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ux. We elucidate the connectionbetween the conditions necessary for global existence and the self-adjointness ofthe Schr�odinger Hamiltonian.1 IntroductionBohmian mechanics [7, 8, 4, 13, 14, 17] is a Galilean invariant theory for the mo-tion of point particles. Consider a system of N particles with masses m1; :::;mNand potential V = V (Q1; : : : ;QN ), where Qk 2 IR� denotes the position of thek-th particle. The relevant con�guration space is an open subset of �N = d-dimensional space IRd, for example the complement of the set of singularities ofV , and shall be denoted by 
. The state of the N -particle system is given by thecon�guration Q = (Q1; : : : ;QN ) 2 
 and the Schr�odinger wave function  oncon�guration space 
. On the subset of 
 where the wave function  6= 0 and is1



di�erentiable, it generates a velocity �eld v = (v 1 ; : : : ;v N)v k (q) = �hmk Imrk (q) (q) (1)the integral curves of which are the trajectories of the particles. Thus the timeevolution of the state (Qt;  t) is given by a �rst-order ordinary di�erential equa-tion for the con�guration Qt dQtdt = v t(Qt) (2)and Schr�odinger's equation for the wave function  ti�h@ t(q)@t =  �XNk=1 �h22mk�k + V (q)! t(q); (3)where rk and �k denote the gradient and the Laplace operator in IR� and thepotential V is a real-valued function on 
.Bohmian mechanics may be regarded as a fundamental nonrelativistic quan-tum theory, from which the quantum formalism|operators as observables, theuncertainty principle, etc.|emerges as \measurement" formalism. It resolvesall problems associated with the measurement problem in quantum mechanics[7, 8, 4, 13, 14, 17]. It accounts for the \collapse" of the wave function, for quan-tum randomness as expressed by Born's law � = j j2, and familiar (macroscopic)reality. For a thorough analysis of the physics entailed by Bohmian mechanicssee [7, 8, 13, 11], and [14] for a short overview of [13].Here we are concerned with the mathematical problem of the existence anduniqueness of the motion in Bohmian mechanics, i.e., with establishing that forgiven Q0 and  0 at some \initial" time t0 (t0 = 0), solutions (Qt;  t) of (2,3) with Qt0 = Q0 and  t0 =  0 exist uniquely and globally in time. (Notethat Schr�odinger's equation (3) is independent of the particle motion, while forsolving the Equation (2) for the particle motion we need the wave function  t.)Our �rst motivation for addressing this problem is the fact that the velocity �eld(1) exhibits rather obviously possible catastrophic events for the motion: v issingular at the nodes of  , i.e., at points where  = 0, so that the solution wouldbreak down if a node were reached. Furthermore, the solution may cease to existat singularities of the wave function (if it has singularities), at the boundary of 
(if it has a boundary), and because of \explosion," that is the escape to in�nity ofa particle in a �nite amount of time|events which have analogues in the N -bodyproblem (of gravitational interaction) in Newtonian mechanics.2



Recall that the problem of the existence of dynamics in Newtonian mechanicsis notoriously di�cult [26, 12]. In addition to the possibility of routine collisionsingularities, the N -body problem with N > 3 yields marvelous scenarios ofso-called pseudocollisions, where some particles, while oscillating wildly, reachin�nity in �nite time. Examples of such catastrophies have been constructed byMather and McGehee [24],1 by Gerver [16], and by Xia [38]. While, for the caseof a \solar system" with small \planetary" masses, Arnold [2] established globalexistence (and much more) \for the majority of initial conditions for which theeccentricities and inclinations of the Kepler ellipses are small," and while Saari[34] has established global existence for \almost all initial conditions (in the senseof Lebesgue measure and Baire category)" for the 4-body problem, for systems ofmore than four particles it is not known whether the initial conditions leading tosuch catastrophies are atypical, i.e., form a set of Lebesgue measure zero|thoughthis is certainly expected by most experts to be the case [12] (though not by all[25]). Indeed, apart from obvious scenarios|such as the particles moving apartsu�ciently rapidly|and those covered by some version of the KAM theorem [3],for N � 5 it cannot, so far as we know, even be precluded on the basis of whathas so far been proven that this set has full measure!It is remarkable that the situation in the corresponding quantum system isvery di�erent. In orthodox quantum theory the time evolution of the state  t isgiven by a one-parameter unitary group Ut on a Hilbert space H. Ut is generatedby a self-adjoint operator H, which on smooth wave functions in H = L2(
) isgiven by H = �XNk=1 �h22mk�k + V = H0 + V; (4)i.e., Schr�odinger's equation is regarded as the \generator equation" for Ut. Hencethe \problem of the existence of dynamics" for Schr�odinger's equation is reducedto that of showing that the relevant HamiltonianH (given by the particular choiceof the potential V ) is self-adjoint. This has been done in great generality, inde-pendent of the number of particles and for large classes of potentials, includingsingular potentials like the Coulomb potential, which is of primary physical inter-est [20, 32]. We shall discuss the meaning and the status of the self-adjointnessof the Hamiltonian from the perspective of Bohmian mechanics in Section 4. Itmay be worthwhile to note, however, that the su�ciency of establishing only the1However, this example, which is 1-dimensional, involves an in�nite number of binary colli-sions before the system explodes and thus does not describe a true pseudocollision.3



self-adjointness of the Hamiltonian for a satisfactory physical interpretation hasbeen questioned by Radin and Simon [29]: \Interestingly enough, while Kato'sresult `solves' the dynamical existence question in the quantum case, it saysnothing about the question of x(t)2 remaining �nite in time! From its physicalinterpretation, proof of such regularity property is clearly desirable."In Bohmian mechanics we have not only Schr�odinger's equation (3) to consider,but also the di�erential equation (2), governing the motion of the particles. Thusthe question of existence of the dynamics of Bohmian mechanics draws againnearer to the situation in Newtonian mechanics, as it depends now on detailedregularity properties of the velocity �eld v (1). Local existence and uniquenessof Bohmian trajectories is guaranteed if the velocity �eld v is locally Lipschitzcontinuous. We therefore certainly need greater regularity for the wave function than merely that  be in L2(
).Global existence is more delicate. In addition to the nodes of  , there aresingularities comparable to those of Newtonian mechanics. Firstly, even for aglobally smooth velocity �eld the solution of (2) may explode, i.e., it may reachin�nity in �nite time. Secondly, the boundary points of 
, typically the singularpoints of the potential, are re
ected in singular behavior of the wave function atsuch points, giving rise to singularities in the velocity �eld (1).2The problem we address is the following: Suppose that at some arbitrary\initial time" (t0 = 0) the N -particle con�guration lies in the complement of theset of nodes and singularities of  0. Does the trajectory develop in a �nite amountof time into a singularity of the velocity �eld v , or does it reach in�nity in �nitetime? According to Theorem 3.1 and Corollary 3.2, the answer is negative for\typical" initial values, for a large class of potentials including the physicallymost interesting case of N -particle Coulomb interaction with arbitrary chargesand masses. While we consider in this paper only particles without spin, Bohmianmechanics can be naturally de�ned for spinor-valued wave functions as well [4,8, 17]. We shall deal with spin, including the motion in a magnetic �eld, in asubsequent work.The quantity of central importance for our proof of these results|as well asfor the question of the self-adjointness of the Hamiltonian|turns out to be thequantum 
ux J (q; t) = (j ; j j2), a (d+1)-vector, with j = v j j2 the quantum2For example, the ground state wave function of one particle in a Coulomb potential V (q) =1=jqj, q 2 IR3 (\hydrogen atom") has the form e�jqj, which is not di�erentiable at the pointq = 0 of the potential singularity. 4



