables. Thus generalized observables described bycommuting POV's cannot reveal the \hidden nonlocality" of the Werner states with mea-surements at a single time.8Since LHV1 models concern only a single time, the operations R� describing the change of stateduring measurement are not relevant here. 24



Let M(�) =M (1)(�)
 I and fM(�) = I
 fM (2)(�) each be commuting POV's on a �nitedimensional Hilbert space. (Using the notion of spectral measures, the following calculationcan also be done for Hilbert spaces of in�nite dimension [14].) A joint measurement ofthe corresponding generalized observables is described by the POV M(�)fM (�), and thequantum mechanical probability for obtaining outcomes � and � in this measurement in thestate � is thus tr � �M (1)(�)
 fM (2)(�)� :These are the probabilities that must be recovered by a stochastic local hidden variablesmodel.The positive commuting operators M (1)(�) have a joint spectral representationM (1)(�) = Pjmj�P (1)j with 0 � mj� � 1, where all the P (1)j are projections onto one-dimensional orthogonal subspaces and are independent of �. Similarly, fM (2)(�) = Pk fmk� eP (2)kwith 0 � fmk� � 1:Let A = Pj jP (1)j and B = Pk k eP (2)k . Since we have assumed the existence of an LHV1model (
; IP;X), we have random variables XA, XB for whichIP(XA = j;XB = k) = tr �(P (1)j 
 P (2)k ):We de�ne QM(�j!) := Xj mj�11fjg(XA(!))and Q eM(�j!) := Xk fmk�11fkg(XB(!)):Then Z
QM(�j!)Q eM(�j!) dIP(!)=Xj;k mj�fmk� Z
 11fjg(XA(!))11fkg(XB(!)) dIP(!)25



=Xj;k mj�fmk� IP(XA = j;XB = k)=Xj;k mj�fmk� tr � �P (1)j 
 P (2)k �= tr �0@Xj mj�P (1)j 
Xk fmk� eP (2)k 1A= tr �M(�)fM (�): (12)Moreover, since I(1) = X� M(�) = Xj X� mj�P (1)j ;it follows that X� mj� = 1for all j. Therefore the probability distribution QM ( : j!) is properly normalized:X� QM(�j!) = 1; (13)and analogously for Q eM ( : j!). Thus from an LHV1 model on (
; IP) for ordinary observableswe have constructed a stochastic LHV1 model, also on (
; IP), for all generalized observablesgoverned by commuting POV's.9In this connection, it is interesting to comment on a recent work of Gisin [10], whoin Section 3 of his paper gives an example of an apparent violation of the Bell-CHSH in-equality even for non-entangled states for generalized observables described by commuting9Notice that the simpler de�nition QM(�j!) = XM(�)(!), Q eM (�j!) = X eM(�)(!) also yields thequantum mechanical probabilities (12), and it does so regardless of whether or not M and fM areeach commuting POV's. Note however that the normalization P�QM(�j!) = 1 need not holdwith this de�nition, since it does not follow fromP�M(�) = I that P�XM(�) = 1, regardless ofwhether theM(�) fail to commute (recall von Neumann's no-hidden-variables theorem [1, page 4])or do indeed commute (recall Gleason's theorem [1, page 6]). Note also (again recalling Gleason'stheorem) that XM(�) = Xm�(A) need not agree with mXA� even in our commuting case.26



POV's. However, his point that a \careless application of generalized quantum measure-ments can violate Bell's inequality even for mixtures of product states" is misleading: theobserved violation of the Bell-CHSH inequality is not in fact due to the application of gen-eralized quantum measurements, but rather to a misapplication of the inequality itself|toconditional expectations in which the conditioning depends upon the measurements underconsideration [20]. V. CONCLUSIONWe have analyzed some questions concerning the classi�cation of local states in quantumtheory. There are two intuitive notions of \locality" for quantum states: (i) the state is non-entangled, i.e., a product state or a mixture of product states, and (ii) the state admits alocal and causal hidden variables model.For pure quantum states it is well-known that the non-entangledness is equivalent tothe existence of an LHV1 model. We have shown that this equivalence extends to LCHVGmodels. For mixed states, the equivalence between non-entangledness and the existence ofan LCHV model (for d > 2) is our main conjecture. We have shown that (i) ) (ii), andhave veri�ed that pure states and Werner states with d � 5 conform to our conjecture.Furthermore, we have described counterexamples in dimension d = 2, namely the statesWd=2, and a class of \almost-counterexamples" in higher dimensions, the statesWd�3. These\almost-counterexamples" leave two possibilities: Either the main conjecture is wrong in anydimension, or there is a more deeply hidden \irreducible nonlocality," in the sense explainedin Subsection IIID. In connection with the latter possibility we have proposed two newindices of nonlocality as the basis of a nonlocality complexity classi�cation.Another conjecture concerning the classi�cation of local states, which has been raised byPopescu [9], is that non-entangled states are the only states admitting LHV1G models forall possible measurements, including those described by POV's. From our result in SectionIV it follows that to exclude the possibility of an LHV1 model for the entangled Werner27



