BELL AND NONLOCALITY

Jean BRICMONT, UCLouvain, Belgium

Quantum Theory Without Observers III

ZIF, Bielefeld April 23 2013

THE CLASSICAL OR EPISTEMIC VIEW OF PROBABILITIES:

Laws are deterministic

 \Rightarrow probabilities are ONLY due to our ignorance.

The curve described by a single molecule in air or vapor is regulated in a manner just as certain as the planetary orbits; the only difference between them is that which comes from our ignorance. Probability is relative, in part to this ignorance, in part to our knowledge. ...

P.S. LAPLACE

WHAT ABOUT QUANTUM MECHANICS?

 $|\Psi|^2 = \text{probabilistic interpretation}$

But is it only ignorance ?

If so, why does it evolve according to a physical law ? What about the reduction or collapse of Ψ during a measurement?

Einstein's boxes

A single particle is in Box B. One cuts the box in two half-boxes,

| state > = | B >

The state becomes

 $\longrightarrow \frac{1}{\sqrt{2}}(|B_1>+|B_2>)$

where $|B_i\rangle = \text{particle "is" in box } B_i, i = 1, 2.$

The two half-boxes B_1 and B_2 are then separated and sent as far apart as one wants.

If one opens one of the boxes (say B_1) and that one does *not* find the particle, one *knows* that it is in B_2 . Therefore, the state "collapses" instantaneously and in a non local way.

One opens box $B_1 \longrightarrow$ nothing

This is a "measurement", therefore state $\longrightarrow |B_2>$

(and, if one opens the box B_2 , one will find the particle !).

Is the reduction or collapse of the

| state > a real (= physical) operation

or does it represent only our knowledge (= epistemic), as in the classical view ?

If physical \longrightarrow A non local form of causality exists

If epistemic \longrightarrow QM "incomplete" : there exists other variables than the quantum state that describe the system.

These variables would tell in which half-box the particle **IS** before one opens either of them.

Let us put aside the issue of completeness and *prove* non locality

What is non locality ?

Non local causality (causality NOT mere correlation)

Properties

- 1. Instantaneous
- 2. a. Extends arbitrarily far
 - b. The effect does not decrease with the distance
- 3. Individuated
- 4. Can be used to transmit messages

Newton's gravity : 1, 2a and 4

Post-Newtonian physics (e.g. field theories) : 2a and 4

Is there a phenomenon with properties : 1-3?

(Not $4 \rightarrow$ pseudoscience).

HOW TO PROVE NON LOCALITY,

3	questions	$1,\!2,\!3$
2	answers	yes/no

Questions and answers vary. But when the same question is asked at A and B, one always gets the same answer.

Only one possibility : either the answers are predetermined *or* there exists a form of causality at a distance *after* one asks the questions. This is the Einstein Podolsky and Rosen (EPR-1935) argument (in Bohm's formulation).

BUT

This assumption

(alone)

leads to a contradiction with observations made when the questions are different.

Bell (1964)

PROOF

3 Questions	1	23
-------------	---	----

2 Answers Yes/No

If the answers are given in advance, there exists $2^3 = 8$ possibilities :

1	2	3
Y	Y	Y
Y	Y	N
Y	N	Y
Y	N	N
N	Y	Y
N	Y	N
N	N	Y
N	N	N

In *each case* there are at least *two questions* with the same answer.

Therefore,

Frequency (answer to 1 =answer to 2)

- + Frequency (answer to 2 =answer to 3)
- + Frequency (answer to 3 =answer to $1) \ge 1$

BUT,

in some experiments,

Frequency (answer to 1 =answer to 2) = Frequency (answer to 2 =answer to 3) = Frequency (answer to 3 =answer to 1) = $\frac{1}{4}$

 $\Rightarrow \frac{3}{4} \ge 1$ FALSE ! $\Rightarrow \text{CONTRADICTION}$ That's all. That's the difficulty. That's why quantum mechanics can't seem to be imitable by a local classical computer.

I've entertained myself always by squeezing the difficulty of quantum mechanics into a smaller and smaller place, so as to get more and more worried about this particular item. It seems to be almost ridiculous that you can squeeze it to a numerical question that one thing is bigger than another.