probability current. The absolute value of the 
ux through any surface in 
� IRcontrols the probability that a trajectory crosses that surface. Surfaces of interestfor us are the boundaries of neighborhoods around all the singular points forBohmian mechanics. Loosely speaking, the importance of the quantum 
ux 
owsfrom the following insight: \If there is no absolute 
ux into the singular points,the singular points are not reached."We remark that the quantum 
ux is, in fact, important for most applicationsof quantum physics, as well as for the mathematics revolving around the self-adjointness of Schr�odinger operators. Heuristically, the \right" behavior of thequantum 
ux at the critical points ensures self-adjointness of the Hamiltonian|i.e., conservation of probability. But suppose we ask, probability of what? Theusual answer|the probability of �nding a particle in a certain region|is jus-ti�ed by Bohmian mechanics: A particle is found in a certain region because,in fact, it's there. By incorporating the positions of the particles into the theo-ry, and thus interpreting the quantum 
ux as a 
ux of particles moving alongtrajectories, Bohmian mechanics can be regarded as providing the basis for allintuitive reasoning in quantum mechanics. (For more on this point, see also[7, 8, 4, 13, 14, 17, 11].)The paper is organized as follows: In Section 2, the relevant notion of \typical-ity" is discussed. Section 3 contains our main results. In Section 3.1 we presentthe broad structure of the argument and in Section 3.2 we show how to trans-form the problem to that of controlling 
ux integrals. The main theorem andcorollary are proven in Section 3.3. In Section 4 we discuss various aspects ofthe self-adjointness of the Hamiltonian from the point of view of Bohmian me-chanics. In particular, in Section 4.1 we show that in d = 1 dimensions globalexistence holds under conditions which in certain respects are milder than thoseof Theorem 3.1.This is the �rst work concerned with a rigorous examination of the problemof existence of the motion in Bohmian mechanics. For the related theory ofNelson, stochastic mechanics, this question has been discussed by Nelson [28]and also by Carlen [9]. The behavior of the Bohmian motion at the nodes of  has been addressed by Bohm [7] and Holland [17]. Bohm argues that particlesare either repelled from the nodes or cross them with in�nite speed. (Bohm,however, was not concerned with the question of existence but with consistencywith \� = j j2.") Holland claims to show that a trajectory cannot reach a node5



unless it is always at some node. His argument, however, is circular, in that itrequires the very regularity whose breakdown at nodes is the source of di�culty.Here is a simple counterexample to the claims of Bohm and Holland: Considerthe one-dimensional harmonic oscillator (with �h = m = ! = 1) and take as thewave function of the particle a superposition of the ground state and the secondexcited state,  t(q) = e�q2=2e�it=2[1 + (1 � 2q2)e�2it]. This wave function hasnodes (among others) at q = 0, t = (n + 12)� for all integers n. It leads to avelocity �eld which is an odd function of q, i.e., which de�nes a motion which isre
ection invariant. Therefore Qt = 0, t 6= (n + 12)�, is a solution of (2) whichruns|�rst|into the node (0; �=2) (with velocity 0 and which furthermore maybe consistently continued through the nodes).2 Equivariance and TypicalityThe dynamical system de�ned by Bohmianmechanics is associated with a naturalmeasure, given by the density j 0j2 on con�guration space 
. If  0 is normalized,i.e., if the L2-norm k 0k = (R
 j 0j2dq)1=2 = 1, then the density j 0j2 de�nesa probability measure on con�guration space 
, which we shall denote by P,that plays the role usually played by the \equilibrium measure." Thus P de-�nes our notion of \typicality" [13]. Given the existence of the dynamics Qtfor con�gurations|the result we establish here|the notion of typicality is timeindependent by equivariance [13]:�0 = j 0j2 =) �t = j tj2 for all t 2 IR; (5)where �t denotes the probability density on con�guration space 
 at time t|the image density of �0 under the motion Qt. This follows from comparing thecontinuity equation for an ensemble density �t(q)@�t(q)@t + NXk=1rk � [v tk (q)�t(q)] = 0 (6)with the quantum continuity equation@j t(q)j2@t + NXk=1rk � j tk (q) = 0 (7)and noting that the quantum probability current j = (j 1 ; :::; j N) is given byj k = v k j j2 = �h2imk ( �rk �  rk �): (8)6



We further denote the space-time current, the quantum 
ux, by J = (j ; j j2).In our proof of global existence, this quantity gives the basic estimate for theprobability that a trajectory reaches singularities of the velocity �eld or in�nity.It is at this stage important to bear in mind the conceptual di�erence betweenthe Equations (6) and (7). The continuity equation (6), even without globalexistence of di�erentiable trajectories Qt, holds \locally" on the set where v issmooth, with �t suitably interpreted. This understanding is indeed basic to allour proofs.Equation (7), on the other hand, is an identity for every  t which satis�esSchr�odinger's equation classically. This is seen by calculating@j tj2@t = 1i�h( �tH t �  tH �t ): (9)But, without having established global existence, it is not a continuity equationin the classical sense|despite its name. By establishing global existence, wesimultaneously show that the quantum probability current j is indeed a classicalprobability current, propagating the ensemble density j j2 along the integralcurves of the vector �eld v .3 Global existence and uniquenessWe make the following general assumptions:A1: The potential V is a C1-function on 
.A2: The Hamiltonian H is a self-adjoint extension of HjC10 (
) with domainD(H).A3: The initial wave function  0 is a C1-vector of H,  0 2 C1(H), and isnormalized, k 0k = 1.The boundary @
 of the con�guration space 
 will be denoted by S. (Recallthat usually S is the set of singularities of the potential.) C10 (
), the set ofC1-functions with compact support contained in 
, is dense in L2(
), and theHamiltonian is symmetric on this set. Since H is real, i.e., commutes with com-plex conjugation, there always exist self-adjoint extensions. The set of admissibleinitial wave functions, C1(H) = T1n=1D(Hn), is dense in L2(
) and invariantunder the time evolution e�itH=�h, and is therefore a core, i.e., a domain of essentialself-adjointness for H.33Some special C1-vectors are eigenfunctions and \wave packets"  2 Ran(P[a;b]), whereP[a;b] denotes the spectral projection of H to the �nite energy interval [a; b].7



In Lemma 6.1 we show that as a consequence of A1{A3 we may regard  t =e�itH=�h 0 as being in C1(
�IR) (and thus as a classical solution of Schr�odinger'sequation). Then the velocity �eld v (cf. (1)) is C1 on the complement of the setN of nodes of  , N := f(q; t) 2 
 � IR :  (q; t) = 0g, i.e., on the set of \good"points G := (
� IR) n N ;which is an open subset of IRd� IR. Let Gt denote the slice of G at a �xed time t:Gt := 
 n Nt, where Nt := fq 2 
 :  (q; t) = 0g. Then by a standard theorem ofexistence and uniqueness of ordinary di�erential equations, for all initial values(q0; t0) in G there exist ��(q0; t0) < t0, � (q0; t0) > t0, and a unique maximal (non-extendible) solution Q of (2) on the time interval (��(q0; t0); � (q0; t0)). Fromcontinuous dependence on initial values, the domain D of the maximal solutionQ(t; q0; t0), D := f(t; q0; t0) : (q0; t0) 2 G; t 2 (��(q0; t0); � (q0; t0))g; (10)is an open subset of IRd+2 (and Q is locally Lipschitz continuous on D withrespect to (t; q0; t0)). Thus � is lower semi-continuous and hence, in particular,measurable. Because of the time translation invariance of the theory, we may �xt0 = 0, writing � (q0) for � (q0; 0), with similar notation for ��. Under additionalconditions on 
 and H (see Corollary 3.2), we shall show that � (q0) = 1 fortypical q0, i.e., we show that the solution exists globally in time P-almost surely:P(� <1) = 0: (11)This is equivalent to 8T <1 : P(� < T ) = 0: (12)(Note that by time translation invariance and equivariance, P(� < 1) = 0 forall  0 2 C1(H) implies that P(�� > �1) = 0 for all  0 2 C1(H), so that (11)indeed implies global existence and uniqueness.)3.1 The programWe view the maximal solution Qt as a stochastic process on G0 equipped with theprobability measure P, i.e., q0 is distributed according to the probability densityj 0j2. The basic criterion for global existence arises from the following propertiesof the maximal solution. The set of limit points L(q0) of the trajectory starting8



at q0 (q� 2 L :, there is a sequence tk; tk ! � � � (q0) with limk!1Qtk = q�)is either empty|this is equivalent to limt%� jQtj = 1|or nonempty, in whichcase, if � < 1, (q�; � ) 2 @G for all q� 2 L. (The solution Q need not becontinuous at t = � , i.e., L might contain more than one point, and there mightadditionally be sequences tk ! � along which jQtkj ! 1.) We thus have to seewhether trajectories come too close to the boundary of G or to in�nity. We do thisby checking whether they reach the boundary of Gn, an increasing (Gn1 � Gn2for n1 < n2) sequence of open sets Gn � G, Gn � G, which are bounded incon�guration space, i.e., for all T 2 IR, the set Gn[0;T ] := Gn \ (IRd � [0; T ]) isbounded.For q0 2 Gn0 , we introduce the stopping time �n(q0), at which the process Qt�rst hits the boundary of Gn:�n(q0) := supfs > 0 : (Qt(q0); t) 2 Gn for all t � sg:Now, from the elementary theory of ordinary di�erential equations, for all q0 2Gn0 , if � (q0) <1; then �n(q0) < � (q0) and (Q�n(q0)(q0); �n(q0)) 2 @Gn: (13)Furthermore, the sequence �n is increasing in n. For all n and all T � 1, wehave fq0 2 G0 : � < Tg � (G0 n Gn0 ) [ fq0 2 Gn0 : �n < Tgand thereforeP(fq0 2 G0 : � < Tg) � P(G0 n Gn0 ) +P(fq0 2 Gn0 : �n < Tg) (14)Thus to obtain the global existence and uniqueness of Bohmian mechanics fortypical initial con�gurations, it is su�cient to establish the vanishing of the righthand side of (14) as n !1 for some sequence of sets Gn. (Note as a matter offact that the right hand side of (14) decreases as n increases.)To proceed, we need to separate di�erent parts of the boundary of Gn whichwe shall treat in di�erent ways: those close to in�nity, those close to S = @
,and those close to the set N of nodes of the wave function. We introduce Kn, asequence of bounded open sets exhausting IRd, Kn % IRd; S�, a sequence of closedneighborhoods of S of \thickness �"; and N �, a sequence of closed neighborhoodsof N of \thickness �." (For the following general remarks, we do not need tospecify these sets more concretely; this will be done in Section 3.3.) Thus the9