states (or for any other states admitting an LHV1 model) POV's that are close to PV's inthe sense that they contain only commuting operators will not help.Furthermore, we have extended Fine's result on the equivalence between the existenceof deterministic and stochastic LHV1 models to LCHVG models. Besides the usefulness ofthis result for the construction of models, we regard it as further evidence that our notionof a local causal hidden variables model adequately captures the relevant physical ideas.ACKNOWLEDGMENTSWe thank the referee for valuable comments and suggestions. This work was supportedin part by the DFG, by NSF Grant No. DMS-9504556, and by the INFN.APPENDIX A: EQUIVALENCE BETWEEN THE EXISTENCE OFDETERMINISTIC AND STOCHASTIC HIDDEN VARIABLES MODELSA (deterministic) LCHV model (
; IP;X) forms a degenerate stochastic LCHV model ifone de�nes e
 = 
, fIP = IP, and sets QO1(t1);:::;On(tn)(o1; : : : ; onj e!) := 1 if XO1(t1);:::;On(tn)(e!) =(o1; : : : ; on) and 0 otherwise. Conversely, from a given stochastic model one can construct a(deterministic) LCHV model as follows: Let � be a quantum state with a stochastic LCHVmodel (e
;fIP; Q). For all n 2 IN, all sequences of local observables Ak for the �rst subsystemand all ak 2 �(Ak), k = 1 : : : n, and all e! 2 e
, there exist independent random variablescXA1;:::;An�1An ;a1;:::;an�1;e! : 
A ! �(An)with distribution IPA(cXA1;:::;An�1An;a1;:::;an�1;e! = an) = QA1;:::;An(anja1; : : : ; an�1; e!) on some probabil-ity space (
A; IPA). (The canonical choice is the huge product space Q� IR over all possiblesuch choices �, equipped with the product measure Q� �� with �� the conditional prob-ability distribution QA1;:::;An(anja1; : : : ; an�1; e!) corresponding to �, and with the randomvariables given by the corresponding projections.) Similarly, for all m 2 IN, all sequences28



of local observables Bk for the second subsystem and all bk 2 �(Bk), k = 1 : : :m, and alle! 2 e
 de�ne independent random variablescXB1;:::;Bm�1Bm;b1;:::;bm�1;e! : 
B ! �(Bm)on some probability space (
B; IPB) with the distribution IPB(cXB1;:::;Bm�1Bm;b1;:::;bm�1;e! = bm) =QB1;:::;Bm(bmjb1; : : : ; bm�1; e!). Now put
 = e
 � 
A � 
B; IP = fIP� IPA � IPBand de�ne inductively all XA1;:::;An and XB1;:::;Bm using (5): for ! = (e!; !A; !B)XA1 (!) = cXA1;e!(!A); XB1(!) = cXB1;e!(!B);XA1;:::;An�1An (!) = cXA1;:::;An�1An;XA1;:::;An�1 (!);e!(!A);XB1;:::;Bm�1Bm (!) = cXB1;:::;Bm�1Bm;XB1;:::;Bm�1 (!);e!(!B):One easily sees that this de�nes an LCHV model for the quantum state �. (For example,IP(XA1;A2 = (a1; a2))= Ze
 dfIP(e!) Z
AdIPA(!A) Z
BdIPB(!B)11fXA1=a1;XA1A2=a2g= Ze
 dfIP(e!) Z
AdIPA(!A) Z
BdIPB(!B)11f bXA1;e!(!A)=a1; bXA1A2;a1 ;e!(!A)=a2g= Ze
 dfIP(e!)IPA(cXA1;e! = a1; cXA1A2;a1;e! = a2)= Ze
 dfIP(e!)IPA(cXA1;e! = a1)IPA(cXA1A2;a1;e! = a2)= Ze
 dfIP(e!)QA1(a1je!)QA1;A2(a2ja1; e!)= Ze
 dfIP(e!)QA1;A2(a1; a2je!);where the independence of the random variables cX is used for the 4th equation.)29
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