R. FEYNMAN, in "Simulating physics with computers" (1982)

EXPERIMENTS

	31 RR	2200	7707	
	3366	1188	33 33	
	3388	7700	21.38	
	1268	7168	13 9	
	1204	SIGR	2339	
	3300	1266	22 RR	
	21 GR	21 GR	11 RR	
	21RR	3360	21 C R	
	22 RR	21 RR	21 RR	
	3366	12GR	2335	
<pre></pre>	1100	22 RR	32 5 R	
7.2.3-	23RR	13R3	3388	
1 /	32GR	12 RG	3366	
	1268	2366	3366	
C	1286	1100	2769	
QUESILONS	1100	1786	21.00	
1 ==	21.96	21.86	1222	
and produced in the second second	1206	2200	7000	
10.01-1.11	1730	2260	3208	
L'appl / zight	2200	7200	3201	
1	1230	3200	3366	
	1280	3366	31R3	
	IZGR	ZIRR	13RR	
D /	2200	12RG	13RG	
real	23GR	2200	32 RG	
	33RR	1166	31 GR	
	3300	23GR	23RR	
62001	31 RG	22 RR	33RR	
O SCOR	31 RR	1100	13GR	
	33RR	32GR	11GG	
1000 Television (1997)	32RG	13RG	31 GR	
22 AIVSHIEDS	31 RG	13GR	3186	
CHITACTES	11RR	23GG	13GR	
	23GR	3388	238G	
c	1266	3168	3166	
(Yes/ CYo/	1100	1386	2386	
c	1386	2388	2100	
	71 PG	1268	27.90	
	2760	7100	1100	
	2100	7280	2000	
	2786	2100	1100	
	2386	EIGR	1166	
	ZZRR	2298	1100	
	12GR	ZZRR	ZIRG	
	32GR	13RR	11RR	
	22RR	2166	12RG	
	1266	23GR	23GR	
	33RR	2266	32GR	
	11RR	2266	2166	
	2366	3166	21 RG	
	2366	13GR	13RG	
	33RR	21GR	13RG	
	23GR	33RR	138G	
	2166	2388	1368	
	1368	2288	2386	
	3366	1288	2200	
	1100	2386	1100	
	1200	2380	31 86	
	1200	7200	2789	
	7100	TIDO	2780	
	7200	SIRG	CORD	
	SERG	2266	11 KR	
	ZIGR	1166	SERG	
	2236	1100	JZGR	
	ZZRR	21 RG	1366	
	13RR	11RR	23GR	
	2166	12RG	32GR	
	2768	2700		

35 out of 2 730

.

QUANTUM DESCRIPTION

X and Y are replaced by particles

A and B are Stern-Gerlach apparatuses that "measure the spin" along some direction.

1, 2, 3 = 3 possible directions for that "measurement". Yes/No = Up/Down.

| state of the two particles >

$$= \frac{1}{\sqrt{2}} (|A \ 1 \uparrow > |B \ 1 \downarrow > -|A \ 1 \downarrow > |B \ 1 \uparrow >)$$

$$= \frac{1}{\sqrt{2}} (|A \ 2 \uparrow > |B \ 2 \downarrow > -|A \ 2 \downarrow > |B \ 2 \uparrow >)$$

$$= \frac{1}{\sqrt{2}} (|A \ 3 \uparrow > |B \ 3 \downarrow > -|A \ 3 \downarrow > |B \ 3 \uparrow >)$$

| state of the two particles >

$$= \frac{1}{\sqrt{2}} (|A \ 1 \uparrow > |B \ 1 \downarrow > -|A \ 1 \downarrow > |B \ 1 \uparrow >)$$

If one measures the spin in direction 1 at A, and one sees \uparrow , the state becomes $|A \ 1 \uparrow > |B \ 1 \downarrow >$.

If one sees \downarrow , the state becomes $|A \ 1 \downarrow \rangle |B \ 1 \uparrow \rangle$. Similar result if one measures the spin in direction 2 or 3 at A.

But then the state changes non locally at B.

Same dilemma as for Einstein's boxes : reduction of the | state > = physical or epistemic ? <u>If physical \longrightarrow non locality</u>

If epistemic \longrightarrow "answers" are given in advance, i.e. the particle at B is $1 \uparrow$ or $1 \downarrow$, $2 \uparrow$ or $2 \downarrow$, $3 \uparrow$ or $3 \downarrow$, before any measurement at A.