index n accordingly gets replaced by ��n. G��n then denotes the set of \�-�-n-good" points in con�guration-space-time:G��n := (((Kn \ 
) n S�)� IR) n N �;and G��nt denotes the slice at a �xed time t 2 IR:G��nt := (Kn \ 
) n (S� [N �t ):Furthermore, we de�neG�n(0;T ) := ((Kn \ 
) n S�)� (0; T ): (15)From (13), we may write, with x := (Qmin(� ��n;T );min(� ��n; T )),fq0 2 G��n0 : � ��n < Tg = fq0 2 G��n0 : x 2 @G��n \ (IRd � (0; T ))g= fq0 2 G��n0 : x 2 @N � \ G�n(0;T )g[ fq0 2 G��n0 : x 2 (@S� \ 
)� (0; T )g[ fq0 2 G��n0 : x 2 (@Kn \ 
)� (0; T )g: (16)and therefore we arrive atP(fq0 2 G��n0 : � ��n < Tg) � P(fq0 2 G��n0 : x 2 @N � \ G�n(0;T )g)+ P(fq0 2 G��n0 : x 2 (@S� \ 
)� (0; T )g)+ P(fq0 2 G��n0 : x 2 (@Kn \ 
) � (0; T )g): (17)By virtue of (14) (almost sure) global existence follows if for some suitable choiceof sets N �, S�, and Kn, P(G0 nG��n0 ) and the right hand side of (17) can be madearbitrarily small by appropriately choosing �, � and n.3.2 The 
ux argumentConsider the random trajectory (G0;P; eQt) obtained by stopping the originalprocess Qt at time � and placing it in the cemetery y : The process eQt : G0 �!
 [ fyg is de�ned, for all t � 0, byeQt(q0) := 8<: Qt(q0) for t < � (q0)y for t � � (q0): (18)Let �t be the image density of eQt restricted to 
.10



Denote by I the setI := f(Qt(q0); t) : t 2 (��(q0); � (q0)) and q0 2 G0g;and by It := Ran eQt n fyg (It � Gt) its time-t slice. I is an open subset of G. (Ican be identi�ed with D \ (f0g � IRd+1), cf. (10).) Clearly �t = 0 on Gt n It fort > 0. Note that on I both j tj2 and �t are solutions of the continuity equation (6)restricted to I with the same initial data. Uniqueness of solutions of quasilinear�rst order partial di�erential equations on the set where the characteristics existimplies that for all t � 0 �t(q) = j t(q)j2 for all q 2 It: (19)Consider now a smooth surface � in G. Recalling the probabilistic meaningof the 
ux Jt(q) := (�t(q)v t(q); �t(q)), we obtain that the expected number ofcrossings of � by the random trajectory eQt (including tangential \crossings" inwhich the the trajectory remains on the same side of �) is given byZ� jJt(q) � U jd� (20)where U denotes the local unit normal vector at (q; t). (R�(J �U)d� is the expectednumber of signed crossings.) (Consider �rst a small surface element which thetrajectory can cross at most once. The probability density for this crossing isreadily calculated to be jJ � U j. Invoking the linearity of the expectation valueyields then the general statement.)4The probability of crossing � (at least once) is hence bounded by (20). From(19) we obtain thatjJt � U j � j(j t(q)j2v t(q); j tj2) � U j = j(j t; j tj2) � U j = jJ t � U jand thus we arrive at the boundP( eQt crosses �) � Z� jJ t(q) � U jd�: (21)If now the sets N �, S�, and Kn are choosen in such a way that their boundariesare piecewise integrable surfaces, the events on the r.h.s. of (17) are crossings by4In stochastic mechanics [28], which involves the same quantum 
ux, the particle trajectoriesare realizations of a di�usion process and are hence not di�erentiable, i.e., velocities do notexist. Thus in stochastic mechanics the 
ux does not have the same probabilistic signi�canceand hence the subsequent arguments are not valid for stochastic mechanics.11



eQt through the respective surfaces, and hence (21) implies the following boundsfor the terms in (17):P(x 2 (@N � \ G�n(0;T ))) � Z@N �\G�n(0;T ) jJ t(q) � U jd� := N(�; �; n);P(x 2 ((@S� \ 
)� (0; T ))) � Z(@S�\
)�(0;T ) jJ t(q) � U jd� := S(�); (22)P(x 2 ((@Kn \ 
)� (0; T ))) � Z(@Kn\
)�(0;T ) jJ t(q) � U jd� =: I(n):(If a boundary happens to be the empty set, the corresponding integral of coursevanishes.)It seems intuitively rather clear5 that all the 
ux integrals should vanish inthe limit � ! 0; � ! 0, and n ! 1: It seems fairly obvious that the \nodalintegral" N(�; �; n) should vanish as � ! 0 since J t is zero at the nodes.6 The\singularity integral" S(�) should vanish in the limit � ! 0 if the set S hascodimension greater than 1, which is usually the case. Furthermore, j = 0 atS is a natural boundary condition de�ning a domain of self-adjointness of theHamiltonian. Finally, the \in�nity integral" I(n) should tend to zero as n!1since  t(q) (which is su�ciently smooth) and hence J t(q) should rapidly go tozero as jqj ! 1.3.3 Global existence of Bohmian mechanicsOur main result is the following theorem:Theorem 3.1 Assume A2, A3, and furtherA10: A1 and S � Sml=1 Sl, where m < 1 and the Sl are (d � 3)-dimensionalhyperplanes;A4: R T0 kr tk2dt <1 for all 0 < T <1.Then P(� <1) = 0.Since Sl is a (d�3)-dimensional hyperplane, it may be written as Sl = fyl = algwith yl denoting the map IRd ! IR3; q 7! (q � y1l ; q � y2l ; q � y3l ) where y1l ; y2l ; y3l are3 orthogonal unit vectors normal to the hyperplane Sl and al 2 IR3 a constant.5By mentioning these heuristics we do not wish to suggest the structure of the rigorous proofgiven in the next section, nor need this proof sustain these heuristics.6One might worry about the \size of @N"being uncontrollably large. However, since  is acomplex smooth function, N might be expected to have codimension 2 \generically," so @N �should have small area. 12



The Condition A10 on the shape of S �ts well with the 3-dimensionality ofphysical space. If V is a central potential, Sl is of the form fqi = 0g, and for apair potential, Sl is of the form fqi � qj = 0g for some 1 � i < j � N . (Notethat if d = �N < 3, Assumption A10 demands that S = ;.)Under the Assumption A10, the con�guration space 
 = IRd n S; in particular,L2(
) = L2(IRd).7 Recall that H0 denotes the self-adjoint operatorH0 = � NXk=1 �h22mk�kon the Hilbert space H = L2(
) = L2(IRd).The Condition A4 of \�nite integrated kinetic energy" may be ensuredby bounding the quadratic form (r t;r t) � M( t;H0 t) with M =(2=�h2)max(m1; : : : ;mN) by the form ( t;H t), which is �nite and independentof t for  0 (and hence  t) in the form domain [31] Q(H)(� D(H)) of the Hamil-tonian H.8 The following corollary shows that Theorem 3.1 indeed implies theglobal existence and uniqueness of Bohmian mechanics for all  0 2 C1(H) for alarge class of Hamiltonians.Corollary 3.2 AssumeA100: A10 and V = V1+V2, where V1 is bounded below, and V2 is H0-form boundedwith relative bound a < 1,A20: H is the form sum H0 + V [15],and A3. Then P(� < 1) = 0 and Bohmian mechanics exists uniquely andglobally in time P-almost surely.Proof. We show that A4 holds: That V2 is H0-form bounded means thatQ(H0) � Q(V2) and that for  2 Q(H0) there exist constants a; b > 0 suchthat j( ; V2 )j � a( ;H0 ) + b( ; ):7Thus Theorem 3.1 does not cover the case of a bounded con�guration space 
, for whichboundary conditions of Dirichlet or Neumann (or mixed) type are normally imposed. See,however, our Theorem 4.1.8Note that the notation ( ;A ) for the quadratic form associated with the self-adjointoperator A is symbolic: Only for  2 D(A) does it coincides with the indicated scalar productin H = L2(IRd); more generally it can be de�ned via the spectral representation for A.13



Since V1(q) � �c; c > 0, for all q 2 
, we obtain for  2 Q(H) = Q(H0)\Q(V1)that (1� a)( ;H0 ) � ( ; (H0 + V2) ) + b( ; )� ( ; (H0 + V1 + V2) ) + c( ; ) + b( ; )= ( ;H ) + (b+ c)( ; ):Hence with a < 1 we have that for  0 2 Q(H) � Q(H0) and all t1M (r t;r t) � ( t;H0 t) � 11� a( t;H t) + b+ c1� a( t;  t)= 11� a( 0;H 0) + b+ c1� ak 0k2and A4 follows. 2The class of H0-form bounded potentials, with arbitrary small relative bound a,includes for exampleR+L1 or L3=2+L1 on IR3, whereR is the Rollnik class. (Fordetails, see for example [21, 36, 32].) Therefore such H0-form bounded potentialsinclude power law interactions 1=r� with � < 2, and thus the physically mostrelevant potential of N -particle Coulomb interaction with arbitrary charges andmasses. (The class of H0-form bounded potentials contains the more familiarclass of H0(-operator) bounded potentials, which already includes the N -particleCoulomb interaction [20].) Furthermore, harmonic and anharmonic (positive)potentials are included, and arbitrarily strong positive repulsive potentials.Proof of Theorem 3.1. We establish (12)|for all 0 < T <1, P(� < T ) = 0|following the program described in Section 3.1 and the 
ux argument of Section3.2.We �rst choose suitable sets N �, S�, and Kn. Let � > 0. SetN � := [k:C�(k)\N 6=;C�(k); (23)where (C�(k))k2IN is a \partition" of con�guration-space-time into closed cubeswith side length � whose edges are parallel to the canonical basis vectors ofIRd+1. Let � = (�1; : : : ; �m), �l > 0 for all l. Recalling that S � Sml=1 Sl withSl = fyl = alg), setS� := m[l=1S�ll ; S�ll := fq 2 IRd : dist(q;Sl) � �lg = fjyl � alj � �lg:14



For the cuto� at in�nity we choose open balls with radii n 2 IR+:Kn := fq 2 IRd : jqj < ng:By virtue of (14), (17), and (22), we obtain that for all 0 < T <1P(� < T ) � P(G0 n G��n0 ) +P(� ��n < T )� P(G0 n G��n0 ) +P(x 2 (@N � \ G�n(0;T )))+P(x 2 (@S� � (0; T ))) +P(x 2 ((@Kn \ 
)� (0; T )))� P(G0 n G��n0 ) +N(�; �; n) + S(�) + I(n) (24)For the �rst term on the right hand side of (24) recall that G��n0 = (Kn \ 
) n(N �0 [ S�); thereforeG0 n G��n0 = (G0 n Kn) [ (G0 \ S�) [ (G0 \N �0 );and thus P(G0 n G��n0 ) � P(G0 n Kn) +P(G0 \ S�) +P(G0 \N �0):The vanishing of the three terms on the right hand side in the limit n ! 1,� ! 0, resp. �! 0, follows easily from the facts that P is a probability measurewith density j 0j2, and that the respective sets tend to P-measure 0 sets.The vanishing of the remaining terms in (24) is the content of the followinglemmas:Lemma 3.3 Assume A1{A4. For all 0 < T < 1 there exists a sequence nk,nk !1 as k !1, with limk!1 I(nk) = 0:Lemma 3.4 Assume A10, and A2{A4. Then there exists a sequence of m-vectors�(k), j�(k)j ! 0 as k !1 (with �(k)l > 0 for all l; k), withlimk!1S(�(k)) = 0:Lemma 3.5 Assume A1{A3. For all 0 < T <1, n <1 and � > 0,lim�!0N(�; �; n) = 0:15



These lemmas will be proven below. Lemmas 3.3, 3.4, and 3.5 imply that ther.h.s. of (24) can be made arbitrarily small. (Note that if d < 3, Assumption A10demands that S = ;, and hence that S � 0, so that Lemma 3.4 is trivial in thiscase.) 2Proof of Lemma 3.3.I(n) = Z(@Kn\
)�(0;T ) jJ t(q) � U j d� = Z T0 Z@Kn\
 jj t(q) � uj ds dt� � Z T0 Z@Kn\
 j tj jr tj ds dt =: �~I(n)with � = �h=min(m1; : : : ;mN), ds the (d � 1)-dimensional surface element of@Kn, and u the local unit normal vector of this surface. To show that ~I(n) goesto 0 along some sequence nk, we prove a stronger statement, namely that ~I(n) isintegrable over n. This is immediate since Z 10 ~I(n) dn yields the volume integralof j tj jr tj, which is easily estimated:Z 10 ~I(n) dn = Z T0 Z
 j tj jr tj dq dt� Z T0 k tk kr tk dt = Z T0 kr tk dt <1;where we have used A4 for the last inequality. We may thus conclude that thereexists a sequence (nk)k with nk ! 1 as k ! 1, along which ~I(nk) ! 0. Thisproves Lemma 3.3. 2Proof of Lemma 3.4. We may assume that d � 3. We shall use the followingInequality: For  2 Q(H0)ZIRd j j24jyl � alj2dq � ZIRd jr j2dq: (25)This is a straightforward extension of the inequality known as Hardy's inequalityor the \uncertainty principle lemma" (see, for example, [32]) usually given for 2 C10 (IR3): ZIR3 j j24r2 dr � ZIR3 jr j2dr:(One immediately obtains (25) for d = 3 and  2 C10 (IR3). Then, viewing  2C10 (IRd) as  2 C10 (IR3) by keeping all coordinates �xed except yl, one extendsthis inequality easily to C10 (IRd). It is then further extendible to  2 Q(H0)because C10 (IRd) is dense in Q(H0) with respect to the H0-form norm.)16



First we estimateS(�) = Z@S��(0;T ) jJ t(q) � U j d� = Z T0 Z@S� jj t(q) � uj ds dt� � mXl=1 Z T0 Z@S�ll \
 j tj jr tj ds dt =: � mXl=1 eSl(�l):We now integrate (1=jyl � alj)eSl(�l) over �l = jyl � alj: By the de�nition ofS�ll = fjyl � alj � �lg, this yields the volume integral of (j j=jyl � alj) jr j,which may be bounded as follows:Z 10 1�l eSl(�l) d�l = Z T0 Z
 j tjjyl � alj jr tj dq dt= Z T0 ZIRd j tjjyl � alj jr tj dq dt � Z T0 k  tjyl � aljk kr tk dt� 2 Z T0 kr tk2 dt < 1using Schwarz's inequality and the Inequality (25). Since 1=�l is not integrableat �l = 0, for each l there exists a sequence �(k)l with �(k)l ! 0 as k ! 1, alongwhich eSl(�(k)l )! 0. This proves Lemma 3.4. 2Proof of Lemma 3.5. This proof is more involved than the previous ones, sincethe nodal set is unknown. The basic idea is the following: Where the (d + 1)-gradient  0 = �r ; @ @t � is small the current is very small, and where  0 is notsmall the surface area can be controlled.Let � > 0. We split the part of N � contributing to the surface @N � \ G�n(0;T )into two (not necessarily disjoint) sets:N �> := [k2I>C�(k); and N �< := [k2I<C�(k) withI> := fk : C�(k) \ f(q; t) :  (q; t) = 0; j 0(q; t)j > �g \ G�n(0;T ) 6= ;gI< := fk : C�(k) \ f(q; t) :  (q; t) = 0; j 0(q; t)j � �g \ G�n(0;T ) 6= ;gThenN(�; �; n) = Z@N �\G�n(0;T ) jJ t(q)�U j d� � Z@N �> jJ t(q)j d�+Z@N �< jJ t(q)j d� (26)On the compact set G(�=2)(n+1)(�1;T+1) (cf. (15)) there exist a global Lipschitz constantL for  0, and a global boundK for j 0j. Observe that for � < min(�=(2pd); 1=pd),N �>< � G(�=2)(n+1)(�1;T+1) . Let therefore � < min(�=(2pd); 1=pd).17