BUT (Bell 1964) this leads to a contradiction with observations made when the directions in which the spin is "measured" are *different* at A and B.

SO, the perfect correlations (here, we have perfect anticorrelations, but that is a matter of conventions for YES/NO) are not merely correlations, but the result of a subtle form of nonlocality. In other words, the reduction of the quantum state, which is non local, is not merely epistemic, but related to something physical.

One cannot use this to send messages

If one could, then relativity implies that one could send messages into one's own past.

- Each side sees a perfectly random sequence of YES/NO or RED/GREEN
- BUT if each person tells the other which "measurements" have been made (1, 2 or 3), then, they both know which result has been obtained on the other side when the same measurement is made on both sides.

 \Rightarrow Then, they both share a common sequence of YES/NO or RED/GREEN, which is form of "information". Since that information cannot possibly come from the source (Bell), some sort of nonlocal transmission of information has taken place.

BELL WAS QUITE EXPLICIT ABOUT WHAT THIS MEANS

Let me summarize once again the logic that leads to the impasse. The EPRB correlations are such that the result of the experiment on one side immediately foretells that on the other, whenever the analyzers happen to be parallel. If we do not accept the intervention on one side as a causal influence on the other, we seem obliged to admit that the results on both sides are determined in advance anyway, independently of the intervention on the other side, by signals from the source and by the local magnet setting. But this has implications for non-parallel settings which conflict with those of quantum mechanics. So we cannot dismiss intervention on one side as a *causal* influence on the other.

J. BELL

BUT BELL WAS WIDELY MISUNDERSTOOD

Some theoretical work of John Bell revealed that the EPRB experimental setup could be used to distinguish quantum mechanics from hypothetical hidden variable theories... After the publication of Bell's work, various teams of experimental physicists carried out the EPRB experiment. The result was eagerly awaited, although virtually all physicists were betting on the corrections of quantum mechanics, which was, in fact, vindicated by the outcome.

M. GELL-MANN

The situation is like that of Bertlmann's socks, described by John Bell in one of his papers. Bertlmann is a mathematician who always wears one pink and one green sock. If you see just one of his feet and spot a green sock, you know immediately that his other foot sports a pink sock. Yet no signal is propagated from one foot to the other. Likewise no signal passes from one photon to the other in the experiment that confirms quantum mechanics. No action at a distance takes place.

MURRAY GELL-MANN

The proof he [von Neumann] published... though it was made much more convincing later on by Kochen and Specker, still uses assumptions which, in my opinion, can quite reasonably be questioned... In my opinion, the most convincing argument against the theory of hidden variables was presented by J.S. Bell.

E. WIGNER

Bell's theorem establishes that the value assigned to an observable must depend on the complete experimental arrangement under which it is measured, even when two arrangements differ only far from the region in which the value is ascertained – a fact that Bohm theory exemplifies, and that is now understood to be an unavoidable feature of any hidden-variables theory. To those for whom nonlocality is anathema, Bell's Theorem finally spells the death of the hidden-variables program.

D. MERMIN

EINSTEIN WAS ALSO MISUNDERSTOOD

An essential aspect of this arrangement of things [physical objects] in physics is that they lay claim, at a certain time, to an existence independent of one another, provided these objects "are situated in different parts of space". The following idea characterizes the relative independence of objects far apart in space (A and B) : external influence on A has no direct influence on B. A. EINSTEIN

The root of the difference between Einstein and me was the axiom that events which happens in different places A and B are independent of one another, in the sense that an observation on the states of affairs at B cannot teach us anything about the state of affairs at A.

M. BORN

Contemporary physicists come in two varieties. Type 1 physicists are bothered by EPR and Bell's theorem. Type 2 (the majority) are not, but one has to distinguish two subvarieties. Type 2a physicists explain why they are not bothered. Their explanations tend either to miss the point entirely (like Born's to Einstein) or to contain physical assertions that can be shown to be false. Type 2b are not bothered and refuse to explain why. Their position is unassailable. (There is a variant of type 2b who say that Bohr straightened out the whole business, but refuse to explain how.)

D. MERMIN

CONCLUSION

I know that most men, including those at ease with problems of the highest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives.

TOLSTOY