Consider �rst N �<. In this set the 
ux jJ j is very small. We may estimate theintegral by simply taking an appropriate bound of jJ j times the total area of thesurfaces of all the cubes. In every �-cube C� of N �< there is a point (q�; t�) 2 Nwith j 0(q�; t�)j � �. Thus (in every �-cube of N �< and hence) for all (q; t) 2 N �<j 0(q; t)j � � + Lpd+ 1�:j j is thus bounded on (every �-cube of N �< and hence on) N �< by (� +Lpd+ 1�)pd+ 1� =: c1��+ c2�2. The 
ux is then bounded byjJ j = q(j j2)2 + jj j2 � j j2 + jj j � j j2 + �j j jr j (27)� (c1��+ c2�2)2 + �(c1��+ c2�2)(� + Lpd + 1�)To bound the surface area of N �<, we simply add the areas of the surfaces of all�-cubes in G(�=2)(n+1)(�1;T+1) . The number of �-cubes in G(�=2)(n+1)(�1;T+1) is bounded by c3=�d+1with c3(n; T; d) = (T + 2)(2n + 2)d;and the surface area of a single cube is equal to 2(d + 1)�d. Thus for the surfacearea of @N �< we have the boundj@N �<j � 2(d + 1)c3� (28)and combining (27) and (28) we obtain thatZ@N �< jJ jd� �  supN �< jJ j! (j@N �<j)� 2(d + 1)c3� ((c1��+ c2�2)2 + �(c1��+ c2�2)(� + Lpd+ 1�)) (29)= O(�2); �! 0:Consider next the set N �>. On this set we can control the size of the nodalsurface. To do this we use a further partition of con�guration-space-time intocubes (C
(k))k2IN of side length 
 (with sides parallel to the sides of the C�-cubes).We choose 
 so small that any C
-cube which contains or overlaps the interior of aC�-cube ofN �> lies completely in G(�=2)(n+1)(�1;T+1) , i.e., 
 < min(�=(2pd)��; (1=pd)��).(
 will later be chosen to be proportional to �, and we shall take the limit �! 0for �xed �, so that 
 � � eventually.) 18



We show now that in each 
-cube the number of �-cubes in N �> is small, atleast compared with (
� )d+1. Consider a 
-cube C
(k) containing or overlappingthe interior of a C�-cube of N �>. Then there is a point (q�; t�) 2 N \ C
� (k) withj 0(q�; t�)j > �, where C
� (k) is the \�-fattened" 
-cube, i.e., the cube of side
 + 2� with the same center as C
(k). That j 0(q�; t�)j > � implies thatj 0i(q�; t�)j > �p2for either i = 1 or i = 2 (or both), with  1 := Re and  2 := Im .Let ek be that basis vector which is closest to the direction of  0i(q�; t�), i.e.,for which jek �  0i(q�; t�)j is maximal. Thusjek �  0i(q�; t�)j > �q2(d + 1)and hence we have that for all (q; t) 2 C
� (k)jek �  0i(q; t)j > �q2(d + 1) � Lpd+ 1(
 + 2�):Now choose 
 such that Lpd + 1(
 + 2�) = �= �2q2(d + 1)�, i.e., introducec4 := 1= �2Lp2(d + 1)� and set 
 = c4� � 2�. Then for all (q; t) 2 C
� (k)jek �  0i(q; t)j > �2q2(d + 1) : (30)Let x and y be two space-time points in C
� (k) \ N � with  (y) = 0 andx � y = lek; l > 0. Then, on the one hand, by the global bound K on j 0j wehave that j i(x)j � Kpd+ 1�:On the other hand, it follows from (30) that j i(x)j � l�=(2q2(d + 1)). Thusl � 2Kp2(d+1)�=� =: c5�=�. Therefore the number of �-cubes in N �> containedin C
� (k) and lying in an ek-column|the set of ek-translates of an �-cube|isbounded by (c5=�) + 1. (This is a rather crude estimate. The number of suchcubes is in fact bounded by 2d+pd+ 2, independent of �, as can easily be seenby controlling also the projection of  0i orthogonal to ek.)Now the number of ek-columns in C
� (k) is no greater than [(
=�) + 2]d, whilethe number of 
-cubes in G(�=2)(n+1)(�1;T+1) is bounded by c3=
d+1. Thus we obtain abound for the surface area of N �>:j@N �>j �  c5� + 1!�c4�� �d c3(c4� � 2�)d+1 2(d+ 1)�d:19



jJ j may be estimated (as in (27)) by invoking now the global bound K forj 0j to yield jJ j � K2(d + 1)�2 + �K2pd+ 1�on N �>. Thus we arrive at the estimateZ@N �> jJ jd� (31)�  c5� + 1!�c4�� �d c3(c4� � 2�)d+12(d + 1)�d�K2(d+ 1)�2 + �K2pd+ 1��Using (29) and (31), by letting �rst � ! 0 and then � ! 0, it follows from (26)that lim�!0N(�; �; n) = 0. 23.4 Remarks3.4.1. It is an immediate consequence of continuous dependence on initial con-ditions for solutions of ODE's that the probabilistic negligibility of the set of\bad" initial values B := fq0 2 G0 : � (q0) <1g, P(B) = 0, implies the negligibil-ity of B in the topological sense: B is of �rst category in G0, i.e., it is contained ina countable union of nowhere dense (in G0) sets. (Take Bt = fq 2 G0 : � (q) � tg;cf. also [34].) In other words: Global existence of Bohmian mechanics is typicaland generic.3.4.2. Since P is equivalent to the Lebesgue measure L on G0, we have alsothat L(B) = 0 and we thus have the global existence and uniqueness of Bohmianmechanics L-a.s. on G0.3.4.3. The 
ux argument shows that any given hypersurface in 
 � IR (where is C1) of codimension greater than 1 will (almost surely) not be reached.3.4.4. We have shown that under certain conditions on the initial wave func-tion and the Hamiltonian, particle trajectories exist as solutions of (2) globallyin time for P-almost all initial conditions. In the introduction we have alreadygiven an example showing that in general (i.e., assuming merely the conditions ofTheorem 3.1 or Corollary 3.2) this result does not hold for all initial con�gura-tions. However, in that example the dynamics is uniquely extendible to a globaldynamics Q : IR2 ! IR; (q; t) 7! Qt(q). There are 3 continuous trajectories which20



periodically run into nodes of the wave function, while the other trajectories areglobal solutions of (2). This extended dynamics Qt(q) is continuous.However, if the trajectory running through the node at t = 0; q = 1 is analyzed,one �nds that locally Qt(1) � 3q34t2 + 1, i.e., the map Qt(q) is not di�erentiablewith respect to t at t = 0 for �xed q = 1. This may, for example, be seen byconsidering the 
ux through q = 1 for t near 0, or, what amounts to the samething, by employing the Formula (41) (see Section 4) expressing the trajectoriesas curves of constant value of the function F (q; t) = Z q�1 j tj2 dx. (This behaviorof trajectories hitting nodes is in fact typical|though it does not occur in theexample for the trajectory at the origin; in fact, if  (q; t�) has a node of orderk at q�,  (q; t�) � �xk with x = q � q�; then F (q; t�) � F (q�; t�) + ax2k+1; a =j�j22k+1 ; and @F@t (q; t�) = �j t�(q) � bx2k; so that F (q; t) � F (q�; t�) + ax2k+1 +bx2ks + cs2; s = t� t�; in the vicinity of the node. Thus for c 6= 0, the equationF (q; t) = F (q�; t�) implies that x � 2k+1q� cas2.)Concerning the regularity of Qt(q) in q at �xed t, one sees in the example thatfor suitable choices of initial time the solution map will fail to be di�erentiableat q = 0 (where there will be a �fth root singularity) or at q = �1 (where therewill be a cube root singularity) as a function of q for �xed t.For an even stronger breakdown of regularity in q for �xed t, consider theharmonic oscillator in 3 dimensions, and take the (n = 1; l = 1)-state  (q; t) =re�(r2+z2)=2ei�e�5it=2 in cylindrical coordinates. This wave function vanishes onlyat r = 0, i.e., on the z-axis. Particles circle around the z-axis with angularvelocity 1=r2. The map Q is uniquely extendable to a global dynamics given by acontinuous map, which is however not di�erentiable with respect to q, by de�ningQt(q0) = q0 for all t and q0 2 N0.It is possible also to give an example in which the extended map must faileven to be continuous with respect to q for �xed t: Consider free motion in1 dimension, and let the wave function  be even, (real and positive), C1, andsupported on [�b;�a][[a; b] with 0 < a < b <1. Then  2 C1(H0). Moreover,there is a t1 > 0 such that �eiH0t1=�h � (0) 6= 0. Let  0 = eiH0t1=�h .  t is theneven for all t, so that the velocity �eld is odd, i.e., symmetric under re
ection.Any extension Q which respects this symmetry must have Qt(0) = 0 for all t.Then the map Q is discontinuous in q for t = t1, and, in fact, any extension musthave this discontinuity. 21



3.4.5. It is well known|at least if V is real analytic in 
 (see for example [30],page 98)|that if  vanishes on a nonempty (bounded) open set in con�guration-space-time, it vanishes everywhere (in the components of 
�IR that intersect thisset). We remark that under the hypotheses of Corollary 3.2, the same conclusionwould in fact obtain merely if  were to vanish everywhere on the boundary ofsuch a set (and even with the possible exception of a single piece of the boundarycontained in a constant-time hyperplane), since it would then follow from globalexistence and the inaccessibility of the nodes that  must vanish everywhere inthis set.3.4.6. The probability of reaching the nodes P(x 2 (@N � \G�n(0;T ))) may also beestimated without using 
ux integrals. We include this argument, which involvesa choice for N � di�erent from the one used earlier. We remark that for the newN � we can see no reason why @N � must be smooth, even piece-wise. Notice alsothat Lemma 3.6 involves both stronger premises and, since the convergence in itis uniform, a stronger conclusion than the corresponding Lemma 3.5.Lemma 3.6 Assume A1{A4 and, for � > 0, letN � := f(q; t) 2 
� IR : j t(q)j � �g: (32)Then, uniformly in � and n, with x := (Qmin(� ��n;T );min(� ��n; T )),lim�!0P(fq0 2 G��n0 : x 2 (@N � \ G�n(0;T ))g) = 0:The proof involves a fairly standard \existence of dynamics" argument and isanalogous to that of Nelson [28] for the similar problem in stochastic mechan-ics: One looks for an \energy" function on the state space of the motion whichbecomes in�nite on the catastrophic event. With good a priori bounds on theexpectation value of that function, one can control the probability of catastrophicevents.Proof. The function which recommends itself here is log j j, i.e., what we controlis the \entropy."We �rst present a formal estimate, disregarding the problem that the solutioncurveQt(q) starting at q may not exist for all times|which is taken care of below.22



Let E denote the expectation with respect to P. We compute for arbitrary T :E (j log j T (QT )j � log j 0j j) = E �����Z T0 ddt log j t(Qt)jdt�����!= E �����Z T0  12 1j t(Qt)j2 @j t(Qt)j2@t + (rj tj) (Qt)j t(Qt)j � v t(Qt)! dt�����! �Z T0 E 12 1j t(Qt)j2 �����@j t(Qt)j2@t �����! dt+ Z T0 E � jr t(Qt)j2j t(Qt)j2 ! dt; (33)where we used for the inequality the boundsrj j � jr j and jv j � � �����r  ����� (34)Now use the equivariance of j j2 (cf. (5)) to compute the expectation E(ft(Qt)) =R
 j t(q)j2(ft(q))dq and obtain that the right hand side of (33) is equal toZ T0 Z
 12 �����@j t(q)j2@t ����� dq dt+ � Z T0 Z
 jr t(q)j2dq dt: (35)By virtue of (9) we replace j@j t(q)j2=@tj by j �t (q)H t(q)� t(q)H �t (q)j=�h. BySchwarz's inequality, the �rst term of (35) is then bounded by1�h Z T0 k tk kH tk dt = T�h kH 0k <1;and the second term is bounded for each T <1 by Assumption A4.To construct from this a rigorous proof we need only de�ne a suitable killedprocess. For t � 0 we de�ne Q��nt : G��n0 [ fyg �! G��nt [ fyg byQ��nt (q) := 8<: Qt(q) for t � � ��n(q)y for t > � ��n(q) (36)For completeness, we set Q��nt (y) = y for all t � 0. Consider the probabilitymeasure P ��n0 on G��n0 [ fyg which has the density���n0 (q) := j 0(q)j2 for q 2 G��n0(and, of course, P ��n0 (y) = 1� RG��n0 ���n0 (q) dq): The image measure of the processQ��nt is denoted by P ��nt := P ��n0 � (Q��nt )�1 and has the density ���nt on G��nt . Fromthe de�nition of N � (32),fq0 2 G��n0 : x 2 (@N � \ G�n(0;T ))g � fq0 2 G��n0 : j (x)j = �g: (37)23



Since we keep � and n �xed, and since the estimates are independent of � and n,we will omit the indices � and n on Q��n;G��n; ���n.De�ne for q 2 G�0 and t � 0D�t (q) := log j min(� �(q);t)(Qmin(� �(q);t)(q))j � log j 0(q)j:One has that D�T (q) = Z T0 @@tD�t(q) dt = Z T0 ft �Q�t(q) dt;where ft(y) := 8><>: 0 for y = y12 1j t(y)j2 @j t(y)j2@t + rj t(y)jj t(y)j � v t(y) for y 2 G�tWe shall show that uniformly in �P(fq 2 G�0 : jD�T (q)j > Kg)! 0 as K !1: (38)Then, since for q0 as in (37) D�T (q0) = log �� log j 0(q0)j, the lemma follows from(38) by observing thatP(fq 2 G�0 : j log j 0(q)jj > Kg)! 0 as K !1holds uniformly in �, which is immediate since the density of P is j 0j2.By Markov's inequality we obtain thatP(fq 2 G�0 : jD�T (q)j > Kg) � 1KE 1lG�0 �����Z T0 ft �Q�t dt�����! : (39)Recall now that P = P �0 on G�0, and that ft = 0 at y. Then by the de�nition of ��tas the density of the image measure of Q�t one obtains that the right hand sideof (39) is bounded by 1K Z T0 ZG�t ��t(q)jft(q)jdq dtUsing the bounds (19) (with �t replaced by ��t) and (34) (which holds on G�t ) we�nally obtain thatP(fq 2 G�0 : jD�T (q)j > Kg) �1K  Z T0 Z
 12 �����@j t(q)j2@t ����� dq dt+ � Z T0 Z
 jr t(q)j2dq dt! : (40)The bracket on the r.h.s. is (35). By the Assumptions A3 and A4, (35) is �niteand hence the r.h.s. of (40) goes to zero uniformly in � as K !1. Thus we haveestablished Lemma 3.6. 224



4 Bohmian mechanics and self-adjointness4.1. In this subsection we shall discuss the necessity of certain assumptionsunder which we have established global existence of the Bohmian particle mo-tion (cf. Theorem 3.1 and Corollary 3.2). We shall investigate in particular theassumptions concerning self-adjointness of the Hamiltonian.By Corollary 3.2 we obtain global existence if the Hamiltonian is the form sumH0 + V , and if the potential V satis�es certain conditions leading in particularto the Hamiltonian's being bounded from below. These conditions on the Hamil-tonian guarantee in particular that Assumption A4 of Theorem 3.1 is satis�ed.In the case of one particle moving on the half line 
 = (0;1), we shall prove,without invoking A4, global existence for a certain class of potentials for arbitraryself-adjoint extensions, which furthermore may be unbounded below.Theorem 4.1 Let 
 = (0;1), H = L2(
), and suppose V 2 C1(
) is suchthat H0+ V is in the limit point case at in�nity (see for example [37]). Let H bean arbitrary self-adjoint extension of (H0 + V )jC10 (
), and let  0 2 C1(H) withk 0k = 1. Then P(� <1) = 0.It follows for example from Theorem X.8 in [32] that if V (r) � �kr2 for r > cwith c; k � 0, then H0 + V is in the limit point case at in�nity.Consider as an example the potential V (q) = �c=q2 with c > 0 large enough:The Hamiltonian H = H0 + V is in the limit circle case at 0, in the limit pointcase at in�nity, and unbounded above and below (cf. for example [32]). Thusby Weyl's limit point-limit circle criterion there is a one-parameter family of(similarly unbounded) self-adjoint extensions ofHjC10 (
) for all of which, by Theo-rem 4.1, Bohmian mechanics exists uniquely and globally for P-almost all initialvalues.The proof employs a new de�nition of the particle dynamics in one dimensionwhich extends the solution to (2) and is interesting in its own right. (In fact, thisde�nition extends the Bohm motion, de�ned by (1) and (2), to an equivariantmotion for all  2 L2!) Let Qt(q0) be de�ned implicitly byZ Qt(q0)�1 j t(q)j2dq = Z q0�1 j 0(q)j2dq:Qt(q0) is well-de�ned if F (q; t) := Z q�1 j tj2dx25



is strictly monotonic in q. This is the case except at extended intervals with t = 0, where F (�; t) has a plateau. To de�ne Qt(q0) globally for q0 2 IR, set forexample Qt(q0) := minfq : F (q; t) = F (q0; 0)g (41)(and Qt(q0) = �1 if F (q0; 0) = 0, Qt(q0) =1 if F (q0; 0) = 1).Proof. From Lemma 6.1 we obtain that  2 C1(
 � IR). Therefore, using thecontinuity of the scalar product and the L2-di�erentiability of t 7!  t,F (q; t) = Z q0 j tj2 dx = (1l[0;q] t;  t)(where (�; �) denotes the scalar product in H = L2(
)) is jointly continuous anddi�erentiable. Clearly F (0; t) = 0, limq!1 F (q; t) = 1, and @F=@q = j t(q)j2.Moreover, @F (q; t)@t = Z q0 @j tj2@t dx = �jt(q) + limc!0 jt(c) = �jt(q):Here the existence of limc!0 jt(c) follows for  2 C1(H) from partial inte-gration of R dc ( �(H ) � (H �) ) dx and Schwarz's inequality; the value 0 forlimc!0 jt(c) = 0 follows from the symmetry of H together with the fact thatlimd!1 jt(d) = 0, which holds because H is in the limit point case at in�nity.(See for example [37].)For all t and all q0 2 G0 = 
nN0, let Qt(q0) be de�ned by (41). It follows fromthe implicit function theorem that t 7! Qt(q0) is continuous and di�erentiable for(q0; t) such that  t(Qt(q0)) 6= 0, with dQt=dt = j(Qt)=j t(Qt)j2 = v t(Qt), i.e.,Qt solves the di�erential equation (2) on G = (
 � IR) n N . It remains to showthat for P-almost all initial q0, � (q0) = supfs > 0 : Qt(q0) 2 G for all t � sg isin�nite, i.e., (2) has global solutions for almost all initial values.Now it is obvious from this de�nition that Qt(q0) 2 
 for all t and all q0 2 G0.(Qt(q0) = 0 corresponds to F (q0; 0) = 0, Qt(q0) = 1 to F (q0; 0) = 1, and forq0 2 G0, F (q0; 0) 2 (0; 1).) Moreover, by the L2-continuity of t !  t, we havethat for 0 < T < 1 and q0 2 G0; inf0�t�T Qt(q0) > 0 and sup0�t�T Qt(q0) <1, i.e., the trajectories cannot run into the (only) possible singularity of thepotential S = f0g or to in�nity in �nite time. Thus it remains only to controlthe probability of hitting N , for which Lemma 3.5 does the job. We omit thedetails. 226



4.2. One might now wonder whether we have global existence of Bohmian me-chanics for any self-adjoint Schr�odinger Hamiltonian (without assuming A4).This is quite trivially wrong, as is easily seen by considering free motion onthe interval 
 = (0; 1). There are self-adjoint extensions of H0jC10 (
) withj(0) = j(1) 6= 0. (Similarly one might consider potentials on 
 = (0;1) suchthat H0+V is in the limit circle case at in�nity.) This corresponds to an incoming
ow at 0, balanced by an outgoing 
ow at 1 (or the other way round) so thatthe total probability is conserved (a situation which can of course be identi�edwith a motion on a circle). Typically, the particle will reach the boundary of 
,so that almost sure global existence in the sense of solutions of the di�erentialequation (2) fails. However, the motion is quite trivially extendible in such a waythat the trajectories are piecewise solutions of the di�erential equation: when theboundary of 
 is reached they jump to the other end of 
. j j2 then remains anequivariant measure. This motion can be described by replacing (41) byQt(q0) := minfq : eF (q; t) = eF (q0; 0)gwith eF (q; t) = �F (q; t)� Z t0 js(0) ds� (mod 1)[Another possibility to de�ne a global motion in this case is to use the unmodi�ed(41). This provides then an example of a deterministic dynamics completelydi�erent from (and not an extension of) the Bohmian dynamics, ((2) is replacedby the nonlocal form dQ=dt = (j � jt(0))=j j2) for which, however, j j2 remainsequivariant. With this motion, particles do not jump from 1 to 0 or the otherway round. (However, they might all run through nodes!)]In fact, we expect generally that self-adjointness guarantees (possibly discontin-uous) extendibility of the Bohmian motion in such a way that j j2 is an equivari-ant measure. This is suggested by the fact that the symmetry of the Hamiltonianleads to lim�!0;n!1 Z@S�\Kn(j t(q) � u)ds + Z@KnnS�(j t(q) � u)ds! = 0;using integration by parts (Green's identity)ZM  �(H )dq � ZM (H �) dq = �i�h Z@M(j � u)ds;27



forM = KnnS�. The vanishing of the integrals over the absolute 
ux yields globalexistence of Bohmian mechanics: In �nite time the singularities and in�nity arenot reached. The 
ux balance from self-adjointness alone suggests extendibilityof the motion: Some parts of the singularities (or in�nity) may act as sources,others as sinks.4.3. For a wider perspective on this matter let us consider a Schr�odinger Hamil-tonian H on a domain where it is not (essentially) self-adjoint, i.e., where theboundary conditions are too few or too weak. Then, �rst of all, the time evolu-tion of wave functions is not unique: There are in�nitely many di�erent unitaryevolutions (corresponding to the di�erent self-adjoint extensions), and there arealso semi-groups for which k tk is not conserved. The (essential) self-adjointnessof H is equivalent to Ker(H� � i) = f0g, so that if H is considered on a domainwhere it is symmetric but not self-adjoint, then H� has imaginary eigenvalues.Together with the (space) regularity for eigenstates of the elliptic operator H�(assuming su�cient regularity for the potential V ) we thus obtain classical solu-tions of Schr�odinger's equation with exponentially decreasing or increasing norm.Since � = j j2 still holds on I (cf. the paragraph around Equation (19)), thosesolutions lead with positive probability to catastrophic events.This possibility is not that far-fetched: The Hamiltonian for one particle in aCoulomb �eld V (r) = �1=r considered on the \natural" domain C10 (IR3 n f0g)is not essentially self-adjoint and hence the time evolution of the wave functionis not uniquely de�ned [22, 19]. There are many properties that mathematicallydistinguish the self-adjoint extension usually regarded as \the Coulomb Hamilto-nian" from other possible extensions. However, we do not know of any convincing(a priori) physical argument for \the Coulomb Hamiltonian" unless one accepts,for example, that the Coulomb potential is a \small perturbation" of the freeHamiltonian [20], or that \in reality the singularity is smeared out." Of course,if we require that Bohmian mechanics be globally existing, then, as we have ar-gued above, only self-adjoint extensions are possible. But among all self-adjointextensions Bohmian mechanics seems not to discriminate: While our Corollary3.2 applies only to the form sum (which is \the Coulomb Hamiltonian"), it isheuristically rather clear (or at least plausible) that Bohmian mechanics shouldexist globally and uniquely for all the other self-adjoint extensions of HjC10 (IR3nf0g)28



as well.9Nonetheless, discussions about the \right" (unitary or contractive) evolution,i.e., about the \right" boundary conditions, as for example in the case of stronglysingular potentials like the 1=r2 potential (see [10, 23, 27]), do gain now �rmground by taking into account the actual behavior of the particles: Whetheror not we should consider the Bohmian particle to be caught at the origin is amatter of the physics we wish to describe: whether or not particles disappear inthe nucleus. An axiom, or dogma, of self-adjointness of the Hamiltonian (or equi-valently of unitarity of the wave function evolution) appears quite inappropriatefrom a Bohmian perspective|even though the importance of self-adjointness isprofoundly illuminated by this perspective!Moreover, the particle picture of Bohmian mechanics naturally yields an in-terpretation of the current j as a current of particles moving in accordance withthe density j j2. In this way, boundary conditions for self-adjointness of theform j = 0 at the singularities or j(in) = j(out) may be viewed as \arisingfrom Bohmian mechanics." For example, the outcome of a detailed analysisof self-adjoint extensions of H0 on the half line (0;1)|there is a one parame-ter family of self-adjoint extensions Ha0 , the respective domains being de�nedby  0(0)= (0) = a, a real, or  (0) = 0 (a = 1)|is easily guessed from thepoint of view of Bohmian mechanics by demanding that either v (0) = 0, i.e.,Im( 0(0)= (0)) = 0, or that j (0)j2 = 0.4.4. We wish to conclude with some remarks on the general Hilbert space de-scription of orthodox quantum theory viewed from the perspective of Bohmianmechanics. We have discussed the fact that Bohmian mechanics is well de�ned,i.e., trajectories exist globally and uniquely, for typical initial values and forwave functions which are C1-vectors of the self-adjoint Hamiltonian H. The set9The singularity of the radial current at 0 may be estimated for  =Pl;m flm(r)Ylm(�; �) 2L1l=0 D(Hr;l)
Kl, where, for angular momentum l, Hr;l is the radial part of H and Kl is thecorresponding eigenspace of the angular part of � �h22m�, as follows: Hr;lflm 2 L2(IR+; r2 dr)implies for the worst behavior of flm as r ! 0 that flm � r� with � > 1=2 for l � 1 resp.� = �1 for l = 0. Therefore the worst behavior of the the radial current j r = �hm Im� � @ @r � asr! 0 is j r � r�(3=2)+� (using the fact that the radial current at 0 vanishes on D(Hr;0) for allself-adjoint extensions, cf. the proof of Theorem 4.1). Thus we should have that RKr jj �uj ds =RS2 jj r j r2 d! � r(1=2)+� ! 0 as r! 0. For a proof of global existence along the lines of Theorem3.1, it is necessary also to control the time change of the radial current. However, the globalexistence for the one-dimensional problem (Theorem 4.1) suggests that this should be possible.29



C1(H) is dense and invariant; however, it is most likely not a residual in thenorm topology of the Hilbert space L2(
), i.e., it is presumably not a \generic"set, and it furthermore depends on the Hamiltonian. One might now wonder howBohmian mechanics can be taken as the basis for the quantum formalism (as hasbeen claimed|see [11]) if the former cannot even be de�ned for a really \fat"set of wave functions. And since, as we have seen, Bohmian mechanics yields anatural understanding of the (spirit of the) meaning of the self-adjointness of aSchr�odinger Hamiltonian, the question should be even more puzzling. The an-swer is, of course, that the embedding of Bohmian mechanics into a Hilbert spacestructure is a natural but purely mathematical device. Indeed this answer is (ofcourse, in disguise) commonly accepted|though maybe not as loudly stated: Nophysicist believes that a generic L2-wave function (in the residual sense) resultsas the \collapsed" wave function from a preparation procedure. The state spaceof physical wave functions  is not the Hilbert space H = L2(
) but more orless the space of classical, smooth solutions of Schr�odinger's equation, for theanalysis of which the L2-norm and hence the Hilbert space structure is of criticalimportance.Other aspects of this embedding are commonly taken more seriously: for exam-ple, that observables are self-adjoint operators on H. While we do not wish hereto enter into a general discussion of this question (see [11]), we would like onceagain to comment on the self-adjointness of the Hamiltonian H. The importanceof this property is certainly not that \measured energy values must be real" butlies rather in Stone's theorem: H acts as the generator of a one-parameter unitarygroup Ut, which gives the time evolution of states  t = Ut 0 (or of observablesAt = U�1t AUt), and hence must be self-adjoint by Stone's theorem. Why shouldthe time evolution be unitary? Simply because the norm k tk must be invariant,so that the total probability is conserved.We conclude with some remarks about e�ective descriptions. We �rst note thatrestrictions of con�guration space such as described in the last paragraph of Sec-tion 4.3 (with a freedom in the boundary condition) are perhaps best understoodphysically as arising as a limit of a sequence of (moderately realistic) potentialsV an tending to \V = 0 for q > 0, V =1 for q < 0" in a suitable way|such thatH0 + V an ! Ha0 in an appropriate sense. This problem is analyzed in [35, 1, 5],and in [5] the convergence of the Bohmian trajectories in this limit is derived.In other physically interesting but complex situations we may have an e�ectivedescription involving a Hamiltonian which is self-adjoint but not of Schr�odinger-30



type,10 so that the probability current j may fail to be of the usual form [cf.Eq. (8)], or where there may in fact be no local conservation law at all for theprobability density j j2.For an example with nonstandard current j, consider the self-adjoint shiftoperator Hc = �i�hcr, where c is a constant with the dimension of a velocity. t(q) = e�itHc=�h 0(q) =  0(q � ct) describes translation without \spreading."This Hamiltonian may perhaps arise in a limit in which the spreading of thewave function, induced by the Laplacian, can be neglected. In any case, thecorresponding current is jc = cj j2, and the obvious candidate for the \Bohmmotion" in this case is v = jc=� = c, not (1).It is conceivable that an approximation procedure leading to an e�ective Hamil-tonian like Hc, when applied to Bohmian mechanics, also converges to a deter-ministic limit. If so, then v = c would be the natural guess for the motion inthis limit.For a Hamiltonian with no local conservation law for probability there is ofcourse no \Bohm motion" generalizing (1).5 AcknowledgementsDuring this work, we pro�ted from discussions with many collegues. In particular,we wish to acknowledge helpful discussions with Lara Beraha, Martin Daumer,Joseph Gerver, John Mather, Markus Schneider, Eugene Speer, Avy So�er, Her-bert Spohn, Francois Treves, and J�urgen Weckler. This work was supported bythe DFG, by NSF Grant No. DMS-9305930, and by the INFN.6 Appendix: On the regularity of  Lemma 6.1 Assume A1{A3, and let  t(q) = e�itH=�h 0(q). Then there exists afunction e 2 C1(
� IR) such that for all t 2 IR e (q; t) =  t(q) for almost all q.( e is a classical solution of Schr�odinger's equation.)This fact is presumably folklore knowledge to experts in PDE's, but sincewe could �nd no suitable reference|and since it does not appear to be well10The modeling of physical situations leads often to idealizations which are very singular. InNewtonian mechanics one considers for example singular evolutions induced by \hard walls"con�ning a particle or by elastic collision between hard spheres.31



known among mathematical physicists|we shall supply a proof. (Hunziker [18]has established space-time regularity of  for potentials which are bounded, havebounded derivatives, and are C1 on IRd for  0 in Schwartz space. Also, regularity(in space) of eigenfunctions (for su�ciently regular potentials) is well known [32].)Proof. We apply standard methods of elliptic regularity (see, for example, [33])to the elliptic operator L on 
� IRL := ��h2 @2@t2 � NXk=1 �h22mk�k + V = ��h2 @2@t2 +HFrom A3,  t 2 C1(H), and therefore the functions �n;t := Hn t(= e�itH=�h�n;0)are in L2(
) for all n and t. With this de�nition, formallyL = �2 + �1; and L�n = �n+2 + �n+1 (42)To apply the theorem of elliptic regularity, we need to show a) that  and �nare locally L2 in 
 � IR, therefore locally in the Sobolev space W 0 (we refer tothe de�nitions and theorems of [33], where howeverW n is written Hn) in 
� IR,and b) that (42) is satis�ed in the distributional sense on 
 � IR. Then, byrepeated use of Theorem 8.12 in [33] we obtain that  (and �n) are locally in W nfor all even (positive) integers n. Then by Sobolev's lemma  is indeed (almosteverywhere equal to) a C1-function on 
 � IR. (The space-time set of measure0 on which  has to be corrected indeed splits into t-slices that are of measure 0for all t. This is a consequence of L2-continuity of t 7!  t.)a) This is an easy consequence of Fubini's theorem if  and �n are jointlymeasurable in q; t.  t is measurable in q ( t 2 L2(
)) and the map t 7!  tresp. t 7! �n;t is weakly measurable (indeed much more is true, namely strongdi�erentiability). Then by a theorem of Bochner and von Neumann [6] jointmeasurability of  t(q) and �n;t(q) in (q; t) follows in the following sense: Thereexist functions e and e�n which are jointly measurable in q; t, and for all t e (q; t) = t(q) and e�n(q; t) = �n;t(q) for almost all q 2 
. In the following, we shall denotee (q; t) and e�n(q; t) by  (q; t) and �n(q; t) or again by  t(q) and �n;t, as convenient.b) First one convinces oneself that  and �n satisfy Schr�odinger's equation inthe distributional sense, i.e., for all test functions f 2 C10 (
 � IR),�i�h Z ( @@tf) dq dt = Z (Hf) dq dt:32



This follows by looking at the function G : IR ! IR; t 7! R f(q; t) (q; t)dq =(f�t ;  t), where (�; �) denotes the scalar product in L2(
). G has compact support,and its derivative is seen to bedG(t)dt = 1i�h(f�t ;H t) + (@f�t@t ;  t)by the continuity of the scalar product (�; �) and the weak (in L2(
)) di�erentia-bility of  t. The same holds with  replaced by �n for all n. Since furthermoreft 2 D(H) for all t, and therefore (f�t ;H t) = (Hf�t ;  t),  and �n are indeedweak solutions of Schr�odinger's equation (and the self-adjoint operator H onD(H) agrees with the operator on distributions de�ned by H), i.e., we've arrivedat i�h@ @t = H = �1 and i�h@�n@t = H�n = �n+1weakly, and therefore (42) indeed holds in the distributional sense (on 
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